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Outline and introduction

I Objectives: prediction or inference?
I Cross-validation
I Bootstrap
I Permutation Test
I Monte Carlo Simulation

ISLR Chapter 5: James, G. et al. An Introduction to Statistical Learning: with Applications in R. (Springer, 2013).
This book can be downloaded for free at http://www-bcf.usc.edu/~gareth/ISL/getbook.html

http://www-bcf.usc.edu/~gareth/ISL/getbook.html


Why do regression?

Inference
I Questions:

I Which predictors are associated with the response?
I How are predictors associated with the response?
I Example: do dietary habits influence the gut microbiome?

I Linear regression and generalized linear models are the
workhorses

I We are more interested in interpretability than accuracy
I Produce interpretable models for inference on coefficients

Bootstrap, permutation tests



Why do regression? (cont’d)

Prediction
I Questions:

I How can we predict values of Y based on values of X
I Examples: Framingham Risk Score, OncotypeDX Risk Score

I Regression methods are still workhorses, but also
less-interpretable machine learning methods

I We are more interested in accuracy than interpretability
I e.g. sensitivity/specificity for binary outcome
I e.g. mean-squared prediction error for continuous outcome

Cross-validation



Cross-validation



Why cross-validation?

Figure 1: Figure 2.9 B

Under-fitting, over-fitting, and optimal fitting



K-fold cross-validation approach
I Create K “folds” from the sample of size n, K ≤ n
1. Randomly sample 1/K observations (without replacement) as

the validation set
2. Use remaining samples as the training set
3. Fit model on the training set, estimate accuracy on the

validation set
4. Repeat K times, not using the same validation samples
5. Average validation accuracy from each of the validation sets

Figure 2: 3-fold CV



Variability in cross-validation

Figure 3: Variability of 2-fold cross-validation (ISLR Figure 5.2)



Bias-variance trade-off in cross-validation

I Key point: we are talking about bias and variance of the
overall accuracy estimate, not between the folds.

I 2-fold CV produces a high-bias, low-variance estimate:
I training on fewer samples causes upward bias in error rate
I low correlation between models means low variance in average

error rate

I Leave-on-out CV produces a low-bias, high-variance estimate:
I training on n − 1 samples is almost as good as on n samples

(almost no bias in prediction error)
I models are almost identical, so average has a high variance

I Computationally, K models must be fitted
I 5 or 10-fold CV are very popular compromises



Cross-validation summary

I In prediction modeling, we think of data as training or test
I Cross-validation estimates test set error from a training set

I Training set error always decreases with more complex (flexible)
models

I Test set error as a function of model flexibility tends to be
U-shaped

I The low point of the U represents the optimal bias-variance
trade-off, or the most appropriate amount of model flexibility



Cross-validation caveats

I Be very careful of information “leakage” into test sets, e.g.:
I feature selection using all samples
I “human-loop” over-fitting
I changing your mind on accuracy measure
I try a different dataset

http://hunch.net/?p=22

http://hunch.net/?p=22


Cross-validation caveats (cont’d)

I Tuning plus accuracy estimation requires nested
cross-validation

I Example: high-dimensional training and test sets simulated
from identical true model

I Penalized regression models tuned by 5-fold CV
I Tuning by cross-validation does not prevent over-fitting

Waldron et al.: Optimized application of penalized regression
methods to diverse genomic data. Bioinformatics 2011, 27:3399–3406.



Cross-validation caveats (cont’d)
I Cross-validation estimates assume that the sample is

representative of the population

Figure 4: Cross-validation vs. cross-study validation in breast cancer
prognosis

Bernau C et al.: Cross-study validation for the assessment of
prediction algorithms. Bioinformatics 2014, 30:i105–12.



Permutation test



Permutation test

I Classical hypothesis testing: H0 of test statistic derived from
assumptions about the underlying data distribution

I e.g. t, χ2 distribution

I Permutation testing: H0 determined empirically using
permutations of the data where H0 is guaranteed to be true
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Steps of permutation test:

1. Calculate test statistic (e.g. T) in observed sample
2. Permutation:

2.1 Sample without replacement the response values (Y ), using the
same X

2.2 re-compute and store the test statistic T
2.3 Repeat R times, store as a vector TR

3. Calculate empirical p value: proportion of permutation TR that
exceed actual T



Calculating a p-value

P = sum (abs(TR) > abs(T )) + 1
length(TR) + 1

I Why add 1?
I Phipson B, Smyth GK: Permutation P-values should never
be zero: calculating exact P-values when permutations
are randomly drawn. Stat. Appl. Genet. Mol. Biol. 2010,
9:Article39.



Permutation test - pros and cons

I Pros:
I does not require distributional assumptions
I can be applied to any test statistic

I Cons:
I less useful for small sample sizes
I p-values usually cannot be estimated with sufficient precision for

heavy multiple testing correction
I in naive implementations, can get p-values of “0”



Example from (sleep) data:

I Sleep data show the effect of two soporific drugs (increase in
hours of sleep compared to control) on 10 patients.

