A quick introduction to GRanges and GRangesList objects

Hervé Pagès
hpages@fhcrc.org

Fred Hutchinson Cancer Research Center
Seattle, WA

February 2015
GRanges objects
- The GRanges() constructor
- GRanges accessors
- Vector operations on GRanges objects
- Range-based operations on GRanges objects

GRangesList objects
- The GRangesList() constructor
- GRangesList accessors
- Vector operations on GRangesList objects
- List operations on GRangesList objects
- Range-based operations on GRangesList objects

Other resources
The GRanges class is a container for...

... storing a set of genomic ranges (a.k.a. genomic regions or genomic intervals).

- Each genomic range is described by a chromosome name, a start, an end, and a strand.
- start and end are both 1-based positions relative to the 5' end of the plus strand of the chromosome, even when the range is on the minus strand.
- start and end are both considered to be included in the interval (except when the range is empty).
- The width of the range is the number of genomic positions included in it. So width = end - start + 1.
- end is always >= start, except for empty ranges (a.k.a. zero-width ranges) where end = start - 1.

Note that the start is always the leftmost position and the end the rightmost, even when the range is on the minus strand.

Gotcha: A TSS is at the end of the range associated with a transcript located on the minus strand.
The `GRanges()` constructor

```r
> library(GenomicRanges)
> gr1 <- GRanges(seqnames=Rle(c("ch1", "chMT"), c(2, 4)),
+ ranges=IRanges(16:21, 20),
+ strand=rep(c("+", "-", "*"), 2))
> gr1

GRanges object with 6 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
</tr>
<tr>
<td>ch1</td>
<td>[16, 20]</td>
<td>+</td>
</tr>
<tr>
<td>ch1</td>
<td>[17, 20]</td>
<td>-</td>
</tr>
<tr>
<td>chMT</td>
<td>[18, 20]</td>
<td>*</td>
</tr>
<tr>
<td>chMT</td>
<td>[19, 20]</td>
<td>+</td>
</tr>
<tr>
<td>chMT</td>
<td>[20, 20]</td>
<td>-</td>
</tr>
<tr>
<td>chMT</td>
<td>[21, 20]</td>
<td>*</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome; no seqlengths
GRanges accessors

> length(gr1)
[1] 6

> seqnames(gr1)

factor-Rle of length 6 with 2 runs
   Lengths:  2  4
   Values : ch1 chMT
Levels(2): ch1 chMT

> ranges(gr1)

IRanges of length 6
   start end width
[1]  16  20   5
[2]  17  20   4
[3]  18  20   3
[4]  19  20   2
[5]  20  20   1
[6]  21  20   0
GRanges accessors (continued)

```r
> start(gr1)
[1] 16 17 18 19 20 21
> end(gr1)
[1] 20 20 20 20 20 20
> width(gr1)
[1] 5 4 3 2 1 0
> strand(gr1)

factor-Rle of length 6 with 6 runs
 Lengths: 1 1 1 1 1 1
 Values : + - * + - *
Levels(3): + - *

> strand(gr1) <- c("-", ",-", "+")
> strand(gr1)

factor-Rle of length 6 with 4 runs
 Lengths: 2 1 2 1
 Values : - + - +
Levels(3): + - *
```
GRanges accessors (continued)

```r
> names(gr1) <- LETTERS[1:6]
> names(gr1)

[1] "A" "B" "C" "D" "E" "F"

> mcols(gr1) <- DataFrame(score=11:16, GC=seq(1, 0, length=6))
> mcols(gr1)

DataFrame with 6 rows and 2 columns

<table>
<thead>
<tr>
<th></th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

> gr1

GRanges object with 6 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqlines</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>[16, 20]</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>[17, 20]</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>[18, 20]</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>[19, 20]</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>chMT</td>
<td>[20, 20]</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>[21, 20]</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome; no seqlengths
```
GRanges accessors (continued)

```r
> seqinfo(gr1)
Seqinfo object with 2 sequences from an unspecified genome; no seqlengths:
 seqnames seqlengths isCircular genome
 ch1 NA NA <NA>
 chMT NA NA <NA>

