Bioconductor for Sequence Analysis

Martin T. Morgan

27-28 February 2014
Introduction: What is *Bioconductor* good for?

- **Sequencing**: RNA-seq, ChIP-seq, called variants, …
 - Especially *after* assembly / alignment

- **Annotation**: genes, pathways, gene models (exons, transcripts, etc.), …

- **Microarrays**: expression, copy number, SNPs, methylation, …

- **Flow cytometry, proteomics, image analysis, high-throughput screens**, …
Sequencing: Work flows

1. Experimental design
2. ‘Wet lab’ sample prep
3. Sequencing
 ▶ 100’s of millions of reads
 ▶ 30-150 nucleotides
 ▶ Single and paired-end
 ▶ Bar codes, lanes & flow cells
4. Alignment

Bentley et al., 2008, Nature 456: 53-9
Sequencing: The *ShortRead* package

```r
## Use the 'ShortRead' package
library(ShortRead)
## Create an object to represent a sample from a file
sampler <- FastqSampler("ERR127302_1.fastq.gz")
## Apply a method to yield a random sample
fq <- yield(sampler)
## Access sequences of sampled reads using `sread()`
## Summarize nucleotide use by cycle
## 'abc' is a nucleotide x cycle matrix of counts
abc <- alphabetByCycle(sread(fq))
## Subset of interesting nucleotides
abc <- abc[c("A", "C", "G", "T", "N"),]
```
Create a plot from a matrix
```
matplot(t(abc), type="l",
       lty=1, lwd=3,
       xlab="Cycle",
       ylab="Count",
       cex.lab=2)
## Add a legend
legend("topright",
       legend=rownames(abc),
       lty=1, lwd=3, col=1:5,
       cex=1.8)
```
Sequencing: Essential packages and classes

- **Biostrings** and **DNASTringSet**
- **GenomicAlignments** and **GAlignments**
- **GenomicRanges** and **GRanges**
- **GenomicFeatures** and **TranscriptDb**
- **VariantAnnotation** and **VCF**
- **Input and output:** *rtracklayer* (WIG, BED, etc.), *Rsamtools* (BAM), *ShortRead* (FASTQ) file input
Reads

Data Short reads and their qualities

Tasks Input, quality assessment, summary, trimming, ...

Packages *ShortRead*, *Biostrings*

Functions
- `qa`, `report`.
- `alphabetFrequency`, `alphabetByCycle`, `consensusMatrix`.
- `trimTails`, `trimLRPatterns`, `matchPDict`, ...
Alignments

Data BAM files of aligned reads

Tasks Input, BAM file manipulation, pileups

Packages GenomicAlignments, Rsamtools (also: GenomicRanges)

Functions
 ▶ readGAlignments
 ▶ BamFile, BamFileList
 ▶ scanBam, ScanBamParam (select a subset of the BAM file)
 ▶ asBam, sortBam, indexBam, mergeBam, filterBam
 ▶ BamSampler, applyPileups
Ranges

Data Genomic coordinates to represent data (e.g., aligned reads) or annotation (e.g., gene models).

Tasks Input, counting, coverage, manipulation, ...

Packages GenomicRanges, IRanges

Functions
- readGAlignments, readGAlignmentsList
- Many intra-, inter-, and between-range manipulating, e.g., narrow, flank, shift, intersect, findOverlaps, countOverlaps
Variants

Data VCF (Variant Call Format) file

Tasks Calling, input, summary, coding consequences

Packages VariantTools (linux only), VariantAnnotation, ensemblVEP

Functions ▶ tallyVariants
 ▶ readVcf, locateVariants, predictCoding
 ▶ Also: SIFT, PolyPhen data bases
Annotations

Data Gene symbols or other identifiers

Tasks Discover annotations associated with genes or symbols

Packages *AnnotationDbi (org.*, GO.db, ...), biomaRt*

Functions
- Discovery: columns, keytype, keys
- select, merge
- *biomaRt*: listMarts, listDatasets, listAttributes, listFilters, getBM
Features

Data Genomic coordinates

Tasks Group exons by transcript or gene; discover transcript / gene identifier mappings

Packages GenomicFeatures and TxDb.* packages (also: rtracklayer)

Functions ▶ exonsBy, cdsBy, transcriptsBy
 ▶ select (see Annotations, below)
 ▶ makeTranscriptDb*
Genome annotations

Data FASTA, GTF, VCF, … from internet resources

Tasks Define regions of interests; incorporate known features (e.g., ENCODE marks, dbSNP variants) in work flows

Packages AnnotationHub

Functions ▶ AnnotationHub, filters
▶ metadata, hub$<tab>
Sequences

Data Whole-genome sequences
Tasks View sequences, match position weight matrices, match patterns
Packages Biostrings, BSgenome
Functions ▶ available.genomes
▶ Hsapiens["chr3"], getSeq, mask
▶ matchPWM, vcountPattern, ...
▶ forgeBSgenomeDataPkg
Import / export

Data Common text-based formats, gff, wig, bed; UCSC tracks
Tasks Import and export
Packages rtracklayer
Functions ▶ import, export
▶ browserSession, genome
And...

