The Bioconductor Project: Current Status

Martin Morgan

Roswell Park Cancer Institute
Buffalo, NY, USA
martin.morgan@roswellpark.org

4 November 2016
Bioconductor

Analysis and comprehension of high-throughput genomic data.

- Started 2002
- 1296 R packages – developed by ‘us’ and user-contributed.

Well-used and respected.

- 43k unique IP downloads / month.
- 17,000 PubMedCentral citations.

https://bioconductor.org
https://support.bioconductor.org
State of the project

- Packages
- Users
- Web & support sites
- Training & meetings
- Release & devel builders
- Funding
- Governance: (annual) Scientific Advisory Board; (monthly) Technical Advisory Board
Recent developments

- New package reviews
- *ExperimentHub* and *AnnotationHub*
- Large data representation: *HDF5Array*
- (Sneak peak) *Organism.dplyr*
library(HDF5Array) # available in release & devel
n = 10000; m = 1000; # very large size
h5 = HDF5Array(matrix(rnorm(n * m), n))
h5 + h5 # 'delayed' computation
library(SummarizedExperiment)
SummarizedExperiment(h5) # rich context
Sneak peak: *Organism.dplyr*

```r
> library(Organism.dplyr) # not yet publicly available
> src = src_ucsc("Homo sapiens") # any org.* + TxDb.*
using org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene
> src
src: sqlite 3.8.6 [/home/mtmorgan/organism_dplyr.sqlite]
tbls: id, id_accession, id_go, id_go_all, id_omim_pm, id_protein, id_transcript, ranges_cds, ranges_exon, ranges_gene, ranges_tx
> tbl(src, 'id') %>% filter(symbol == 'BRCA1') %>%
  select(ensembl, symbol, genename)
> exons(src, filter=list(symbol='BRCA1')) # GRanges
> exons_tbl(src, filter=list(symbol='BRCA1')) # tibble
```
Programming best practices

- Reuse & interoperability
- Correct, robust, efficient (vectorized) code; *BiocParallel*
- Documentation: classic or *roxygen2*
- Testing: *RUnit* or *testthat*
- Classic, tidy, and semantically rich data
Correct, robust, efficient...

```r
f = function(n) {
  x = integer(0)
  for (i in 1:n)
    x = c(x, i)
  x
}
microbenchmark(f(1000), 
  f(10000), f(100000))

f1 = function(n) {
  x = integer(n)
  for (i in 1:n)
    x[i] = i
  x
}

f2 = function(n)
  vapply(1:n, c, integer(1))

f3 = function(n)
  seq_len(n)

## correct
identical(f(100), f3(100))

## robust!
f(0); f3(0)

## efficient
system.time(f3(1e9))
```
Classic, tidy, rich: RNA-seq count data

Classic

- Sample \(\times \) (phenotype + expression) Feature data.frame

Tidy

- 'Melt' expression values to two long columns, replicated phenotype columns. End result: long data frame.

Rich, e.g., SummarizedExperiment

- Phenotype and expression data manipulated in a coordinated fashion but stored separately.
df0 <- as.data.frame(list(mean=colMeans(classic[, -(1:22)])))
df1 <- tidy %>% group_by(probeset) %>%
 summarize(mean=mean(exprs))
df2 <- as.data.frame(list(mean=rowMeans(assay(rich))))
ggplot(df1, aes(mean)) + geom_density()
Classic, tidy, rich: RNA-seq count data

Vocabulary
- Classic: extensive
- Tidy: restricted endomorphisms
- Rich: extensive, meaningful

Constraints (e.g., probes & samples)
- Tidy: implicit
- Classic, Rich: explicit

Flexibility
- Classic, tidy: general-purpose
- Rich: specialized

Programming contract
- Classic, tidy: limited
- Rich: strict

Lessons learned / best practices
- Considerable value in semantically rich structures
- Current implementations trade-off user and developer convenience
- Endomorphism, simple vocabulary, consistent paradigm aid use
Future challenges

- Git
- Cloud. Possible visions:
 - As now, but ‘in the cloud’
 - Integrated with ‘third party’ compute efforts, e.g., NCI, NIH in the United States
Acknowledgments

Core team (current & recent): Yubo Cheng, Valerie Obenchain, Hervé Pagès, Marcel Ramos, Lori Shepherd, Dan Tenenbaum, Greg Wargula.

Technical advisory board: Vincent Carey, Kasper Hansen, Wolfgang Huber, Robert Gentleman, Rafael Irizzary, Levi Waldron, Michael Lawrence, Sean Davis, Aedin Culhane

Scientific advisory board: Simon Tavare (CRUK), Paul Flicek (EMBL/EBI), Simon Urbanek (AT&T), Vincent Carey (Brigham & Women’s), Wolfgang Huber (EBI), Rafael Irizzary (Dana Farber), Robert Gentleman (23andMe)

Research reported in this presentation was supported by the National Human Genome Research Institute and the National Cancer Institute of the National Institutes of Health under award numbers U41HG004059 and U24CA180996. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.