> seqlevels(gr1)
[1] "ch1" "chMT"

> seqlengths(gr1)
 ch1 chMT
 NA NA

> seqlengths(gr1) <- c(50000, 800)
> seqlengths(gr1)
 ch1 chMT
50000 800
d```

Vector operations on GRanges objects

What we call *vector operations* are operations that work on any ordinary vector:

- `length()`, `names()`
- Single-bracket subsetting: `[`
- Combining: `c()`
- `split()`, `relist()`
- Comparing: `==`, `!=`, `match()`, `%in%`, `duplicated()`, `unique()`
- Ordering: `<=`, `>=`, `<`, `>`, `order()`, `sort()`, `rank()`

GRanges objects support all these *vector operations* $$\Rightarrow$$ They're considered *vector-like* objects.
> gr1[c("F", "A")]

GRanges object with 2 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>chMT</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>ch1</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> gr1[strand(gr1) == "+"]

GRanges object with 2 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>chMT</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
> gr1 <- gr1[-5]
> gr1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [16, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [21, 20]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Vector operations on GRanges objects (continued)

```r
> gr2 <- GRanges(seqnames="ch2",
+                 ranges=IRanges(start=c(2:1,2), width=6),
+                 score=15:13,
+                 GC=seq(0, 0.4, length=3))
> gr12 <- c(gr1, gr2)
> gr12
GRanges object with 8 ranges and 2 metadata columns:

  seqnames ranges   strand | score   GC
  <Rle> <IRanges> <Rle>  <integer> <numeric>
  A   ch1  [16, 20] - - 11 1
  B   ch1  [17, 20] - - 12 0.8
  C   chMT [18, 20] + - 13 0.6
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
  ch2 [2, 7] * - 15 0
  ch2 [1, 6] * - 14 0.2
  ch2 [2, 7] * - 13 0.4

-------
seqinfo: 3 sequences from an unspecified genome
```
Vector operations on GRanges objects (continued)

```r
> gr12[length(gr12)] == gr12
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> duplicated(gr12)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> unique(gr12)

GRanges object with 7 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [16, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>F</td>
<td>chMT [21, 20]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ch2 [ 2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ch2 [ 1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
> sort(gr12)

GRanges object with 8 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [16, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ch2</td>
<td>[1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
Splitting a GRanges object

```r
> split(gr12, seqnames(gr12))

GRangesList object of length 3:

$ch1
GRanges object with 2 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 A ch1 [16, 20] - | 11 1
 B ch1 [17, 20] - | 12 0.8

$chMT
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 C chMT [18, 20] + | 13 0.6
 D chMT [19, 20] - | 14 0.4
 F chMT [21, 20] + | 16 0

$ch2
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 ch2 [2, 7] * | 15 0
 ch2 [1, 6] * | 14 0.2
 ch2 [2, 7] * | 13 0.4

seqinfo: 3 sequences from an unspecified genome
An overview of range-based operations

Intra range transformations
- shift()
- narrow()
- resize()
- flank()

Inter range transformations
- range()
- reduce()
- gaps()
- disjoin()

Range-based set operations
- union()
- intersect()
- setdiff()
- punion()
- pintersect()
- psetdiff()
- pgap()

Coverage and slicing
- coverage()
- slice()

Finding/counting overlapping ranges
- findOverlaps()
- countOverlaps()

Finding the nearest range neighbor
- nearest()
- precede()
- follow()

and more...
Examples of some common *range-based* operations

- ir0
- shift(ir0, 5)
- reduce(ir0)
Range-based operations on GRanges objects

> gr2
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>

[2] ch2 [1, 6] * | 14 0.2
[3] ch2 [2, 7] * | 13 0.4

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> shift(gr2, 50)
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [52, 57] * | 15 0
[2] ch2 [51, 56] * | 14 0.2
[3] ch2 [52, 57] * | 13 0.4

seqinfo: 1 sequence from an unspecified genome; no seqlengths
> gr1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [16, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [21, 20]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> resize(gr1, 12)

