
Practical: Read Counting in RNA-seq
Hervé Pagès (hpages@fhcrc.org)

5 February 2014

Contents

1 Introduction 1

2 First look at some precomputed read counts 2

3 Aligned reads and BAM files 4

4 Choosing and loading a gene model 7

5 Count the reads 9

6 Conclusion 10

1 Introduction

In the context of a high-throughput sequencing experiment, counting the reads means counting the number of
reads per gene (or exon). It is usually the preliminary step to a differential analysis at the gene level (or exon level).

The result of this counting will typically be organized as a matrix where:

• each row represents a gene (or exon);
• each column represents a sequencing run (usually a given sample);
• and each value is the raw number of reads from the sequencing run that were assigned to the gene (or

exon).

Different criteria can be used for assigning reads to genes. A common one is to assign a read to a gene if the
aligned read overlaps with that gene and with that gene only.

In this practical we learn how aligned reads stored in BAM files can be counted with the summarizeOverlaps()

function from the GenomicRanges package. With this function, the criteria used for assigning reads to genes is
controlled via 2 arguments: the mode and inter.feature arguments. In addition to the man page for summarizeOverlaps(),
the “Counting reads with summarizeOverlaps” vignette (located in the GenomicRanges package) is recommended
reading if you’re planning to use this function for your work.

The output of summarizeOverlaps() will be a SummarizedExperiment object containing the matrix of counts
together with information about the genes (or exons) in the rowData component and about the samples (e.g.
patient ID, treatment, etc...) in the colData component. This object will be suitable input to the DESeq2 package
for performing a differential analysis.

IMPORTANT NOTE: Starting with the upcoming version of Bioconductor (BioC 2.14, scheduled for April 2014),
the summarizeOverlaps() function and its vignette will be located in the new GenomicAlignments package.

1

hpages@fhcrc.org

Practical: Read Counting in RNA-seq 2

2 First look at some precomputed read counts

Before we do our own read counting, we start by having a quick look at some precomputed counts so we get an
idea of what a SummarizedExperiment object looks like.

The parathyroidSE package contains RNA-seq data from the publication of Haglund et al. [1]. The paired-end
sequencing was performed on primary cultures from parathyroid tumors of 4 patients at 2 time points over 3
conditions (control, treatment with diarylpropionitrile (DPN) and treatment with 4-hydroxytamoxifen (OHT)). DPN
is a selective estrogen receptor β 1 agonist and OHT is a selective estrogen receptor modulator. One sample
(patient 4, 24 hours, control) was omitted by the paper authors due to low quality.

The parathyroidSE package contains several data sets. One of them is the parathyroidGenesSE data set which
contains the counts of reads per gene.

Exercise 1 In this exercise, we load the parathyroidGenesSE data set from the parathyroidSE package and per-
form some basic manipulations on it.

a. Load the parathyroidGenesSE data set from the parathyroidSE package.
What’s the class of this object? What are its dimensions?

b. The information in a SummarizedExperiment object can be accessed with accessor functions. For example,
to get the actual data (i.e., here, the read counts), we use the assay() function.
What’s returned by assay()? What are its dimensions. Display the top left corner of it (e.g. first 8 rows and
columns). Does it have row names? Column names? What are the row names?

c. In this matrix of read counts, each row represents an Ensembl gene, each column a sequencing run, and the
values are the raw numbers of reads in each sequencing run that were assigned to the respective gene.
How many reads were assigned to a gene in each sequencing run? How many genes have non-zero counts?

d. Use rowData() on parathyroidGenesSE. What do you get? What’s its length?
e. Use colData() on parathyroidGenesSE. What do you get? How many rows does it have?

Use table() to summarize the number of runs for each treatment (Control, DPN, and OHT).

Solution:

a. First we load the parathyroidSE package.

library(parathyroidSE)

Before we load the parathyroidGenesSE data set, we can check what data sets are contained in the parathy-
roidSE package with:

data(package="parathyroidSE")

Load the parathyroidGenesSE data set:

data(parathyroidGenesSE)

parathyroidGenesSE

class: SummarizedExperiment

dim: 63193 27

exptData(1): MIAME

assays(1): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData metadata column names(0):

colnames: NULL

colData names(8): run experiment ... study sample

class(parathyroidGenesSE)

[1] "SummarizedExperiment"

attr(,"package")

[1] "GenomicRanges"

dim(parathyroidGenesSE)

Practical: Read Counting in RNA-seq 3

[1] 63193 27

b. class(assay(parathyroidGenesSE))

[1] "matrix"

dim(assay(parathyroidGenesSE))

