Teaching R/Bioconductor in Graduate Classes

BioC 2016

Thomas Girke

June 24, 2016
Type of Class

○ Topic: *Data Analysis in Genome Biology*
○ Objective: learn how to analyze NGS data independently and understand theory
○ Format: lectures, tutorials, homework, student presentations and course projects
○ Students are from different grad programs in genetics/bioinformatics, biosciences, statistics and CS
○ Lectures cover theory
○ Tutorials cover Linux command-line, computer cluster, R and Bioconductor
○ Course projects focus on a NGS analysis problem with a final report written in R Markdown hosted in private GitHub repos
Teaching R and Bioconductor

○ Basics of R straightforward to learn with easy to comprehend learning outcomes for students

○ Teaching how to make good use of R packages is more complex task. Why?
 ○ Learning to work with objects of cores packages (e.g. Genomic*) is challenging
 ○ Difficulty for students to solve errors on their own
 ○ Documentation and help system often too complex, too technical and overwhelming for beginners
 ○ Duplications among packages

○ Clear learning benefit of introducing core packages: solving complex analysis problems

○ Sometimes there are competitors that are easier to use. E.g. “why bother learning GenomicRanges if bedtools is all I need?”
Command-line vs. GUI Environment

- To work on remote systems efficiently, students have to learn how to work in a pure command-line interface.
- Too much time is spent on learning this basic skillset.
- For command-line R, emacs/ESS and vim-r/tmux are still the best solutions but come with a steep learning curve.
- A command-line version of RStudio could provide some help?
Computations on a Computer Cluster

- Cluster computing also has a steep learning curve.
- BatchJobs/BiocParallel very helpful for students to learn parallel computing from within R
- Still students need to learn basics of managing job submissions from command-line to become proficient outside of R
R Markdown

- Easy to learn
- Valuable skillset for future research (e.g. efficiency and reproducibility)
- Also great help for instructor for developing teaching material (e.g. tutorials)
- A classroom package deploying classes on GitHub would be useful. Options could be:
 - Extension to BiocStyle (could support Bioc conference/workshop material)
 - R Markdown Websites
 - Various Jekyll-based solutions
GitHub is Another Game Changer

- Works well together with any data science course
- Very useful for hosting teaching material online and running a highly functional website for class
- Great help for student group projects
- Learning social coding skills
- Running entire class on GitHub works well with some help from third party solutions:
 - Google Sheets: for account sharing, even grading (with help from Jenny Bryan’s amazing googlesheet package), etc.
 - Piazza: online chat room for class