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [9, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [9, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 29]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [9, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [21, 32]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

> gr1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [16, 20]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [21, 20]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> flank(gr1, 3)

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [21, 23]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [21, 23]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [15, 17]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [21, 23]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [18, 20]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

```r
> gr3 <- shift(gr1, c(35000, rep(0, 3), 100))
> width(gr3)[c(3,5)] <- 117
> gr3

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> range(gr3)

GRanges object with 3 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>ch1 [17, 35020]</td>
<td>-</td>
</tr>
<tr>
<td>[2]</td>
<td>chMT [18, 237]</td>
<td>+</td>
</tr>
<tr>
<td>[3]</td>
<td>chMT [19, 20]</td>
<td>-</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
```
Range-based operations on GRanges objects (continued)

```r
> gr3

GRanges object with 5 ranges and 2 metadata columns:

```
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0
```

-------

seqinfo: 2 sequences from an unspecified genome

> reduce(gr3)

GRanges object with 4 ranges and 0 metadata columns:

```
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
[1] ch1 [17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [18, 237] +
```

-------

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

> gr3

GRanges object with 5 ranges and 2 metadata columns:

```
seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [13, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0
```

seqinfo: 2 sequences from an unspecified genome

> gaps(gr3)

GRanges object with 10 ranges and 0 metadata columns:

```
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] ch1 [1, 50000] +
[2] ch1 [1, 16] -
[3] ch1 [21, 35015] -
...
[8] chMT [1, 18] -
[9] chMT [21, 800] -
[10] chMT [1, 800] *
```

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

> gr3

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> disjoin(gr3)

GRanges object with 6 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] ch1 [17, 20]</td>
<td>-</td>
</tr>
<tr>
<td>[2] ch1 [35016, 35020]</td>
<td>-</td>
</tr>
<tr>
<td>[3] chMT [18, 120]</td>
<td>+</td>
</tr>
<tr>
<td>[4] chMT [121, 134]</td>
<td>+</td>
</tr>
<tr>
<td>[6] chMT [19, 20]</td>
<td>-</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
> cvg12 <- coverage(gr12)
> cvg12

RleList of length 3
$ch1
integer-Rle of length 50000 with 4 runs
  Lengths: 15 1 4 49980
  Values : 0 1 2 0

$chMT
integer-Rle of length 800 with 4 runs
  Lengths: 17 1 2 780
  Values : 0 1 2 0

$ch2
integer-Rle of length 7 with 3 runs
  Lengths: 1 5 1
  Values : 1 3 2
Coverage (continued)

```r
> mean(cvg12)
 ch1 chMT ch2
 0.000180 0.006250 2.571429

> max(cvg12)
 ch1 chMT ch2
 2 2 3
```
> sl12 <- slice(cvg12, lower=1)
> sl12

RleViewsList of length 3
names(3): ch1 chMT ch2

> elementLengths(sl12)

  ch1  chMT  ch2
  1    1    1

> sl12$chMT

Views on a 800-length Rle subject

views:
  start   end  width      
[1] 18 20 3 [1 2 2]

> mean(sl12$chMT)

[1] 1.666667

> max(sl12$chMT)

[1] 2
Load aligned reads from a BAM file:

```r
> library(pasillaBamSubset)
> untreated1_chr4()
[1] "/home/hpages/R/R-3.2.r67440/library/pasillaBamSubset/extdata/untreated1_chr4.bam"
> library(GenomicAlignments)
> reads <- readGAlignment(untreated1_chr4())
```

and store them in a GRanges object:

```r
> reads <- as(reads, "GRanges")
> reads[1:4]

GRanges object with 4 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr4</td>
<td>[892, 966]</td>
<td>-</td>
</tr>
<tr>
<td>chr4</td>
<td>[919, 993]</td>
<td>-</td>
</tr>
<tr>
<td>chr4</td>
<td>[924, 998]</td>
<td>+</td>
</tr>
<tr>
<td>chr4</td>
<td>[936, 1010]</td>
<td>+</td>
</tr>
</tbody>
</table>

seqinfo: 8 sequences from an unspecified genome
findOverlaps() (continued)

