Introduction to R and Bioconductor

Martin Morgan (mtmorgan@fhcrc.org)
Fred Hutchinson Cancer Research Center
Seattle, WA, USA

June 23, 2014
R

R is a language and environment for statistical computing and graphics
R is a **language and environment** for statistical computing and graphics

- Full-featured programming language
- Interactive and *interpreted* – convenient and forgiving of user errors
- Coherent, extensively documented
R is a language and environment for **statistical computing** and graphics

- Throughout the language, e.g., `factor` and `NA`
- Built-in statistical functionality
- Highly extensible via user-contributed *packages*
R is a language and environment for statistical computing and graphics

- Explore data
- Communicate results
R vectors, classes, and functions

- **Vectors**
 - logical, integer, numeric, complex, character, raw (byte)
 - factor: discrete levels
 - Missing-ness, NA

- **data.frame, matrix, and other objects**

- **Functions**
 - Operating on vectors, e.g., log, lm (fit a linear model)
 - ‘Higher order’ functions – apply a function to several different vectors, e.g., lapply(df, log)

- **Packages**

None of this making sense? R introduction / refresher tutorial this afternoon
Using \emph{R}

Documentation

\begin{itemize}
\item help()
\item vignettes
\end{itemize}

Work flows

\begin{itemize}
\item Scripts...\textellipsis
 \begin{itemize}
 \item Reproducible
 \item Literate
 \end{itemize}
\item ...mature to \emph{packages}
 \begin{itemize}
 \item Coordinate data, analysis, and documentation
 \item Share with others
 \end{itemize}
\end{itemize}
Bioconductor project goal

Analysis and comprehension of high-throughput genomic data
Bioconductor project goal

Analysis and comprehension of high-throughput genomic data

Statistical analysis

- Reduce large data to manageable knowledge
- Cope with technological artifacts
- Rigorous exploration
- Designed experiments, e.g., treatment vs. control
- Leading-edge methods for leading-edge questions
Bioconductor project goal

Analysis and **comprehension** of high-throughput genomic data

- Understandable
- Reproducible
- Effective visualization
- Biological context, e.g., annotation
- Training
Bioconductor project goal

Analysis and comprehension of high-throughput genomic data

- Sequencing: RNA-seq, ChIP-seq, variants, copy number…
- Microarrays: expression, SNP, …
- Flow cytometry
- Proteomics
- Images
- …
What is Bioconductor?

Collection of packages in the R statistical programming language

- Developed by the Bioconductor core and international contributors
- Stable ‘release’ branch, and leading edge ‘devel’ branch
- Open source / open development

Used by...

- Individuals
- Academic labs & research groups
- Government agencies
- Pharma and other companies
How to learn & use Bioconductor

1. Install R (& $RStudio$?)
2. Identify and install packages
3. Write R scripts
 - Input & ‘massage’ data
 - Quality assessment
 - Statistical analysis
 - Visualization
 - Annotation
 - Reports & summaries
4. Share with colleagues, collaborators, and the community

http://bioconductor.org
- Established work flows, e.g., RNA-seq differential expression with *DESeq2*
- Flexible bioinformatic analysis, e.g., ...
Project strengths

- Extensive
- Respected
- Well-used
- Accessible

- 824 software packages, 867 annotation packages, 202 experiment data packages
- Sequencing, microarrays, flow cytometry, proteomics, image analysis, ...
- All packages with vignettes and help pages
- Tutorials, training material, national and international conferences
Project strengths

- Extensive
- Respected
- Well-used
- Accessible

“Community repositories that carry out testing are ideal. . . the genetics community is fortunately familiar with the Comprehensive R Archive Network and the principles of stewardship of modular software embodied in the Bioconductor suite. . . The journal has sufficient experience with these resources to endorse their use by authors.” – Nature Genetics 46, 1 (2014)
Project strengths

- Extensive
- Respected
- Well-used
- Accessible

PubMedCentral full-text citations

<table>
<thead>
<tr>
<th>Package</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioconductor</td>
<td>9070</td>
</tr>
<tr>
<td>RNA-seq</td>
<td></td>
</tr>
<tr>
<td>edgeR</td>
<td>647</td>
</tr>
<tr>
<td>DESeq</td>
<td>648</td>
</tr>
<tr>
<td>Microarray</td>
<td></td>
</tr>
<tr>
<td>affy</td>
<td>2318</td>
</tr>
<tr>
<td>limma</td>
<td>4503</td>
</tr>
<tr>
<td>GOstats</td>
<td>436</td>
</tr>
<tr>
<td>GSEA</td>
<td></td>
</tr>
</tbody>
</table>
Project strengths

- Extensive
- Respected
- **Well-used**
- Accessible

- 225,000 unique IP addresses downloaded
- 9.3M packages
- 397,000 site visitors / year (27% increase)
- viewed 2.8M pages
- ∼ 600 mailing list posts from ∼ 210 authors per month
Project strengths

- Extensive
- Respected
- Well-used
- Accessible

http://bioconductor.org

- Package vignettes & help pages
- Work flows
- Mailing list & ‘guest posting’ facility
- Courses and other training
- Annual Conference,
 Boston July 30 – Aug 1.
Acknowledgements

- **Bioconductor** core: Vince Carey, Sean Davis, Kasper Hansen, Wolfgang Huber, Robert Gentleman, Rafael Irizzary, Michael Lawrence, Levi Waldron

- **Bioconductor** team: Sonali Arora (introductory material, copy number), Marc Carlson (annotation), Nate Hayden (pileup, C++), Valerie Obenchain (variants, ranges), Hervé Pagès (ranges, strings), Paul Shannon (systems biology), Dan Tenenbaum (web, build)

- The international **Bioconductor** community!

- Funding: US NHGRI / NIH U41HG004059; NSF 1247813.

More: http://bioconductor.org