
Managing big biological sequence 
data with Biostrings and DECIPHER

Erik Wright 
University of Wisconsin-Madison



What you should learn

• How to use the Biostrings and DECIPHER packages 

• Creating a database to store sequences 

• Adding data to the database 

• Querying for specific sequences in the database 

• Manipulating XStringSet objects 

• Run large-scale analyses in pieces



R packages for biological seqs.
Biostrings DECIPHER

XS
tri

ng
Se

ts
searching

reverse 
complement

oligo 
frequencies

subsequence

editing 
sequences

masking

sequence 
databases

alignment
primer/probe 

design

translation

restriction 
digest

consensus

synteny 
mapping

phylogenetic 
trees

manipulate 
nucleotides



Coverage in this workshop
Biostrings DECIPHER

XS
tri

ng
Se

ts
searching

reverse 
complement

oligo 
frequencies

subsequence

editing 
sequences

masking

sequence 
databases

alignment
primer/probe 

design

translation

restriction 
digest

consensus

synteny 
mapping

phylogenetic 
trees

manipulate 
nucleotides



Put on your detective hat...

Pennsylvania

Soybean fields
Pythium



Identifying Pythium species

Taxonomy: 
Eukaryota 
    Chromalveolata 
        Heterokontophyta 
            Oomycota 
                Pythiales 
                    Pythiaceae 
                        Pythium

Hawker, L. & Abbott, P. (1963). Journal Gen. Microbiol.

Mitochondrial 
genome

Cytochrome c oxidase 
subunit 1 

(COI gene)

Nuclear 
genome



Let's get started!

# first it is necessary to get the datasets used in this 
tutorial 
# the datasets are located in the BigBioSeqData 
package 
# normally we would simply use library(DECIPHER) 

> library(BigBioSeqData) 

> help(package="BigBioSeqData") 

# click the link for "User guides, package vignettes and 
other documentation"



Overview of workflow

• Part 1: 
- Import publicly available sequences into a database 
- Design primers targeting Pythium COI gene 
- (Wet lab work: amplify DNA, sequence) 

• Part 2: 
- Import the new amplicon sequences 
- Quality trim the sequences 
- Cluster the Pythium sequences into groups 

• Part 3: 
- Align the cluster representatives to sequences from 

known species 
- Identify the Pythium strains present in each sample



Overview of workflow part #1

sequence 
repository

download Pythium 
COI sequences

align the 
sequences

design 
primers

import into 
seq. database

cluster into 
groups

am
pl

ic
on

 
se

qu
en

ci
ng

 
(p

ar
t #

2)



Seqs2DB function
# Import sequences from a GenBank formatted file 
Seqs2DB(paste(data_dir, 
              "/Pythium_spp_COI.gb", 
              sep=""), 
        type="GenBank", 
        dbFile=dbConn, 
        identifier="Pythium")

Arguments (in order): 

1. seqs = XStringSet or path to text file 
.gz, .bzip2, .xz also supported 
http:// and ftp:// supported 

2. type = "GenBank", "FASTQ", "FASTA" 
or "XStringSet" 

3. dbFile = Database connection or 
path to SQLite database file 

4. identifier = character string uniquely 
identifying this batch of sequences



Creating a sequence database

row_names sequence quality

1
2
3
4
5
6
7
...

row_names identifier description . . .

1
2
3
4
5
6
7
...

shared primary key
Se

qs
 ta

bl
e

_S
eq

s 
ta

bl
e

Columns:
automatic

user-defined
optional

C
re

at
es

 a
 d

at
ab

as
e

Wright, E. (2016). The R Journal.

# Import sequences from a GenBank formatted file 
Seqs2DB(paste(data_dir, 
              "/Pythium_spp_COI.gb", 
              sep=""), 
        type="GenBank", 
        dbFile=dbConn, 
        identifier="Pythium")



Viewing a database table
D

is
pl

ay
s 

a 
da

ta
ba

se

# View the database table that was constructed 
BrowseDB(dbConn)



Retrieving sequences
# Retrieve the imported sequences 
> dna <- SearchDB(dbConn) 
Search Expression: 
select row_names, sequence from _Seqs where 
row_names in (select row_names from Seqs) 