[1] 63193 27

assay(parathyroidGenesSE)[1:8, 1:8]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

ENSG00000000003 792 1064 444 953 519 855 413 365

ENSG00000000005 4 1 2 3 3 1 0 1

ENSG00000000419 294 282 164 263 179 217 277 204

ENSG00000000457 156 184 93 145 75 122 228 171

ENSG00000000460 396 207 210 212 221 173 611 199

ENSG00000000938 3 8 2 5 0 4 13 22

ENSG00000000971 12 23 10 12 4 7 12 8

ENSG00000001036 2536 2349 1438 2307 1339 1677 1086 929

The row names are Ensembl gene ids. No column names:

colnames(parathyroidGenesSE)

NULL

c. To compute the number of reads that were assigned to a gene in each sequencing run, we just need to sum
all the counts that are in a column and do this for each column:

colSums(assay(parathyroidGenesSE))

[1] 9102683 10827109 5217761 9706035 5700022 7854568 8610014 6844144 5251911

[10] 19332369 8267977 5620890 17969521 8247122 7341000 8064268 12481958 16310090

[19] 23697329 7642648 7701432 7135899 4499893 9318500 6099942 5505205 10320006

Genes with non-zero counts:

sum(rowSums(assay(parathyroidGenesSE)) != 0)

[1] 35415

d. rowData(parathyroidGenesSE)

GRangesList of length 63193:

$ENSG00000000003

GRanges with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 664095 ENSE00001459322

[2] X [99885756, 99885863] - | 664096 ENSE00000868868

[3] X [99887482, 99887565] - | 664097 ENSE00000401072

[4] X [99887538, 99887565] - | 664098 ENSE00001849132

[5] X [99888402, 99888536] - | 664099 ENSE00003554016

...

[13] X [99890555, 99890743] - | 664106 ENSE00003512331

[14] X [99891188, 99891686] - | 664108 ENSE00001886883

[15] X [99891605, 99891803] - | 664109 ENSE00001855382

[16] X [99891790, 99892101] - | 664110 ENSE00001863395

[17] X [99894942, 99894988] - | 664111 ENSE00001828996

##

...

<63192 more elements>

seqlengths:

Practical: Read Counting in RNA-seq 4

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

We get a GRangesList object with one list element per gene. Each list element is a GRanges object con-
taining the exon ranges for the gene.

e. colData(parathyroidGenesSE)

DataFrame with 27 rows and 8 columns

run experiment patient treatment time submission study sample

<character> <factor> <factor> <factor> <factor> <factor> <factor> <factor>

1 SRR479052 SRX140503 1 Control 24h SRA051611 SRP012167 SRS308865

2 SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167 SRS308866

3 SRR479054 SRX140505 1 DPN 24h SRA051611 SRP012167 SRS308867

4 SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167 SRS308868

5 SRR479056 SRX140507 1 OHT 24h SRA051611 SRP012167 SRS308869

...

23 SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885

24 SRR479075 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885

25 SRR479076 SRX140524 4 OHT 24h SRA051611 SRP012167 SRS308886

26 SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887

27 SRR479078 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887

We get a DataFrame object with one row per sequencing run.

table(colData(parathyroidGenesSE)$treatment)

##

Control DPN OHT

7 10 10

3 Aligned reads and BAM files

To operate, the summarizeOverlaps() function needs 2 data objects:

1. one representing the genomic ranges of the genes (or exons);
2. one representing the aligned reads.

The aligned reads are typically stored in one BAM file per sequencing run. In the next exercise we will have a
quick look at the BAM files included in the parathyroidSE package. The reads in these files are paired-end reads
that were aligned using the TopHat aligner. To keep the package to a reasonable size, only a subset of all the
aligned reads from the experiment have been placed in these files. More information on how these BAM files were
obtained can be found in the vignette located in the parathyroidSE package.

To get the paths to these files, do:

bamdir <- system.file("extdata", package="parathyroidSE")

bampaths <- list.files(bamdir, pattern="bam$", full.names=TRUE)

bampaths

[1] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam"

[2] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam"

[3] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam"

To load single-end reads from a BAM file, we can use the readGAlignmentsFromBam() function from the Rsamtools
package. If the reads are paired-end and we want to preserve the pairing, the readGAlignmentPairsFromBam()

function can be used. However, for downstream analyses where the pairing doesn’t need to be preserved (e.g. if

Practical: Read Counting in RNA-seq 5

we’re only going to compute the coverage of the reads), the reads can be loaded with readGAlignmentsFromBam(),
which is faster and returns an object that is simpler and easier to manipulate.