## extra group ID
## Min. :-1.600 1:10 1 :2
## 1st Qu.:-0.025 2:10 2 :2
## Median : 0.950 3 :2
## Mean : 1.540 4 :2
## 3rd Qu.: 3.400 5 :2
## Max. : 5.500 6 :2
## (Other):8



t-test for difference in mean sleep

##
## Welch Two Sample t-test
##
## data: extra by group
## t = -1.8608, df = 17.776, p-value = 0.07939
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.3654832 0.2054832
## sample estimates:
## mean in group 1 mean in group 2
## 0.75 2.33



Permutation test instead of t-test

set.seed(1)
permT = function(){

index = sample(1:nrow(sleep), replace=FALSE)
t.test(extra ~ group[index], data=sleep)$statistic

}
Tr = replicate(999, permT())
(sum(abs(Tr) > abs(Tactual)) + 1) / (length(Tr) + 1)

## [1] 0.079



Bootstrap



The Bootstrap

Figure 5: Schematic of the Bootstrap

ISLR Figure 5.11: Schematic of the bootstrap



Uses of the Bootstrap

I The Bootstrap is a very general approach to estimating
sampling uncertainty, e.g. standard errors

I Can be applied to a very wide range of models and statistics
I Robust to outliers and violations of model assumptions



How to perform the Bootstrap

I The basic approach:
1. Using the available sample (size n), generate a new sample of

size n (with replacement)
2. Calculate the statistic of interest
3. Repeat
4. Use repeated experiments to estimate the variability of your

statistic of interest



Example: bootstrap in the sleep dataset
I We used a permutation test to estimate a p-value
I We will use bootstrap to estimate a confidence interval

t.test(extra ~ group, data=sleep)

##
## Welch Two Sample t-test
##
## data: extra by group
## t = -1.8608, df = 17.776, p-value = 0.07939
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.3654832 0.2054832
## sample estimates:
## mean in group 1 mean in group 2
## 0.75 2.33



Example: bootstrap in the sleep dataset

set.seed(2)
bootDiff = function(){

boot = sleep[sample(1:nrow(sleep), replace = TRUE), ]
mean(boot$extra[boot$group==1]) -

mean(boot$extra[boot$group==2])
}
bootR = replicate(1000, bootDiff())
bootR[match(c(25, 975), rank(bootR))]

## [1] -3.32083333 0.02727273

note: better to use library(boot)



Example: oral carcinoma recurrence risk

I Oral carcinoma patients treated with surgery
I Surgeon takes “margins” of normal-looking tissue around to

tumor to be safe
I number of “margins” varies for each patient

I Can an oncogenic gene signature in histologically normal
margins predict recurrence?

Reis PP, Waldron L, et al.: A gene signature in histologically
normal surgical margins is predictive of oral carcinoma
recurrence. BMC Cancer 2011, 11:437.



Example: oral carcinoma recurrence risk

I Model was trained and validated using the maximum
expression of each of 4 genes from any margin

Figure 6: Oral carcinoma with histologically normal margins



Bootstrap estimation of HR for only one margin

Figure 7: Bootstrap re-sample with randomly selected margin



Example: oral carcinoma recurrence risk

From results:
Simulating the selection of only a single margin from each patient,
the 4-gene signature maintained a predictive effect in both the
training and validation sets (median HR = 2.2 in the training set
and 1.8 in the validation set, with 82% and 99% of bootstrapped
hazard ratios greater than the no-effect value of HR = 1)



Monte Carlo



What is a Monte Carlo simulation?

I “Resampling” is done from known theoretical distribution
I Simulated data are used to estimate the probability of possible

outcomes
I most useful application for me is power estimation
I also used for Bayesian estimation of posterior distributions



How to conduct a Monte Carlo simulation

I Steps of a Monte Carlo simulations:
1. Sample randomly from the simple distributions in each step
2. Estimate the complex function for the sample
3. Repeat this a large number of times



Random distributions form the basis of Monte Carlo
simulation

Figure 8:

Credit: Markus Gesmann http://www.magesblog.com/2011/12/
fitting-distributions-with-r.html

http://www.magesblog.com/2011/12/fitting-distributions-with-r.html
http://www.magesblog.com/2011/12/fitting-distributions-with-r.html


Power Calculation for a follow-up sleep study
I What sample size do we need for a future study to detect the

same effect on sleep, with 90% power and α = 0.05?

power.t.test(power=0.9, delta=(2.33-.75),
sd=1.9, sig.level=.05,
type="two.sample", alternative="two.sided")

##
## Two-sample t test power calculation
##
## n = 31.38141
## delta = 1.58
## sd = 1.9
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: n is number in *each* group



The same calculation by Monte Carlo simulation

I Use rnorm() function to draw samples
I Use t.test() function to get a p-value
I Repeat many times, what % of p-values are less than 0.05?



R script

set.seed(1)
montePval = function(n){

group1 = rnorm(n, mean=.75, sd=1.9)
group2 = rnorm(n, mean=2.33, sd=1.9)
t.test(group1,group2)$p.value

}
sum(replicate(1000, montePval(n=32)) < 0.05) / 1000

## [1] 0.895



Summary: resampling methods

Procedure Application

Cross-
Validation

Data is randomly divided
into subsets. Results
validated across
sub-samples.

Model tuning
Estimation of
prediction accuracy

Permutation
Test

Samples of size N drawn
at random without
replacement.

Hypothesis testing



Summary: resampling methods

Procedure Application

Bootstrap Samples of size N drawn
at random with
replacement.

Confidence intervals,
hypothesis testing

Monte Carlo Data are sampled from a
known distribution

Power estimation,
Bayesian posterior
probabilities
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