Horror Picture Show
Why graphics?

1. To explore data (interactive)
2. To communicate data & preliminary insights with collaborators
3. To publish results
Goals of this lecture

- Review the basics of base R plotting
- Understand the logic behind the grammar of graphics concept
- Introduce ggplot2’s qplot function
- Show how to build complex plots from the ground up using ggplot2’s ggplot function
- See how to plot 1D, 2D, 3-5D data, and understand faceting
- Become good at rapidly exploring data sets by visualization
Canvas model: a series of instructions that sequentially fill the plotting canvas

```r
head(DNase)
##    Run conc density
## 1     1 0.0488  0.017
## 2     1 0.0488  0.018
## 3     1 0.1953  0.121
## 4     1 0.1953  0.124
## 5     1 0.3906  0.206
## 6     1 0.3906  0.215
```

```r
plot(DNase$conc, DNase$density,
ylab = attr(DNase, "labels")$y,
       xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),
       pch = 3, col = "blue")
```
The grammar of graphics

The components of \textit{ggplot2}'s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual properties (aesthetics) of the geometric objects, and an associated scale, (e. g., linear, logarithmic, rank)
4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

\begin{verbatim}
quplot(x = names(groupSize),
 y = as.vector(groupSize),
 geom = "bar", stat = "identity",
 xlab = "Groups", ylab = "Number of Samples",
 fill = names(groupSize)) +
 scale_fill_manual(values = groupColour, name="Colour code")
\end{verbatim}
We did not make use of a facet specification in the plots above, but we'll see that was linear on the variables were the numeric values as well as the names of annotation data (ggplot2, dftx same plot, for the same data: points, a line, and a confidence band. For example, the code below uses three types of geometric objects in the grammar of graphics – alphanumerically and each has the same width), the geometric object was the a facet specification, i.e. the use of several plots to look at the same data in different ways. Thus, you could equivalently plot your histogram by calling:

```r
ggplot( dftx, aes( x = X1426642_at, y = X1418765_at )) + geom_point( aes( colour = sampleColour), shape = 19 ) + geom_smooth( method = "loess" ) + scale_colour_discrete( guide = FALSE )
```

In the examples above, Figures 4.11: Two different ways of creating a description of how the variables in the data are mapped to visual properties in the data – for instance, points, lines, rectangles, contours a statistical summarisation rule a coordinate system a dataset a choice of geometric object that serves as the visual representations of these probe identifiers, and what they might do, we can call a function, which indicates that we like the rotation of the labels. In fact, X1426642_at whereas its expression goes down in the groupsize = '20 E3.25')) expression values of the gene Timd2 (whose mRNA is targeted by the probe 1418765_at) at, EPI samples at days 3.5 and 4.5. In the rotation of the labels, the number of samples in each group and also the types of groups that we are justified (hjust; the default would be to center it).
geom and summary often imply each other (by default)

dfx <- as.data.frame(exprs(x))
p1 <- ggplot(dfx, aes(x = '20 E3.25')) + geom_histogram(binwidth = 0.2)
p2 <- ggplot(dfx, aes(x = '20 E3.25')) + geom_bar(stat = "bin", binwidth = 0.2)

Figure 4.11: Two different ways of creating the same histogram using the grammar of graphics.
A more complex example: themes

```r
pb <- ggplot(data.frame(
    name = names(groupSize),
    size = as.vector(groupSize)),
    aes(x = name, y = size))

No geom defined yet!

pb <- pb + geom_bar(stat = "identity") +
    aes(fill = name) +
    scale_fill_manual(values = groupColour, name = "Colour code") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    xlab("Groups") + ylab("Number of Samples")

pb.polar <- pb + coord_polar() +
    theme(axis.text.x = element_text(angle = 0, hjust = 1),
        axis.text.y = element_blank(),
        axis.ticks = element_blank()) +
    xlab("") + ylab("")

pb.polar
```
Showing 1D data
Discussion of 1D plot types

Boxplot makes sense for unimodal distributions

Histogram requires definition of bins (width, positions) and can create visual artifacts esp. if the number of data points is not large

Density requires the choice of bandwidth; plot tends to obscure the sample size (i.e. the uncertainty of the estimate)

ecdf does not have these problems; but is more abstract and interpretation requires some training. Good for reading off quantiles and shifts in location in comparative plots; OK for detecting differences in scale; less good for detecting multimodality.