Exemplars: Algorithms to action

1. Batch effects
2. Methylation
3. RNA-seq Differential Representation
4. Visualization
Exemplar: Differential Representation

Haglund et al., 2012 J Clin Endocrin Metab

- Scientific finding: identify genes whose expression is regulated by estrogen receptors in parathyroid adenoma cells
- Statistical challenges: between-sample normalization; appropriate statistical model; efficient estimation; ...

Bioconductor support: DESeq2, edgeR, many statistical ‘lessons learned’ from microarrays; extensive integration with down-stream tools
Exemplar: Batch Effects

Leek et al., 2010, Nature Reviews Genetics 11, 733-739, Leek & Story PLoS Genet 3(9): e161

- Scientific finding: pervasive batch effects
- Statistical insights: surrogate variable analysis: identify and build surrogate variables; remove known batch effects
- Benefits: reduce dependence, stabilize error rate estimates, and improve reproducibility

HapMap samples from one facility, ordered by date of processing. From

Bioconductor support: _sva_
Exemplar: Batch Effects

Leek et al., 2010, Nature Reviews Genetics 11, 733-739, Leek & Story PLoS Genet 3(9): e161

▶ Scientific finding: pervasive batch effects

▶ Statistical insights: surrogate variable analysis: identify and build surrogate variables; remove known batch effects

▶ Benefits: reduce dependence, stabilize error rate estimates, and improve reproducibility

1. Remove signal due to variable(s) of interest

2. Identify subset of genes driving orthogonal signatures of EH

3. Build a surrogate variable based on full EH signature of that subset

4. Include significant surrogate variables as covariates

EH: expression heterogeneity

Bioconductor support: *sva*
Exemplar: Methylation

Hansen et al., 2011, Nature Genetics 43, 768-775

- Scientific finding: stochastic methylation variation of cancer-specific de-methylated regions (DMR), distinguishing cancer from normal tissue, in several cancers.
- Statistical challenges: smoothing, non-specific filtering, \(t \) statistics, find DMRs

Bioconductor support: whole-genome (\textit{bsseq}) or reduced representation (\textit{MethylSeekR}) bisulfite sequencing; Illumina 450k arrays (\textit{minfi})
Exemplar: Visualization

Gviz

- Track-like visualizations
- Data panels
- Fully integrated with *Bioconductor* sequence representations

`ggbio`
`epivizr`
Exemplar: Visualization

Gviz

- Track-like visualizations
- Data panels
- Fully integrated with Bioconductor sequence representations

ggbio epivizr
Exemplar: Visualization

Gviz

ggbio

- Comprehensive visualizations
- autoplot file and data types
- Fully integrated with Bioconductor sequence representations

epivizr
Exemplar: Visualization

Gviz
ggbio
epivizr

- Genome browser with socket communication to R
- Fully integrated with Bioconductor sequence representations
Principles: Some key points

- \(R \) is a high-level programming language, so lots can be accomplished with just a little code
- Packages such as \textit{ShortRead} provide a great way to benefit from the expertise of others (and to contribute your own expertise back to the community!)
 - The path from ‘user’ to ‘developer’ is not that long, and has been taken by many!
- Objects and methods such as \texttt{data.frame}, \texttt{ShortReadQ} and \texttt{alphabetByCycle()} help to manage complicated data
 - Reducing possibility for clerical and other mistakes
 - Facilitating inter-operability between different parts of an analysis
- Scripts make work flows reproducible
- Visualizing data is an important part of exploratory analysis
Principles: Successful computational biology software

1. Extensive: software, annotation, integration
 ▶ 750 inter-operable Bioconductor packages

2. Statistical: volume, technology, experimental design
 ▶ R a ‘natural’ for statistical analysis

3. Reproducible: long-term, multi-participant science
 ▶ Objects, scripts, vignettes, packages, . . . encourage reproducible research

4. Leading edge: novel, technology-driven
 ▶ Packages and user community closely track leading edge science

5. Accessible: affordable, transparent, usable
 ▶ Bioconductor is free and open, with extensive documentation and an active and supportive user community

Case study: differential expression of known genes; see also reproducible research lecture.
Challenges & Opportunities

- Big data – transparent management within R, facile use of established resources
- Developer and user training

Resources

- http://r-project.org, An Introduction to R manual; Dalgaard, Introductory Statistics with R; R for Dummies
- http://rstudio.org
- StackOverflow, Bioconductor mailing list