
@JennyBryan
@jennybc

what should you
do next?

@STAT545
http://stat545.com

Data, code, figs, results
living in harmony in one
Big Happy Directory?

NOT SUSTAINABLE

How to deal with paths
and working directory in
real world projects with
subdirectories?

How can something that
feels so right be so wrong?

setwd()

Your collaborators,
 future you,
 your readers,
 your VM,
 your Docker container,
 your cluster,
 …….

setwd()

will NOT share the same directory structure!

Make your path handling portable!

Build paths relative to “project root”.

http://poisotlab.io/2016/04/14/project-organization/

http://poisotlab.io/2016/04/14/project-organization/

rmarkdown / RStudio presents a special challenge

during interactive execution, working directory can
be anything you want

“project root” is possibly the best choice and the
path of least resistance

however, at render time, working directory =
directory where the .R or .Rmd file lives

rprojroot
https://cran.r-project.org/package=rprojroot

ezknitr
https://cran.r-project.org/package=ezknitr

https://cran.r-project.org/package=rprojroot
https://cran.r-project.org/package=ezknitr

rprojroot

Robust, reliable and flexible paths to files
below a project root. The 'root' of a project is
defined as a directory that matches a certain
criterion, e.g., it contains a certain regular file.

ezknitr

An extension of 'knitr' that adds flexibility in
several ways. One common source of
frustration with 'knitr' is that it assumes the
directory where the source file lives should be
the working directory, which is often not true.
'ezknitr' addresses this problem by giving you
complete control over where all the inputs and
outputs are, and adds several other
convenient features to make rendering
markdown/HTML documents easier.

source(my_personal_functions.R)

Do you do this at the
top of every script?

read.csv(really_important_data.csv)

Do you do this at the
top of every script?

Yes, you admit it?

It’s time to make an R package!

package = fundamental unit of R-ness

can bundle functions or data or both

http://r-pkgs.had.co.nz

https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/

http://r-pkgs.had.co.nz

https://speakerdeck.com/jennybc/ubc-stat545-2015-writing-your-first-r-package

http://stat545.com/packages00_index.html

http://stat545.com/packages00_index.html

devtools
https://cran.r-project.org/package=devtools

https://cran.r-project.org/package=devtools

http://bioconductor.org/developers/

http://bioconductor.org/developers/

😎

From earlier …

Strong recommend: use the “tidyverse”
 - tibble + dplyr + tidyr

Now adding to that
 - the pipe operator %>%
 - the purrr package
 - use of nested tibbles, list-columns

%>%

from Hadley Wickham

dplyr + tidyr + purrr
for data wrangling and aggregation

filter() and select() for targeting specific rows or
variables

mutate() for creating or mutating variables

group_by() for creating conceptual groups of rows

summarize() for computing on groups

“shock and awe” re: nested nibbles, list-columns

dplyr for data wrangling and aggregation

http://stat545.com/block010_dplyr-end-single-table.html

Gapminder example:

I have found friends and family love to ask
seemingly innocuous questions like, “which
country experienced the sharpest 5-year drop in
life expectancy?”. In fact, that is a totally natural
question to ask. But if you are using a language
that doesn’t know about data, it’s an incredibly
annoying question to answer.

http://stat545.com/block010_dplyr-end-single-table.html

go to coding demo

dplyr + tidyr + purrr
for data wrangling and aggregation

nest() for creating meta-observations from groups of
rows (nested tibbles, with data in list-columns)

complicated things, e.g., models, can go in a list-
column

mutate() + purrr::map() functions can be used to post-
process models

mutate(new_var = map(old_var, fun))

goal is always to get back to a “normal” data frame

http://r4ds.had.co.nz/many-models.html

http://r4ds.had.co.nz/many-models.html

df %>% group_by() %>% nest()

is not the only way to get list-columns

I often make list-columns directly

then use this same pattern

mutate(new_var = map(old_var, fun))

and work my way back to a “normal” data frame

go to coding demo

More examples of purrr usage
https://github.com/jennybc/send-email-with-r#readme

https://github.com/jennybc/analyze-github-stuff-with-r#readme

https://github.com/jennybc/manipulate-xml-with-purrr-dplyr-tidyr#readme

https://github.com/jennybc/send-email-with-r#readme
https://github.com/jennybc/analyze-github-stuff-with-r#readme
https://github.com/jennybc/manipulate-xml-with-purrr-dplyr-tidyr#readme

dplyr + tidyr + purrr

with heavy use of list-columns

is how I do all iterative tasks

i.e. has taken the place of
 - for loops (ok I haven’t used those in very long time)

 - base “apply” family of functions
 - plyr package

Talk from June 2016 useR! @ Stanford
https://channel9.msdn.com/Events/useR-international-R-User-conference/useR2016/Notebooks-with-R-Markdown

Documentation
http://rmarkdown.rstudio.com/r_notebook_format.html

R Markdown Notebooks

https://channel9.msdn.com/Events/useR-international-R-User-conference/useR2016/Notebooks-with-R-Markdown
http://rmarkdown.rstudio.com/r_notebook_format.html

go to coding demo

#rstats
#bioconductor

follow people
watch package repos

https://support.bioconductor.org

https://support.bioconductor.org