Load the gene ranges from a \textit{TxDb} package:

\begin{verbatim}
> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
> dm3_genes <- genes(txdb)
\end{verbatim}

and find the overlaps between the reads and the genes:

\begin{verbatim}
> hits <- findOverlaps(reads, dm3_genes)
> head(hits)

Hits object with 6 hits and 0 metadata columns:
 queryHits subjectHits
 <integer> <integer>
[1] 6296 11499
[2] 6304 11499
[3] 6305 11499
[4] 6310 11499
[5] 6311 11499
[6] 6312 11499

queryLength: 204355
subjectLength: 15682
\end{verbatim}
The GRangesList class is a container for... storing a list of *compatible* GRanges objects. *compatible* means:

- they are relative to the same genome,
- AND they have the same metadata columns (accessible with the \texttt{mcols()} accessor).
The `GRangesList()` constructor

```r
> grl <- GRangesList(gr3, gr2)
> grl

GRangesList object of length 2:
[[1]]
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

[[2]]
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>ch2 [1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

-------
seqinfo: 3 sequences from an unspecified genome
GRangesList accessors

> length(grl)
[1] 2

> seqnames(grl)

RleList of length 2
[[1]]
factor-Rle of length 5 with 2 runs
  Lengths: 2 3
  Values: ch1 chMT
Levels(3): ch1 chMT ch2

[[2]]
factor-Rle of length 3 with 1 run
  Lengths: 3
  Values: ch2
Levels(3): ch1 chMT ch2

> strand(grl)

RleList of length 2
[[1]]
factor-Rle of length 5 with 4 runs
  Lengths: 2 1 1 1
  Values: - + - +
Levels(3): + - *

[[2]]
factor-Rle of length 3 with 1 run
  Lengths: 3
  Values: *
Levels(3): + - *
GRangesList accessors (continued)

```r
> ranges(grl)
IRangesList of length 2
[[1]]
IRanges of length 5
 start end width names
[1] 35016 35020 5 A
[2] 17 20 4 B
[3] 18 134 117 C
[4] 19 20 2 D
[5] 121 237 117 F
[[2]]
IRanges of length 3
 start end width names
[1] 2 7 6
[2] 1 6 6
[3] 2 7 6
```

```r
> start(grl)
IntegerList of length 2
[[1]] 35016 17 18 19 121
[[2]] 2 1 2
```

```r
> end(grl)
IntegerList of length 2
[[1]] 35020 20 134 20 237
[[2]] 7 6 7
```

```r
> width(grl)
IntegerList of length 2
[[1]] 5 4 117 2 117
[[2]] 6 6 6
```
```r
> names(grl) <- c("TX1", "TX2")
> grl

GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>ch2 [1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>
```

seqinfo: 3 sequences from an unspecified genome
GRangesList accessors (continued)

```r
> mcols(grl)$geneid <- c("GENE1", "GENE2")
> mcols(grl)

DataFrame with 2 rows and 1 column
geneid
 <character>
1 GENE1
2 GENE2

> grl

GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

$TX2
GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
 ch2 [2, 7] * | 15 0
 ch2 [1, 6] * | 14 0.2
 ch2 [2, 7] * | 13 0.4

seqinfo: 3 sequences from an unspecified genome
> seqinfo(grl)

Seqinfo object with 3 sequences from an unspecified genome:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>seqlengths</th>
<th>isCircular</th>
<th>genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch1</td>
<td>50000</td>
<td>NA</td>
<td><NA></td>
</tr>
<tr>
<td>chMT</td>
<td>800</td>
<td>NA</td>
<td><NA></td>
</tr>
<tr>
<td>ch2</td>
<td>NA</td>
<td>NA</td>
<td><NA></td>
</tr>
</tbody>
</table>
Vector operations on GRangesList objects

