
Parallel Computing with the Bioconductor
Amazon Machine Image

Valerie Obenchain
vobencha@fhcrc.org

Fred Hutchinson Cancer Research Center
Seattle, WA

August 2014

mailto:vobencha@fhcrc.org

Introduction

Parallel programming

Parallel infrastructure in R / Bioconductor packages

BiocParallel ‘back-ends‘

Bioconductor Amazon Machine Image (AMI)
Exercise 1: Instance resources
Exercise 2: S3 buckets

Copy Number Analysis
Exercise 3: Set-up
Exercise 4: Shared memory vs non
Exercise 5A: Nested evaluation (built-in)
Exercise 5B: Nested evaluation (roll your own)

Resources

Acknowledgements

Introduction

This presentation provides an introduction to parallel computing with the
Bioconductor Amazon Machine Image (AMI). It is designed for those
who are familiar with R and Bioconductor .

We’ll review parallel infrastructure available in Bioconductor packages,
specifically BiocParallel and GenomicFiles. Problem types well suited for
parallel execution are discussed as well as advantages / disadvantages of
computing in a single machine vs cluster environments.

Exercises develop familarity with the AMI resources and explore data
import and storage options. Steps in a copy number analysis are used to
demonstrate parallel applications over different dimensions and problem
configurations.

http://bioconductor.org/packages/release/bioc/html/BiocParallel.html
http://bioconductor.org/packages/release/bioc/html/GenomicFiles.html

Parallel programming
Computationally intensive problems that involve many independent
calculations

Involves:

I Decomposing an algorithm or data into parts (’split’)

I Distributing the tasks to multiple processors to be worked on
simultaneously (’apply’)

I Gathering results (’combine’)

Considerations:

I Type of parallel architecture

I Type of processor communication

Candidate problems:

I Simulations, bootstrap, cross validation, local convergence
algorithms

I Repeated operation on many genomic ranges or files such as
coverage, counting, normalization, etc.

Other approaches

Limiting resource consumption:

I Restriction: Appropriate when query only requires a fraction of the
data (e.g., ScanBamParam)

I Compression: Represent the same data with fewer resources (Rle,
Views, CompressedList classes)

I Iterating: Chunking through data to meet resource constraints
(yieldSize)

... and more at http://www.imstat.org/sts/future_papers.html.

http://www.imstat.org/sts/future_papers.html

Packages with parallel infrastructure

parallel
Incorporates multicore and snow packages; included in base R.

BatchJobs
Schedules jobs on batch systems

foreach
Framework with do* backends, doMC , doSNOW , doMPI , etc.

BiocParallel
Incorporates parallel and BatchJobs packages.

(... and there are others)

BiocParallel
Why use BiocParallel?

I Load one package for all parallel back-ends

I Mirrored terminology of existing *apply functions bplapply,
bpmapply, bpsapply, bpvec ...

I Unified interface to back-ends via param object

> registered()

$MulticoreParam
class: MulticoreParam; bpisup: TRUE; bpworkers: 4; catch.errors: TRUE
setSeed: TRUE; recursive: TRUE; cleanup: TRUE; cleanupSignal: 15; verbose:

FALSE

$SnowParam
class: SnowParam; bpisup: FALSE; bpworkers: 4; catch.errors: TRUE
cluster spec: 4; type: PSOCK

$BatchJobsParam
class: BatchJobsParam; bpisup: TRUE; bpworkers: NA; catch.errors: TRUE
cleanup: TRUE; stop.on.error: FALSE; progressbar: TRUE

$SerialParam
class: SerialParam; bpisup: TRUE; bpworkers: 1; catch.errors: TRUE

GenomicFiles package (devel branch)

reduceByFile(), reduceByRange():

I Use BiocParallel under the hood to perform parallel computations by
file or by range

I MAP and REDUCE concepts to reduce the dimension of the data

reduceByYield():

I Iterates through a file reducing output to single result (no built-in
parallelism)

Single machine with multiple CPUs

I Multi-core approach uses fork system call to create workers

I Shared memory enables data sharing and code initialization

I No Windows support

I Appropriate for computationally-limiting problems, not
memory-limiting

> bpworkers()

[1] 4

> MulticoreParam()

class: MulticoreParam; bpisup: TRUE; bpworkers: 4; catch.errors: TRUE
setSeed: TRUE; recursive: TRUE; cleanup: TRUE; cleanupSignal: 15; verbose:
FALSE

Clusters
Ad hoc cluster of multiple machines:

I Create a cluster of workers communicating with MPI or sockets
I Memory not shared; all data must be passed, code initialized
I Need SSH access to all machines

> SnowParam(workers = 4, type = "PSOCK")

class: SnowParam; bpisup: FALSE; bpworkers: 4; catch.errors: TRUE
cluster spec: 4; type: PSOCK

> SnowParam(workers = 4, type = "MPI")

class: SnowParam; bpisup: FALSE; bpworkers: 4; catch.errors: TRUE
cluster spec: 4; type: MPI

Cluster with formal scheduler:
I Uses software application to submit, control and monitor jobs
I Specify resources and script, software creates the cluster

> BatchJobsParam(workers = 4, resources = list(ncpus=1))

class: BatchJobsParam; bpisup: TRUE; bpworkers: 4; catch.errors: TRUE
cleanup: TRUE; stop.on.error: FALSE; progressbar: TRUE

Bioconductor AMI

What is it?

I Amazon Machine Image that runs in Elastic Compute Cloud (EC2)

I Comes pre-loaded with many Bioconductor software and annotation
packages and their dependencies

Why use it?

I AMIs for different versions of R

I Add CPUs and/or memory in flexible configurations

I Run from any device, PC, tablet or other

Bioconductor AMI: Getting started

General steps:

I Create AWS account

I Create key pair

I Single machine: Launch AMI, choose resources, create stack

I Cluster: Install StarCluster, edit config file, start cluster

I Access AMI vis SSH or RStudio

I Full details: http://www.bioconductor.org/help/

bioconductor-cloud-ami/#overview

http://www.bioconductor.org/help/bioconductor-cloud-ami/#overview
http://www.bioconductor.org/help/bioconductor-cloud-ami/#overview

Bioconductor AMI: Available resources

I Instances optimized for compute, memory, storage, GPU ...

I Instance details: http://aws.amazon.com/ec2/instance-types/

I Pricing details: http://aws.amazon.com/ec2/pricing/

I Free usage tier to encourage new users ...
http://aws.amazon.com/free/

I Max resources currently available:
- Up to 32 virtual cores per instance
- Up to 244 GIG RAM per instance

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/free/

Selecting and allocating resources
I Experiment with a small example to understand cpu (time) and

memory (space) needs of your program.
I General rule of thumb is to specify 1 worker per core.
I May want to allocate more workers than cores if a process were

limiting or irregular (i.e., data input). This would result in a pool of
idle cores waiting for next available chunk of data vs stalling a
pipeline.
What usually happens is that workers are running at the same time
and swapping in and out of the available processors as they compete
for time. The overhead seen here is that swapping - sometimes
referred to as ‘over-subscribing‘.

> workers <- c(bpworkers(), bpworkers() + 5, bpworkers() + 10)
> FUN <- function(i)
+ system.time(bplapply(1:1000, sqrt, BPPARAM = MulticoreParam(i)))
> do.call(rbind, lapply(workers, FUN))

user.self sys.self elapsed user.child sys.child
[1,] 0.004 0.020 0.065 0.068 0.024
[2,] 0.020 0.020 0.074 0.156 0.072
[3,] 0.016 0.044 0.092 0.132 0.132

Exercise 1: AMI resources

In this exercise we investigate local resources associated with the
c3.4xlarge AMI created for this lab. Full descriptions of the AWS
instances can be found at
http://aws.amazon.com/ec2/instance-types/.

a. Processors: Load BiocParallel package and check the number of
workers with bpworkers.

b. Local storage: Check the amount of local storage on the instance by
selecting Shell from the Tools drop-down menu. In the box type df
-h. The df command stands for ”disk filesystem” and the -h option
shows disk space in human readable form (i.e., units along with raw
numbers).

c. RAM: Again using the Shell, type ‘free -m -h‘.

d. Compare the statistics for the c3.4xlarge AMI to those of the
conference AMI (m3.large).

http://aws.amazon.com/ec2/instance-types/
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

Data storage options

EC2 instance store:

I Storage physically attached to instance

I Evaporates when instance is shut down

EBS:

I Persistent block-level storage for use with EC2 instances

I Network attached so some latency can be expected

I Volume is attached to instance in same availability zone

S3:

I Data storage service not a filesystem

I Transfer between S3 and EC2 is free.

I Best for storing items that must persist - push nightly backups,
results etc.

Data storage options

No clear consensus regarding best I/O performance.