One last thing before we start the exercise. By default readGAlignmentsFromBam() and readGAlignmentPairs-

FromBam() load PCR or optical duplicates as well as secondary alignments. These alignments are generally
discarded from the read counting step. We can discard them up-front by filtering them out when we load the
alignments from the BAM files. This is done by creating and passing a ScanBamParam object to the param

argument of readGAlignmentsFromBam() or readGAlignmentPairsFromBam().

Exercise 2 In this exercise, we learn how to load paired-end reads and filter out the alignments that are not
suitable for read counting.

a. Load the SRR479052.bam file included in the parathyroidSE package, first with readGAlignmentsFromBam(),
then with readGAlignmentPairsFromBam().
What are the classes of the returned objects?
How many pairs are there in the 2nd object?

b. The first and last mate for each pair can be extracted from the GAlignmentPairs object with the first() and
last() accessor functions.
Extract the first mates. Extract the last mates.

c. See the man page for the ScanBamParam() constructor in the Rsamtools package.
Construct a ScanBamParam object (that you will pass to readGAlignmentPairsFromBam()) that will filter out
PCR or optical duplicates as well as secondary alignments.
Use it to load the pairs again.

Solution:

a. Loading the BAM file first with readGAlignmentsFromBam():

library(Rsamtools)

gal0 <- readGAlignmentsFromBam(bampaths[1])

gal0

GAlignments with 9973 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] 10 + 101M 101 59953037 59953137 101 0

[2] 10 - 101M 101 59953061 59953161 101 0

[3] 11 + 101M 101 209517 209617 101 0

[4] 10 + 101M 101 121691690 121691790 101 0

[5] 10 - 101M 101 121691702 121691802 101 0

...

[9969] 14 - 71M117N30M 101 24035299 24035516 218 1

[9970] 16 + 101M 101 56466390 56466490 101 0

[9971] 16 - 101M 101 56466533 56466633 101 0

[9972] MT + 101M 101 6194 6294 101 0

[9973] MT - 101M 101 6316 6416 101 0

seqlengths:

1 10 11 12 ... 9 MT X Y

249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

then with readGAlignmentPairsFromBam():

galp0 <- readGAlignmentPairsFromBam(bampaths[1])

Warning: 8 alignments with ambiguous pairing were dumped.

Use ’getDumpedAlignments()’ to retrieve them from the dump environment.

Warning: 12.987012987013% of the pairs with discordant seqnames or strand were flagged

as proper pairs by the aligner. Dropping them anyway.

Practical: Read Counting in RNA-seq 6

galp0

GAlignmentPairs with 4435 alignment pairs and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

[1] 10 + : [59953037, 59953137] -- [59953061, 59953161]

[2] 10 - : [121691702, 121691802] -- [121691690, 121691790]

[3] 2 + : [123166234, 123166334] -- [123166269, 123166369]

[4] 6 + : [36945908, 36946357] -- [36953742, 36953842]

[5] 3 - : [15112192, 15112292] -- [15112134, 15112234]

...

[4431] 8 + : [97621642, 97621742] -- [97621646, 97621746]

[4432] 6 - : [149730898, 149730998] -- [149720309, 149730801]

[4433] 14 + : [24033812, 24034370] -- [24035299, 24035516]

[4434] 16 + : [56466390, 56466490] -- [56466533, 56466633]

[4435] MT - : [6316, 6416] -- [6194, 6294]

seqlengths:

1 10 11 12 ... 9 MT X Y

249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

gal is a GAlignments object. galp is a GAlignmentPairs object. A GAlignmentPairs object is also vector-like
object where each element represents an aligned paired-end read. So the number of pairs in it is just:

length(galp0)

[1] 4435

b. first(galp0)

GAlignments with 4435 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] 10 + 101M 101 59953037 59953137 101 0

[2] 10 - 101M 101 121691702 121691802 101 0

[3] 2 + 101M 101 123166234 123166334 101 0

[4] 6 + 24M349N77M 101 36945908 36946357 450 1

[5] 3 - 101M 101 15112192 15112292 101 0

...

[4431] 8 + 101M 101 97621642 97621742 101 0

[4432] 6 - 101M 101 149730898 149730998 101 0

[4433] 14 + 58M458N43M 101 24033812 24034370 559 1

[4434] 16 + 101M 101 56466390 56466490 101 0

[4435] MT - 101M 101 6316 6416 101 0

seqlengths:

1 10 11 12 ... 9 MT X Y

249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

last(galp0)

GAlignments with 4435 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] 10 - 101M 101 59953061 59953161 101 0

[2] 10 + 101M 101 121691690 121691790 101 0

[3] 2 - 101M 101 123166269 123166369 101 0

[4] 6 - 101M 101 36953742 36953842 101 0

[5] 3 + 101M 101 15112134 15112234 101 0

...

