Managing big biological sequence data with *Biostrings* and *DECIPHER* Erik Wright

University of Wisconsin-Madison

What you should learn

- How to use the **Biostrings** and **DECIPHER** packages
- Creating a database to store sequences
- Adding data to the database
- Querying for specific sequences in the database
- Manipulating *XStringSet* objects
- Run large-scale analyses in pieces

R packages for biological seqs.

Coverage in this workshop

Put on your detective hat...

Identifying Pythium species

Hawker, L. & Abbott, P. (1963). Journal Gen. Microbiol.

Let's get started!

first it is necessary to get the datasets used in this tutorial

the datasets are located in the BigBioSeqData package

normally we would simply use library(DECIPHER)

- > library(BigBioSeqData)
- > help(package="BigBioSeqData")

click the link for "User guides, package vignettes and other documentation"

Overview of workflow

- Part 1:
 - Import publicly available sequences into a database
 - Design primers targeting Pythium COI gene
 - (Wet lab work: amplify DNA, sequence)
- Part 2:
 - Import the new amplicon sequences
 - Quality trim the sequences
 - Cluster the Pythium sequences into groups
- Part 3:
 - Align the cluster representatives to sequences from known species
 - Identify the Pythium strains present in each sample

Overview of workflow part #1

NCBI	ORIGIN 1 tattaactt tactatgat tlaatgitti tittaatgi tgaactgit tittgittgit 612 titgiacatgi tgaattat actotttig atgaaaaaa aaataaata cottcaactgi 122 titgiacatgi tgaactatti agaattatti gagataata accagttia attittata 182 titgiacitgi tgactatti agaattatti gagataata tagottagi tgaatatti gatattita 241 tiaattaa agaattigat agacaatgi atiggagit tigaattit gatattita 241 tiaagtatti aticagott tagattitta atticagi gagaataat gattagaaa 361 taggtaatti tagattitti agaattagit tagatatti digutatti aaaagagaa 361 taggtaatti tagattitti agaattagit tiggagataa tatiggitti tactaaatti tatiaggi 361 tittaagtati aataaatti tiggitti taataaatti tagagaaaa 362 tittaatga ataatagat titggagata tacaaatti tatigtitti ataaaaaataa 372 tittigtatti attittaga agaattat taacaggta ataaaaaa ataaacaa tatittaa 372 tatigtitti a titticaaa ataataaaa ataaacaa tatiaataa 372 tatigtitti tatitticaaa aatattaaa atagattat taataaaaa tataaaaaa tataaacaa 372 tatigtigti qattaaaa attitaaaa ataaaaaaa tataaacaa tatigtigta 373 tatittaa tatittaaaa agaattaaa ataaacaa tataaaaa tataaacaa tatitaata 372 tatigtigti qattaaaa attitaaaaa tatitaaaaa tatittaaaaa tataaaaaa tataaacaa tataaaaaa tataaaaaa tataaaaaa tataaaaaa	
sequence repository	download <i>Pythium</i> import into COI sequences seq. database	
	amplicon (part #2)	
align the sequences	cluster into design groups primers	

Seqs2DB function

- seqs = XStringSet or path to text file
 .gz, .bzip2, .xz also supported
 http:// and ftp:// supported
- 2. type = "GenBank", "FASTQ", "FASTA"
 or "XStringSet"
- 3. dbFile = Database connection or path to SQLite database file
- 4. identifier = character string uniquely identifying this batch of sequences

Creating a sequence database

Wright, E. (2016). The R Journal.