A Systematic Look at EC2 I/O
http://blog.scalyr.com/2012/10/a-systematic-look-at-ec2-io/

Take home was that performance varies widely across instances; offers a
few general guidelines depending upon I/O situation.

Cloud Application Architechtures
http://www.amazon.com/dp/0596156367/?tag=stackoverfl08-20

Table: Comparison of EC2 data storage options

S3 Instance EBS

Speed Low Unpredictable High
Reliability Medium High High
Durability Super high Super low High

http://blog.scalyr.com/2012/10/a-systematic-look-at-ec2-io/
http://www.amazon.com/dp/0596156367/?tag=stackoverfl08-20

Data access from and transfer to EC2

RStudio:

I Import Dataset: imports file into workspace

I Upload files: uploads file to local EC2 storage

SSH:

I Use wget, ftp, Dropbox to transfer files to local storage

Other command line tools:

I wget, web applications

I s3cmd (http://s3tools.org/s3cmd)

I aws cli (http://aws.amazon.com/cli/)

I RAmazonS3 package

http://s3tools.org/s3cmd
http://aws.amazon.com/cli/

Exercise 2: S3 buckets
This exercise explores the data in Amazon S3 storage. We use the
RAmazonS3 package instead of a command line tool because it allows us
to browse and download public S3 data without authorization credentials.
Package details are available at
http://www.omegahat.org/RAmazonS3/

a. Load the RAmazonS3 package.

b. Look at the man page for listBucket. Get a list of items in the S3
1000 genomes bucket by calling listBucket with arguments name =

"1000genomes", auth = NA, and maxKeys = 500.

c. Retrieve the HG00096 chromosome 20 low coverage bam file. First
construct a url composed of the key (file path) and bucket name.

> bucketname <- "1000genomes"
> key <- "data/HG00096/alignment/
+ HG00096.chrom20.ILLUMINA.bwa.GBR.low_coverage.20120522.bam"
> url <- paste0("http://s3.amazonaws.com/", bucketname, "/", key)

Upload the file to the EC2 local storage using the Upload file tab in
RStudio or the download.file function.

http://www.omegahat.org/RAmazonS3/

Copy Number Analysis

The following exercises use data from a copy number analysis performed
in “High-resolution mapping of copy-number alterations with massively
parallel sequencing“, http:
//www.nature.com/nmeth/journal/v6/n1/abs/nmeth.1276.html.

We use one of the three matched tumor normal pairs presented in the
paper, the HCC1954 cell line from breast adenocarcinoma. Thanks to
Sonali Arora who downloaded the raw data from the Short Read Archive,
converted the files to fastq, checked quality and aligned the reads with
bowtie2 to create the BAM files used here.

http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.1276.html
http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.1276.html

Exercise 3: Set-up

a. Load the BiocParallel , Rsamtools, cn.mops, and DNAcopy
packages.

b. Locate the 4 BAM files (2 tumor, 2 normal) exp srx036695.bam,
exp srx036696.bam, exp srx036692.bam and exp srx036697.bam.

c. Create a BamFileList from the BAM filenames.

d. Create a character vector group of “tumor“ and “control“
corresponding to the order of the files in the BamFileList.

e. Extract the SeqInfo calling seqinfo on on of the BamFiles.

http://bioconductor.org/packages/release/bioc/html/BiocParallel.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/DNAcopy.html

Exercise 4: Shared memory vs non

Before we assess copy number let’s look at the read coverage in a region
of interest on chromosome 4.

a. Extract chromosome 4 from the SeqInfo object created in Exercise
3. Create a tiling of ranges over chromosome 4 with tileGenome; use
the chromosome 4 SeqInfo as the seqlengths argument and set
tilewidth = 1e4.

b. Create a ScanBamParam using the tiled ranges as the as the which

argument. which requires a GRanges so the tiled ranges
(GRangesList) need to be unlisted first.

c. Load the GenomicAlignments package.

d. Create a MulticoreParam and a SnowParam with enough workers to
iterate over the BAM files.

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html

Exercise 4 continued ...

e. Create two versions of a function, ‘FUN1‘ and ‘FUN2‘, that compute
coverage on the BAM files in the regions specified by the
ScanBamParam. ‘FUN1‘ should take advantage of shared memory by

I not passing (i.e., making a copy of) large objects defined in the
workspace

I not loading / initializing libraries currently loaded in the workspace.