Practical: Read Counting in RNA-seq 7

[4431] 8 - 101M 101 97621646 97621746 101 0

[4432] 6 + 12M10392N89M 101 149720309 149730801 10493 1

[4433] 14 - 71M117N30M 101 24035299 24035516 218 1

[4434] 16 - 101M 101 56466533 56466633 101 0

[4435] MT + 101M 101 6194 6294 101 0

seqlengths:

1 10 11 12 ... 9 MT X Y

249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

c. param <- ScanBamParam(flag=scanBamFlag(isDuplicate=FALSE,

isNotPrimaryRead=FALSE))

readGAlignmentPairsFromBam(bampaths[1], param=param)

Warning: 1.51515151515152% of the pairs with discordant seqnames or strand were flagged

as proper pairs by the aligner. Dropping them anyway.

GAlignmentPairs with 4268 alignment pairs and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

[1] 10 + : [59953037, 59953137] -- [59953061, 59953161]

[2] 10 - : [121691702, 121691802] -- [121691690, 121691790]

[3] 2 + : [123166234, 123166334] -- [123166269, 123166369]

[4] 6 + : [36945908, 36946357] -- [36953742, 36953842]

[5] 3 - : [15112192, 15112292] -- [15112134, 15112234]

...

[4264] 8 + : [97621642, 97621742] -- [97621646, 97621746]

[4265] 6 - : [149730898, 149730998] -- [149720309, 149730801]

[4266] 14 + : [24033812, 24034370] -- [24035299, 24035516]

[4267] 16 + : [56466390, 56466490] -- [56466533, 56466633]

[4268] MT - : [6316, 6416] -- [6194, 6294]

seqlengths:

1 10 11 12 ... 9 MT X Y

249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

4 Choosing and loading a gene model

To operate, summarizeOverlaps() needs access to the genomic ranges of the genes (or exons). This information
can be extracted from what we call a gene model. Gene models for various organisms are provided by many
annotation providers on the internet (UCSC, Ensembl, NCBI, TAIR, FlyBase, WormBase, etc...) In Bioconductor
a gene model is typically represented as a TranscriptDb object. The GenomicFeatures package contains tools for
obtaining a gene model from these providers and store it in a TranscriptDb object (the container for gene models).
For convenience, the most commonly used gene models are available as Bioconductor data packages (called
TxDb packages). Each TxDb package contains a TranscriptDb object ready to use.

According to the vignette located in the parathyroidSE package, the reads in the BAM files were aligned to the
GRCh37 human reference genome. If we wanted to use the gene model for Human provided by Ensembl, we
could do:
Requires INTERNET ACCESS and takes about 6 min. Please don't try to run this!

library(GenomicFeatures)

txdb <- makeTranscriptDbFromBiomart(biomart="ensembl",

Practical: Read Counting in RNA-seq 8

dataset="hsapiens_gene_ensembl")

This would return a TranscriptDb object containing the Ensembl gene model for Human.

IMPORTANT NOTE: One must be careful to choose a gene model based on the same reference genome that was
used to align the reads. The annotations provided by Ensembl are updated at each new Ensembl release, which
typically happens 2 or 3 times per year (current release is Ensembl 73). The "hsapiens gene ensembl" dataset
is usually based on the most recent version of the Human reference genome (currently GRCh37). So before we
proceed with this TranscriptDb object, we would need to make sure that it’s compatible with our BAM files, that is,
we would need to check that the "hsapiens gene ensembl" dataset was based on GRCh37 human at the time the
TranscriptDb object was made.

Because our goal is to use the counts to perform a differential analysis at the gene level, we will need to feed
summarizeOverlaps() with a GRangesList object containing the exon ranges grouped by gene. This can be
extracted from the TranscriptDb object with the exonsBy() function:

ex_by_gene <- exonsBy(txdb, by="gene") # GRangesList object

For the purpose of this practical, we’ll use a subset of the Ensembl genes. This subset is stored in the parathy-
roidSE package and is based on the GRCh37 human reference genome.

Exercise 3 In this exercise, we have a quick look at the exonsByGene data set included in the parathyroidSE
package.

a. Load the exonsByGene data set from the parathyroidSE package. What is it?
b. How many genes are represented in this object?

Solution:

a. data(exonsByGene)

exonsByGene

GRangesList of length 100:

$ENSG00000000003

GRanges with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 664095 ENSE00001459322

[2] X [99885756, 99885863] - | 664096 ENSE00000868868

[3] X [99887482, 99887565] - | 664097 ENSE00000401072

[4] X [99887538, 99887565] - | 664098 ENSE00001849132

[5] X [99888402, 99888536] - | 664099 ENSE00003554016

...