Only the following *vector operations* are supported on GRangesList objects:

- `length()`, `names()`
- Single-bracket subsetting: `[`
- Combining: `c()`
Vector operations on GRangesList objects

```r
> grl[c("TX2", "TX1")]

GRangesList object of length 2:
$TX2
GRanges object with 3 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  ch2 [2, 7] * | 15 0
  ch2 [1, 6] * | 14 0.2
  ch2 [2, 7] * | 13 0.4

$TX1
GRanges object with 5 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  A ch1 [35016, 35020] - | 11 1
  B ch1 [ 17, 20] - | 12 0.8
  C chMT [ 18, 134] + | 13 0.6
  D chMT [ 19, 20] - | 14 0.4
  F chMT [ 121, 237] + | 16 0

-------
seqinfo: 3 sequences from an unspecified genome
Vector operations on GRangesList objects (continued)

> c(grl, GRangesList(gr3))

GRangesList object of length 3:

$TX1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2

GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ch2 [1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>ch2 [2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

[[3]]

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome
List operations on GRangesList objects

What we call *list operations* are operations that work on an ordinary list:

- Double-bracket subsetting: `[[`
- `elementLengths()`, `unlist()`
- `lapply()`, `sapply()`, `endoapply()`
- `mendoapply()` (not covered in this presentation)

GRangesList objects support all these *list operations* => They're considered *list-like* objects.
> `gri[[2]]`

GRanges object with 3 ranges and 2 metadata columns:
```
<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>ch2</td>
<td>[1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>
```

-------

seqinfo: 3 sequences from an unspecified genome

> `elementLengths(gri)`

```
> 5 3
```

> `unlisted <- unlist(gri, use.names=FALSE)` # same as `c(gri[[1]], gri[[2]])`

> `unlisted`

GRanges object with 8 ranges and 2 metadata columns:
```
<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>ch2</td>
<td>[1, 6]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>[2, 7]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>
```

-------

seqinfo: 3 sequences from an unspecified genome
> grl100 <- relist(shift(unlisted, 100), grl)
> grl100

GRangesList object of length 2:
TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>[35116, 35120]</td>
<td>-</td>
<td>11 1</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>[117, 120]</td>
<td>-</td>
<td>12 0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>[118, 234]</td>
<td>+</td>
<td>13 0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>[119, 120]</td>
<td>-</td>
<td>14 0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>[221, 337]</td>
<td>+</td>
<td>16 0</td>
</tr>
</tbody>
</table>

TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>[102, 107]</td>
<td>*</td>
<td>15 0</td>
<td></td>
</tr>
<tr>
<td>ch2</td>
<td>[101, 106]</td>
<td>*</td>
<td>14 0.2</td>
<td></td>
</tr>
<tr>
<td>ch2</td>
<td>[102, 107]</td>
<td>*</td>
<td>13 0.4</td>
<td></td>
</tr>
</tbody>
</table>

--------
seqinfo: 3 sequences from an unspecified genome
> grl100b <- endoapply(grl, shift, 100)
> grl100b

GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35116, 35120]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [117, 120]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [118, 234]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [119, 120]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [221, 337]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2 [102, 107]</td>
<td>*</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ch2 [101, 106]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>ch2 [102, 107]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

> mcols(grl100)

DataFrame with 2 rows and 0 columns

> mcols(grl100b)

DataFrame with 2 rows and 1 column

geneid
<character>
1  GENE1
2  GENE2
Range-based operations on GRangesList objects

> grl

GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  A  ch1 [35016, 35020] - | 11 1
  B  ch1 [ 17, 20] - | 12 0.8
  C  chMT [ 18, 134] + | 13 0.6
  D  chMT [ 19, 20] - | 14 0.4
  F  chMT [ 121, 237] + | 16 0

$TX2
GRanges object with 3 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  ch2 [2, 7] * | 15 0
  ch2 [1, 6] * | 14 0.2
  ch2 [2, 7] * | 13 0.4

> shift(grl, 100)

GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  A  ch1 [35116, 35120] - | 11 1
  B  ch1 [ 117, 120] - | 12 0.8
  C  chMT [ 118, 234] + | 13 0.6
  D  chMT [ 119, 120] - | 14 0.4
  F  chMT [ 221, 337] + | 16 0

$TX2
GRanges object with 3 ranges and 2 metadata columns:
  seqnames ranges strand | score GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  ch2 [102, 107] * | 15 0
  ch2 [101, 106] * | 14 0.2
  ch2 [102, 107] * | 13 0.4

seqinfo: 3 sequences from an unspecified genome

shift(grl, 100) is equivalent to endoapply(grl, shift, 100)
Range-based operations on GRangesList objects (continued)

> grl

GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>A</td>
<td>ch1 [35021, 35030]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [21, 30]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [8, 17]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [21, 30]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [111, 120]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

> flank(grl, 10)

GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>A</td>
<td>ch1 [35021, 35030]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [21, 30]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [8, 17]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [21, 30]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [111, 120]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>ch2 [-8, 1]</td>
<td>*</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ch2 [-9, 0]</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>ch2 [-8, 1]</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

flank(grl, 10) is equivalent to endoapply(grl, flank, 10)
Range-based operations on GRangesList objects (continued)

> grl

GRangesList object of length 2:

$TX1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [35016, 35020]</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>ch1 [17, 20]</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT [18, 134]</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT [19, 20]</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT [121, 237]</td>
<td>+</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

$TX2

GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ch2 [2, 7]</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>ch2 [1, 6]</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>ch2 [2, 7]</td>
<td>*</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

> range(grl)

GRangesList object of length 2:

$TX1

GRanges object with 3 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 [17, 35020]</td>
</tr>
<tr>
<td>B</td>
<td>chMT [18, 237]</td>
</tr>
<tr>
<td>C</td>
<td>chMT [19, 20]</td>
</tr>
</tbody>
</table>

$TX2

GRanges object with 1 range and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ch2 [1, 7]</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

range(grl) is equivalent to endoapply(grl, range)
Range-based operations on GRangesList objects (continued)