Up to a few dozens of points - just show the data! (beeswarm)
Impact of non-linear transformation on the shape of a density

y: sample from a mixture of two log-normal distributions

kernel density estimates
showing 2D data

scp <- ggplot(dfx, aes(x = '59 E4.5 (PE)', y = '92 E4.5 (FGF4-KO)'))
scp + geom_point()

scp + geom_point(alpha = 0.1)

scp + geom_density2d(h = 0.5, bins = 60)
4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the information is conveyed well. By default, the shape parameter, that is, the ratio, between the height of the graph and its width, is chosen by `ggplot2` based on the available space in the current plotting device. The width and height of the device are specified when it is opened in R, either explicitly by you or through default parameters. Moreover, the graph dimensions also depend on the presence or absence of additional decorations, like the colour scale bars in Figure ??.

```
scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale + coord_fixed()
```
package splots
Yearly sunspot numbers 1849-1924

Changes in amplitude

Banking

Choose center of slopes to be 45 degrees: banking

Sawtooth: Sunspot cycles typically rise more rapidly than they fall (pronounced for high peaks, less for medium and not for lowest)

For plots where x- and y-axis have same units: use 1:1 aspect ratio (PCA!)
3-5 D, and faceting

geom_point offers these aesthetics (beyond x and y):

- fill
- colour
- shape
- size
- alpha
Data from an agricultural field trial to study the crop barley.

At 6 sites in Minnesota, 10 varieties of barley were grown in each of two years.

Data: yield, for all combinations of site, variety, and year (6 x 10 x 2 = 120 observations)

Note the data for Morris - reanalysis in the 1990s using Trellis revealed that the years had been flipped!

library("lattice")
example("barley")
demo plotly
Let us take a minute to deconstruct the rather massive-looking call to `pheatmap`. The options `show_rownames` and `show_colnames` control whether the row and column names are printed at the sides of the matrix. Because our matrix is large in relation to the available plotting space, the labels would anyway not be readable, and we suppress them. The `annotation_col` many reasonable defaults easy to add column and row ‘metadata’ at the sides.
Consider these:

Different requirements for line & area colours

Many people are red-green colour blind

Lighter colours tend to make areas look larger than
darker colours -> use colors of equal luminance for
filled areas.
RGB color space

Motivated by computer screen hardware
HSV color space

Hue-Saturation-Value (Smith 1978)

\(V_{\text{min}} \): black (one point)

\(V_{\text{max}} \): a planar area of fully saturated colours, with white in the centre
HSV color space

GIMP colour selector

linear or circular hue chooser

and

a two-dimensional area (usually a square or a triangle) to choose saturation and value/lightness for the selected hue
Conversion from RGB to HSL or HSV

Let \(r, g, b \in [0,1] \) be the red, green, and blue coordinates, respectively, of a color in RGB space.

Let \(\max \) be the greatest of \(r, g, \) and \(b, \) and \(\min \) the least.

To find the hue angle \(h \in [0, 360] \) for either HSL or HSV space, compute:

\[
h = \begin{cases}
0 & \text{if } \max = \min \\
(60 \times \frac{g-b}{\max - \min} + 0) \mod 360^\circ, & \text{if } \max = r \\
60 \times \frac{b-r}{\max - \min} + 120^\circ, & \text{if } \max = g \\
60 \times \frac{r-g}{\max - \min} + 240^\circ, & \text{if } \max = b
\end{cases}
\]

To find saturation and lightness \(s, l \in [0,1] \) for HSL space, compute:

\[
s = \begin{cases}
0 & \text{if } \max = \min \\
\frac{\max - \min}{\max + \min} = \frac{\max - \min}{2l}, & \text{if } l \leq \frac{1}{2} \\
\frac{\max - \min}{2-(\max + \min)} = \frac{\max - \min}{2-2l}, & \text{if } l > \frac{1}{2}
\end{cases}
\]

\[
l = \frac{1}{2}(\max + \min)
\]

The value of \(h \) is generally normalized to lie between 0 and 360°, and \(h = 0 \) is used when \(\max = \min \) (that is, for grays) though the hue has no geometric meaning there, where the saturation \(s \) is zero. Similarly, the choice of 0 as the value for \(s \) when \(l \) is equal to 0 or 1 is arbitrary.