The man page for coverage on a BamFile is at

?`coverage,BamFile-method`

(NOTE: you must type the quotes.)

f. Use bplapply to compute coverage on each file in the BamFileList

with ‘FUN1‘ and the MultiCoreParam as the BPPARAM argument to
bplapply.

g. Repeat the coverage calculation with ‘FUN2‘ and the SnowParam.
We don’t have a cluster available for testing; configuring the
problem with the SnowParam simulates the non-shared memory
environment of a cluster.

Exercise 5A: Nested evaluation (built-in)

Next we count reads with getReadCountsFromBAM and compute copy
number with referencecn.mops. Read counting is an independent
operation and can be done separately by file. Computing copy with
referencecn.mops is not independent and requires that the case/control
data be analyzed together. Many R / Bioconductor functions offer built
in parallel evaluation. getReadCountsFromBAM can compute in parallel
over the files. In this example we couple parallel evaluation over the
chromosomes with the built-in parallel evaluation over the files.

a. ‘FUN3‘ counts reads with getReadCountsFromBAM and computes copy
number with referencecn.mops.

> FUN3 <- function(chrom, files, WL, group, ...) {
+ library(cn.mops)
+ counts <- getReadCountsFromBAM(files, WL = WL, mode = "unpaired",
+ refSeqName = chrom,
+ parallel = length(files))
+ referencecn.mops(cases = counts[,group == "tumor"],
+ controls = counts[,group == "normal"])
+ }

Exercise 5A continued ...

b. Create a vector of chromosomes of interest, chrom <- c("chr1",

"chr4", "chr17").

c. Create a SnowParam with one worker per chromosome.

d. How many total workers are required (SnowParam + parallel
argument)? Are there enough workers on the machine for the job?

e. Use bplapply to apply ‘FUN3‘ over the chrom vector.

Exercise 5B: nested evaluation (roll your own)

Let’s assume getReadCountsFromBAM does not have built-in parallel
evaluation. In this case we can ‘roll our own‘ second level of execution.

a. Modify ‘FUN3‘ by wrapping getReadCountsFromBAM in a bplapply

statement with a MulticoreParam as the BPPARAM. (Remove the
parallel argument from getReadCountsFromBAM.

Using a SnowParam to distribute the first level of parallel work
followed by a MulticoreParam simulates how a job might be run on a
particular cluster configuration. The first distribution passes data
across cluster workers (could be individual nodes; no shared
memory) while the second round of workers are spawned in a shared
memory environment.

b. Call bplapply over chrom with the modified ‘FUN3‘.

Resources

I CRAN task view: http://cran.r-project.org/web/views/

HighPerformanceComputing.html

I Scalable Genomic Computing and Visualization with R and
Bioconductor (2014)
http://www.imstat.org/sts/future_papers.html

I State of the Art Parallel Computing with R (2009)
http://www.jstatsoft.org/v31/i01/paper

I Scalable Integrative Bioinformatics with Bioconductor
http://www.bioconductor.org/help/course-materials/

2014/ISMB2014/

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.imstat.org/sts/future_papers.html
http://www.jstatsoft.org/v31/i01/paper
http://www.bioconductor.org/help/course-materials/2014/ISMB2014/
http://www.bioconductor.org/help/course-materials/2014/ISMB2014/

Acknowledgements

I Bioconductor AMI author: Dan Tenenbaum

I BiocParallel authors: Martin Morgan, Michel Lang, and Ryan
Thompson

I Bioconductor team: Marc Carlson, Hervé Pagès, Dan Tenenbaum,
Sonali Arora, Nate Hayden, Paul Shannon, Martin Morgan

I Technical advisory council: Vincent Carey, Wolfgang Huber, Robert
Gentleman, Rafael Irizzary, Sean Davis, Kasper Hansen, Michael
Lawrence.

I Scientific advisory board: Simon Tavaré, Vivian Bonazzi, Vincent
Carey, Wolfgang Huber, Robert Gentleman, Rafael Irizzary, Paul
Flicek, Simon Urbanek.

I NIH / NHGRI U41HG0004059

I . . . and the Bioconductor community

http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

	Introduction
	Parallel programming
	Parallel infrastructure in R / Bioconductor packages
	BiocParallel `back-ends`
	Bioconductor Amazon Machine Image (AMI)
	Exercise 1: Instance resources
	Exercise 2: S3 buckets

	Copy Number Analysis
	Exercise 3: Set-up
	Exercise 4: Shared memory vs non
	Exercise 5A: Nested evaluation (built-in)
	Exercise 5B: Nested evaluation (roll your own)

	Resources
	Acknowledgements