```
> grl
GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

$TX2
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 13 0.4
```

```
> reduce(grl)
GRangesList object of length 2:
$TX1
GRanges object with 4 ranges and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
[1] ch1 [17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [18, 237] +

$TX2
GRanges object with 1 range and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
[1] ch2 [1, 7] *
```

seqinfo: 3 sequences from an unspecified genome

```
reduce(grl) is equivalent to endoapply(grl, reduce)
```
Range-based operations on GRangesList objects (continued)

```r
> grl2
GRangesList object of length 2:
$TX1
GRanges object with 1 range and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 C chMT [18, 134] + | 13 0.6

$TX2
GRanges object with 1 range and 2 metadata columns:
 seqnames ranges strand | score GC
 ch2 [2, 7] * | 15 0

seqinfo: 3 sequences from an unspecified genome

> grl3
GRangesList object of length 2:
[[1]]
GRanges object with 1 range and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 chMT [22, 130] + | 13 0.6
[[2]]
GRanges object with 1 range and 2 metadata columns:
 seqnames ranges strand | score GC
 ch2 [2, 7] * | 15 0

seqinfo: 3 sequences from an unspecified genome

> psetdiff(grl2, grl3)
GRangesList object of length 2:
$TX1
GRanges object with 2 ranges and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
[1] chMT [18, 21] +
[2] chMT [131, 134] +

$TX2
GRanges object with 0 ranges and 0 metadata columns:

seqinfo: 3 sequences from an unspecified genome
```

`psetdiff(grl2, grl)` is equivalent to `mendoapply(setdiff, grl2, grl)`
Other resources

Vignettes in the *GenomicRanges* package (`browseVignettes("GenomicRanges")`).

GRanges and GRangesList man pages in the *GenomicRanges* package.

Vignettes and GAlignments man page in the *GenomicAlignments* package.

*Bioconductor* support site: [http://support.bioconductor.org/](http://support.bioconductor.org/)