DNAStringSet of length: 488 
Time difference of 0.03 secs 

> dna 
  A DNAStringSet instance of length 488 
      width seq                   names                
  [1]  1277 ATGAATTTT...GTTATTCTT 1 
  [2]  1277 ATGAATTTT...GTTATTTTT 2 
  [3]  1095 TATATAATG...TATTTTTTT 3 
  [4]  1299 ATGAATTTT...ATTACATTT 4 
  [5]  1109 CATCATTTA...TATAGGTGT 5 
  ...   ... ... 
[484]   673 AAATCATAA...TTATTCCAA 484 
[485]   680 AATCATAAA...ACATTTATT 485 
[486]   680 AATCATAAA...ACATTTATT 486 
[487]   680 AATCATAAA...ACATTTATT 487 
[488]   680 AATCATAAA...ACATTTATT 488

Features of SearchDB: 

1. Automatically builds a 
database query 

2. Displays the query if 
verbose=TRUE (default) 

3. Auto-detects the type of 
sequences to return (DNA, 
RNA, or AAStringSet)



SearchDB: optional arguments
SearchDB(dbFile, 

         tblName = "Seqs", 

         identifier = "", 

         type = "XStringSet", 

         limit = -1, 

         replaceChar = "-", 

         nameBy = "row_names", 

         orderBy = "row_names", 

         countOnly = FALSE, 

         removeGaps = "none", 

         clause = "", 

         processors = 1, 

         verbose = TRUE)

Choose which table to query
Constrain to a subset of 
identifiers in the table
Detect (X) the sequence type, 
or specify (DNA/RNA/AA/B)
Limit the number of sequences
Replace unsupported letters 
with another (e.g., "-")
Name and order the seqs. 
according to the values in 
these database columns
Return the number of seqs.
Remove gaps from sequences 
if they are aligned
Append a clause to the query
Decompress using n cores



Multiple sequence alignment

DNA or RNA or AA Aligned sequences

Coding region Aligned DNA

Tr
an

sl
at

e

Re
ve

rs
e 

Tr
an

sl
at

e

Align amino acids

+

Merged alignment

AlignSeqs(seqs)

AlignTranslation(dna)

AlignDB(dbConn, 
    tblName = c("Seqs1", 
                "Seqs2"))

Wright, E. (2015). BMC Bioinformatics.



DesignProbes function
HRM 
 or       ± 
FLP 
 or 
Sequencing

restriction 
digestionDesignSignatures(dbConn, 

      type = "sequence")

Wright, E. et al. (2014). Applied and Environmental Microbiology.

PC
R 

or
 q

PC
RTarget group

Non-target group

tiles <- TileSeqs(dbConn) 
DesignPrimers(tiles, 
      numPrimerSets = 10)

FI
SH

Targets

Non-targets

tiles <- TileSeqs(dbConn) 
DesignProbes(tiles, 
       numProbeSets = 10)



Overview of workflow part #2

obtain COI 
sequences

import into 
new table

Dataset: Coffua, L., et al. (2016). Plant Disease.

trim by quality 
scores

identify potential 
Pythium sequences

cluster Pythium 
sequences

perform amplicon 
sequencing



Trimming sequences by quality



Performing analyses in parts

> nSeqs <- SearchDB(dbConn, count = TRUE, verbose = FALSE) 
> offset <- 0 
> while (offset < nSeqs) { 
     dna <- SearchDB(dbConn, 
         limit = paste(offset, 1e4, sep = ","), 
         verbose = FALSE) 
      
     # do something with dna 
      
     offset <- offset + 1e4 
  }

The key idea:  process batches of sequences separately 
• Use the "offset,limit" feature in queries

offset,limit: 
"0,1e4" 

"1e4,1e4" 
"2e4,1e4" 

...



Performing analyses in parts

> ids <- dbGetQuery(dbConn, "select distinct identifier from Reads") 
> for (i in seq_along(ids$identifier)) { 
     dna <- SearchDB(dbConn, 
         identifier = ids$identifier[i], 
         verbose = FALSE) 
      
     # do something with dna 
  }

The key idea:  process batches of sequences separately 
• Use the "offset,limit" feature in queries 
• Select sequences belonging to each identifier



Overview of workflow part #3

select cluster 
representatives 

align combined 
sequences

construct a 
distance matrix

build a neighbor 
joining tree

identify known 
Pythium species

choose species 
representatives