HSL and HSV have the same definition of hue, but the other components differ. The values for \(s \) and \(v \) of an HSV color are defined as follows:

\[
s = \begin{cases}
0, & \text{if } \max = 0 \\
\frac{\max - \min}{\max} = 1 - \frac{\min}{\max}, & \text{otherwise}
\end{cases}
\]

\[v = \max\]

The range of HSV and HSL vectors is a cube in the cartesian coordinate system; but since hue is really a cyclic property, with a cut at red, visualizations of these spaces invariably involve hue circles;\(^4\) cylindrical and conical (bi-conical for HSL; bi-conical for HSL; spherical depictions are also possible.
Human perception of colour corresponds neither to RGB nor HSV coordinates, and neither to the physiological axes light-dark, yellow-blue, red-green. Rather to polar coordinates in the colour plane (yellow/blue vs. green/red) plus a third light/dark axis. Perceptually-based colour spaces try to capture these perceptual axes:

1. hue (dominant wavelength)
2. chroma (colourfulness, intensity of colour as compared to grey)
3. luminance (brightness, amount of grey)
CIELUV and HCL

Commission Internationale de l’ Éclairage (CIE) in 1931, on the basis of extensive colour matching experiments with people, defined a “standard observer” who represents a typical human colour response (response of the three light cones + their processing in the brain) to a triplet (x,y,z) of primary light sources (in principle, this could be monochromatic R, G, B; but CIE choose something a bit more subtle)

1976: CIELUV and CIELAB are perceptually based coordinates of colour space.

CIELUV (L, u, v)-coordinates is preferred by those who work with emissive colour technologies (such as computer displays) and CIELAB by those working with dyes and pigments (such as in the printing and textile industries)

Ihaka 2003
HCL colours

(u,v) = chroma * (cos h, sin h)

L the same as in CIELUV, (C, H) are simply polar coordinates for (u,v)

1. hue (dominant wavelength)

2. chroma (colorfulness, intensity of color as compared to gray)

3. luminance (brightness, amount of gray)
Figure 2: Circles in HCL colorspace.

a: circles in HCL space at constant $L = 75$, with the angular coordinate H varying from 0 to 360 and the radial coordinate $C = 0, 10, \ldots, 60$.
b: constant $C = 50$, and $L = 10, 20, \ldots, 90$.

Pick your favourite

From A. Zeileis, Reisensburg 2007
Acknowledgements

Susan Holmes
Robert Gentleman
Florian Hahne

Hadley Wickham
Ross Ihaka
Achim Zeileis
Kurt Hornik
References

Albert Munsell (1858-1918) divided the circle of hues into 5 main hues — R, Y, G, B, P (red, yellow, green, blue and purple).

Value, Chroma: ranges divided into 10 equal steps.

E.g. R 4/5 = hue of red with a value of 4 and a chroma of 5.
Albert Munsell (1858-1918) divided the circle of hues into 5 main hues — R, Y, G, B, P (red, yellow, green, blue and purple).

Value, Chroma: ranges divided into 10 equal steps.

E.g. R 4/5 = hue of red with a value of 4 and a chroma of 5.
Colour Harmony

Figure 3: The principal Munsell 5/5 colours. From the top these are R 5/5, Y 5/5, G 5/5, B 5/5 and P 5/5. This figure is redrawn from Birren (1969).

Figure 4: The same images as Figure 3, but drawn with full saturation HSV colours.
Balance

The intensity of colour which should be used is dependent on the area that that colour is to occupy. Small areas need to be much more colourful than larger ones.

Choose colours centered on a mid-range or neutral value, or;

Choose colours at equally spaced points along smooth paths through (perceptually uniform) colour space: equal luminance and chroma and correspond to set of evenly spaced hues.