Viewing a database table

View the database table that was constructed
BrowseDB(dbConn)

Displays a database

			fi	e:///var/folders/qr/475	6lm1n6fn5yz7	брр С	
:	row_n	ames iden	tifier	description	acce	ssion	rank
	1	Pythium	-	hmitthenneri 1611 cytochrome	JF895534	-	<pre>schmitthenneri ; Stramenopiles; 0</pre>
	2	Pythium	Pythium selby cytochrome	i strain Pre234 e oxidase su	JF895536	Eukaryot	chium selbyi a; Stramenopiles; Oomycetes
	3	Pythium	mitochondria	n ultimum al partial COI e for	FR797809		hium ultimum a; Stramenopiles; Oomycete
	4	Pythium		hanidermatum xidase I gene,	AY129164		aphanidermatum; Stramenopiles; O
	5	Pythium	mitochondria	sp. WHNS23 al partial COI ene	HE862402	-	lum sp. WHNS23 a; Stramenopiles; Oomyc
	6	Pythium	mitochondria	splendens al partial COI ne f	FR797808		ium splendens a; Stramenopiles; Oomyce
	7	Pythium	Pythium ultim strain PPF	um var. ultimum RI8615 cytoc	GU071815	-	timum var. ultimum ota; Stramenopi

Retrieving sequences

Retrieve the imported sequences
> dna <- SearchDB(dbConn)
Search Expression:
select row_names, sequence from _Seqs where
row_names in (select row_names from Seqs)</pre>

DNAStringSet of length: 488 Time difference of 0.03 secs

> dna

A DNAStringSet instance of length 488 width seq names

```
[1] 1277 ATGAATTTT...GTTATTCTT 1
```

```
[2] 1277 ATGAATTTT...GTTATTTTT 2
```

```
[3] 1095 TATATAATG...TATTTTTT 3
```

```
[4] 1299 ATGAATTTT...ATTACATTT 4
```

```
[5] 1109 CATCATTTA...TATAGGTGT 5
```

```
[484] 673 AAATCATAA...TTATTCCAA 484
```

```
[485] 680 AATCATAAA...ACATTTATT 485
```

```
[486] 680 AATCATAAA...ACATTTATT 486
```

```
[487] 680 AATCATAAA...ACATTTATT 487
```

```
[488] 680 AATCATAAA...ACATTTATT 488
```

```
Features of SearchDB:
```

- 1. Automatically builds a database query
- Displays the query if verbose=TRUE (default)
- 3. Auto-detects the type of sequences to return (DNA, RNA, or AAStringSet)

SearchDB: optional arguments

Choose which table to query
Constrain to a subset of
identifiers in the table
Detect (X) the sequence type,
or specify (DNA/RNA/AA/B)
Limit the number of sequences
Replace unsupported letters
with another (e.g., "-")
Name and order the seqs.
according to the values in

these database columns

Return the number of seqs.

Remove gaps from sequences if they are aligned

Append a clause to the query Decompress using *n* cores

Multiple sequence alignment

DesignProbes function

Wright, E. et al. (2014). Applied and Environmental Microbiology.

Overview of workflow part #2

perform amplicon sequencing

import into new table

identify potential *Pythium* sequences

cluster *Pythium* sequences

Dataset: Coffua, L., et al. (2016). Plant Disease.

Trimming sequences by quality

Sequence position

Performing analyses in parts

The key idea: process batches of sequences separately

Use the "offset, limit" feature in queries

```
> nSeqs <- SearchDB(dbConn, count = TRUE, verbose = FALSE)
> offset <- 0
> while (offset < nSeqs) {
    dna <- SearchDB(dbConn,
    limit = paste(offset, 1e4, sep = ","),
    verbose = FALSE)
    # do something with dna
    offset <- offset + 1e4
}
offset <- offset + 1e4
}
offset <- offset + 1e4
</pre>
```

Performing analyses in parts

The key idea: process batches of sequences separately

- Use the "offset, limit" feature in queries
- Select sequences belonging to each identifier

```
> ids <- dbGetQuery(dbConn, "select distinct identifier from Reads")
> for (i in seq_along(ids$identifier)) {
    dna <- SearchDB(dbConn,
        identifier = ids$identifier[i],
        verbose = FALSE)
    # do something with dna
}</pre>
```

Overview of workflow part #3

choose species representatives select cluster representatives align combined sequences

construct a distance matrix

build a neighbor joining tree identify known *Pythium* species