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What you should learn

• How to use the Biostrings and DECIPHER packages 

• Creating a database to store sequences 

• Adding data to the database 

• Querying for specific sequences in the database 

• Manipulating XStringSet objects 

• Run large-scale analyses in pieces
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Put on your detective hat...

Pennsylvania

Soybean fields
Pythium



Identifying Pythium species

Taxonomy: 
Eukaryota 
    Chromalveolata 
        Heterokontophyta 
            Oomycota 
                Pythiales 
                    Pythiaceae 
                        Pythium

Hawker, L. & Abbott, P. (1963). Journal Gen. Microbiol.

Mitochondrial 
genome

Cytochrome c oxidase 
subunit 1 

(COI gene)

Nuclear 
genome



Let's get started!

# first it is necessary to get the datasets used in this 
tutorial 
# the datasets are located in the BigBioSeqData 
package 
# normally we would simply use library(DECIPHER) 

> library(BigBioSeqData) 

> help(package="BigBioSeqData") 

# click the link for "User guides, package vignettes and 
other documentation"



Overview of workflow

• Part 1: 
- Import publicly available sequences into a database 
- Design primers targeting Pythium COI gene 
- (Wet lab work: amplify DNA, sequence) 

• Part 2: 
- Import the new amplicon sequences 
- Quality trim the sequences 
- Cluster the Pythium sequences into groups 

• Part 3: 
- Align the cluster representatives to sequences from 

known species 
- Identify the Pythium strains present in each sample



Overview of workflow part #1
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Seqs2DB function
# Import sequences from a GenBank formatted file 
Seqs2DB(paste(data_dir, 
              "/Pythium_spp_COI.gb", 
              sep=""), 
        type="GenBank", 
        dbFile=dbConn, 
        identifier="Pythium")

Arguments (in order): 

1. seqs = XStringSet or path to text file 
.gz, .bzip2, .xz also supported 
http:// and ftp:// supported 

2. type = "GenBank", "FASTQ", "FASTA" 
or "XStringSet" 

3. dbFile = Database connection or 
path to SQLite database file 

4. identifier = character string uniquely 
identifying this batch of sequences



Creating a sequence database
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Wright, E. (2016). The R Journal.

# Import sequences from a GenBank formatted file 
Seqs2DB(paste(data_dir, 
              "/Pythium_spp_COI.gb", 
              sep=""), 
        type="GenBank", 
        dbFile=dbConn, 
        identifier="Pythium")



Viewing a database table
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# View the database table that was constructed 
BrowseDB(dbConn)



Retrieving sequences
# Retrieve the imported sequences 
> dna <- SearchDB(dbConn) 
Search Expression: 
select row_names, sequence from _Seqs where 
row_names in (select row_names from Seqs) 

DNAStringSet of length: 488 
Time difference of 0.03 secs 

> dna 
  A DNAStringSet instance of length 488 
      width seq                   names                
  [1]  1277 ATGAATTTT...GTTATTCTT 1 
  [2]  1277 ATGAATTTT...GTTATTTTT 2 
  [3]  1095 TATATAATG...TATTTTTTT 3 
  [4]  1299 ATGAATTTT...ATTACATTT 4 
  [5]  1109 CATCATTTA...TATAGGTGT 5 
  ...   ... ... 
[484]   673 AAATCATAA...TTATTCCAA 484 
[485]   680 AATCATAAA...ACATTTATT 485 
[486]   680 AATCATAAA...ACATTTATT 486 
[487]   680 AATCATAAA...ACATTTATT 487 
[488]   680 AATCATAAA...ACATTTATT 488

Features of SearchDB: 

1. Automatically builds a 
database query 

2. Displays the query if 
verbose=TRUE (default) 

3. Auto-detects the type of 
sequences to return (DNA, 
RNA, or AAStringSet)



SearchDB: optional arguments
SearchDB(dbFile, 

         tblName = "Seqs", 

         identifier = "", 

         type = "XStringSet", 

         limit = -1, 

         replaceChar = "-", 

         nameBy = "row_names", 

         orderBy = "row_names", 

         countOnly = FALSE, 

         removeGaps = "none", 

         clause = "", 

         processors = 1, 

         verbose = TRUE)

Choose which table to query
Constrain to a subset of 
identifiers in the table
Detect (X) the sequence type, 
or specify (DNA/RNA/AA/B)
Limit the number of sequences
Replace unsupported letters 
with another (e.g., "-")
Name and order the seqs. 
according to the values in 
these database columns
Return the number of seqs.
Remove gaps from sequences 
if they are aligned
Append a clause to the query
Decompress using n cores



Multiple sequence alignment

DNA or RNA or AA Aligned sequences

Coding region Aligned DNA
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Merged alignment

AlignSeqs(seqs)

AlignTranslation(dna)

AlignDB(dbConn, 
    tblName = c("Seqs1", 
                "Seqs2"))

Wright, E. (2015). BMC Bioinformatics.



DesignProbes function
HRM 
 or       ± 
FLP 
 or 
Sequencing

restriction 
digestionDesignSignatures(dbConn, 

      type = "sequence")

Wright, E. et al. (2014). Applied and Environmental Microbiology.
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tiles <- TileSeqs(dbConn) 
DesignPrimers(tiles, 
      numPrimerSets = 10)
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Targets

Non-targets

tiles <- TileSeqs(dbConn) 
DesignProbes(tiles, 
       numProbeSets = 10)



Overview of workflow part #2
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Trimming sequences by quality



Performing analyses in parts

> nSeqs <- SearchDB(dbConn, count = TRUE, verbose = FALSE) 
> offset <- 0 
> while (offset < nSeqs) { 
     dna <- SearchDB(dbConn, 
         limit = paste(offset, 1e4, sep = ","), 
         verbose = FALSE) 
      
     # do something with dna 
      
     offset <- offset + 1e4 
  }

The key idea:  process batches of sequences separately 
• Use the "offset,limit" feature in queries

offset,limit: 
"0,1e4" 

"1e4,1e4" 
"2e4,1e4" 

...



Performing analyses in parts

> ids <- dbGetQuery(dbConn, "select distinct identifier from Reads") 
> for (i in seq_along(ids$identifier)) { 
     dna <- SearchDB(dbConn, 
         identifier = ids$identifier[i], 
         verbose = FALSE) 
      
     # do something with dna 
  }

The key idea:  process batches of sequences separately 
• Use the "offset,limit" feature in queries 
• Select sequences belonging to each identifier



Overview of workflow part #3
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