[13] X [99890555, 99890743] - | 664106 ENSE00003512331

[14] X [99891188, 99891686] - | 664108 ENSE00001886883

[15] X [99891605, 99891803] - | 664109 ENSE00001855382

[16] X [99891790, 99892101] - | 664110 ENSE00001863395

[17] X [99894942, 99894988] - | 664111 ENSE00001828996

##

...

<99 more elements>

seqlengths:

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

b. Number of genes in this object:

Practical: Read Counting in RNA-seq 9

length(exonsByGene)

[1] 100

5 Count the reads

To count the reads, we use the summarizeOverlaps() function defined and documented in the GenomicRanges
package.

The aligned reads must be passed to the reads argument of the function (the 2nd argument). They can be
represented in different ways, including as a BamFile, a GAlignments, a GAlignmentPairs, or a BamFileList object.
The first 3 types of objects only allow passing the reads from a single sequencing run at a time. Using a BamFileList
object allows us to pass the reads from all the sequencing runs at once. To create such an object, we use the
BamFileList() constructor function from the Rsamtools package:

library(Rsamtools)

bamfile_list <- BamFileList(bampaths, index=character())

Note that we need to use index=character() here because there are no BAM index files (.bam.bai extension)
associated with our BAM files.

Exercise 4 Let’s do the read counting.

a. Use summarizeOverlaps() on exonsByGene and bamfile list to count the reads. Check the man page
for the details. Note that because the RNA-seq protocol was not strand specific, you need to specify
ignore.strand=TRUE. Also because the reads are paired-end, you need to specify singleEnd=FALSE. This
will tell summarizeOverlaps() to use readGAlignmentPairsFromBam() instead of readGAlignmentsFromBam()
internally to read the BAM files.

b. When summarizeOverlaps() calls the reading function internally on each BAM file, it does so without spec-
ifying any particular param value, so, by default, PCR or optical duplicates and secondary alignments are
loaded. However, if a param argument is passed to summarizeOverlaps(), it will be passed along to the
reading function.
Count the reads again but discard PCR or optical duplicates as well as secondary alignments.

Solution:

a. read_count0 <- summarizeOverlaps(exonsByGene, bamfile_list,

ignore.strand=TRUE,

singleEnd=FALSE)

read_count0

class: SummarizedExperiment

dim: 100 3

exptData(0):

assays(1): counts

rownames(100): ENSG00000000003 ENSG00000000005 ... ENSG00000005469

ENSG00000005471

rowData metadata column names(0):

colnames(3):

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam

colData names(0):

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Practical: Read Counting in RNA-seq 10

b. To discard PCR or optical duplicates as well as secondary alignments, we re-use the ScanBamParam object
we prepared earlier:

read_count <- summarizeOverlaps(exonsByGene, bamfile_list,

ignore.strand=TRUE,

singleEnd=FALSE,

param=param)

read_count

class: SummarizedExperiment

dim: 100 3

exptData(0):

assays(1): counts

rownames(100): ENSG00000000003 ENSG00000000005 ... ENSG00000005469

ENSG00000005471

rowData metadata column names(0):

colnames(3):

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam

colData names(0):

Let’s do a quick comparison between the 2 counts:

colSums(assay(read_count0))

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam

27

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam

17

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam

26

colSums(assay(read_count))

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam

27

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam

17

/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam

26

No difference here in the final count. This means the reads we discarded didn’t get assigned to any gene the
first time we counted (but this wouldn’t necessarily be the case with a bigger data set).

6 Conclusion

Now that we have our read counts, we’re ready to perform a differential analysis with the DESeq2 package.

THANKS!

References

[1] Felix Haglund, Ran Ma, Mikael Huss, Luqman Sulaiman, Ming Lu, Inga-Lena Nilsson, Anders Höög,
Christofer˜C. Juhlin, Johan Hartman, and Catharina Larsson. Evidence of a Functional Estrogen Recep-

Practical: Read Counting in RNA-seq 11

tor in Parathyroid Adenomas. Journal of Clinical Endocrinology & Metabolism, September 2012. URL:
http://dx.doi.org/10.1210/jc.2012-2484, doi:10.1210/jc.2012-2484.

http://dx.doi.org/10.1210/jc.2012-2484
http://dx.doi.org/10.1210/jc.2012-2484

	1 Introduction
	2 First look at some precomputed read counts
	3 Aligned reads and BAM files
	4 Choosing and loading a gene model
	5 Count the reads
	6 Conclusion

