R / Bioconductor for 'Omics Analysis

Martin Morgan

Roswell Park Cancer Institute
Buffalo, NY, USA
martin.morgan@roswellpark.org

1 December 2016
Introduction

Analysis and comprehension of high-throughput genomic data.

- Started 2002
- 1295 packages – developed by ‘us’ and user-contributed.

Well-used and respected.

- 43k unique IP downloads / month.
- 17,000 PubMedCentral citations.

https://bioconductor.org
https://support.bioconductor.org
1 About

2 'Omics workflows

3 Lessons learned

4 Challenges

5 Opportunities
Scope

Based on the R programming language.

- Intrinsically statistical nature of data.
- Flexible analysis options for new or customized types of analysis.
- ‘Old-school’ scripts for reproducibility; modern graphical interfaces for easy use.

Domains of application.

- Sequencing: differential expression, ChIP-seq, variants, gene set enrichment, . . .
- Microarrays: methylation, expression, copy number, . . .
- Flow cytometry, proteomics, . . .
```r
x <- rnorm(100)
y <- x + rnorm(100, sd=.5)
df <- data.frame(X=x, Y=y)
fit <- lm(Y ~ X, df)
anova(fit)

## Analysis of Variance Table
## Response: Y
##                        Df Sum Sq  Mean Sq F value    Pr(>F)
## X                       1 101.45 101.4500 444.981 < 2.2e-16 ***
## Residuals              98 22.34 0.22845
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
R: contributed packages

```r
library(ggplot2)
ggplot(df, aes(x=x, y=y)) +
  geom_point() +
  stat_smooth(method="lm")
```
Learn & use

- biocViews\(^1\)
- Landing pages\(^2\)
 - Description
 - Installation
 - Documentation
- Vignettes\(^3\)
- Workflows\(^4\), F1000 channel

\(^1\) https://bioconductor.org/packages/release

\(^2\) e.g., https://bioconductor.org/packages/edgeR

\(^3\) e.g., https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf

\(^4\) http://bioconductor.org/help/workflows
Learn & use

- **biocViews**
- Landing pages
 - Description
 - Installation
 - Documentation
- Vignettes
- Workflows, F1000 channel

1. https://bioconductor.org/packages/release
2. e.g., https://bioconductor.org/packages/edgeR
Learn & use

- biocViews¹
- Landing pages²
 - Description
 - Installation
 - Documentation
- Vignettes³
- Workflows⁴, F1000 channel

edgeR

Empirical Analysis of Digital Gene Expression Data in R

Bioconductor version: Release (3.4)

Differential expression analysis of RNA-seq expression profiles with biological replication. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. As well as RNA-seq, it be applied to differential signal analysis of other types of genomic data that produce counts, including ChIP-seq, SAGE and CAGE.

Author: Yunshun Chen <yuchen at wehi.edu.au>, Aaron Lun <alun at wehi.edu.au>, Davis McCarthy <dmccarthy at wehi.edu.au>, Xiaobei Zhou <xiaobei.zhou at uzh.ch>, Mark Robinson <mark.robinson at imls.uzh.ch>, Gordon Smyth <smyth at wehi.edu.au>

Maintainer: Yunshun Chen <yuchen at wehi.edu.au>, Aaron Lun <alun at wehi.edu.au>, Mark Robinson <mark.robinson at imls.uzh.ch>, Davis McCarthy <dmccarthy at wehi.edu.au>, Gordon Smyth <smyth at wehi.edu.au>

Citation (from within R, enter citation("edgeR")):

¹https://bioconductor.org/packages/release
²e.g., https://bioconductor.org/packages/edgeR
³e.g., https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
⁴http://bioconductor.org/help/workflows
Learn & use
- biocViews¹
- Landing pages²
 - Description
 - Installation
 - Documentation
- Vignettes³
- Workflows⁴, F1000 channel

¹https://bioconductor.org/packages/release
²e.g., https://bioconductor.org/packages/edgeR
³e.g., https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/
 inst/doc/DESeq2.pdf
⁴http://bioconductor.org/help/workflows

Differential analysis of count data – the DESeq2 package

Michael I. Love¹, Simon Anders², and Wolfgang Huber³

¹Department of Biostatistics, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, US;
²Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland;
³European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

October 17, 2016

Abstract

A basic task in the analysis of count data from RNA-seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of sequence fragments that have been assigned to each gene. Analogous data also arise for other assay types, including comparative ChIP-Seq, HiC, shRNA screening, mass spectrometry. An important analysis question is the quantification and statistical inference of systematic changes between conditions, as compared to within-condition variability. The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models; the estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions⁴. This vignette explains the use of the package and demonstrates typical workflows. An RNA-seq workflow² on the Bioconductor website covers similar material to this vignette but at a slower pace, including the generation of count matrices from FASTQ files.

Package

DESeq2 1.14.0

¹Other Bioconductor packages with similar aims are edgeR, limma, DSS, EBSeq and baySeq.
²http://www.bioconductor.org/help/workflows/rnaseqGene/
Learn & use

- biocViews\(^1\)
- Landing pages\(^2\)
 - Description
 - Installation
 - Documentation
- Vignettes\(^3\)
- Workflows\(^4\), F1000 channel

1. Standard workflow
 - 1.1 Quick start
 - 1.2 How to get help
 - 1.3 Input data
 - 1.3.1 Why un-normalized counts?
 - 1.3.2 SummarizedExperiment input
 - 1.3.3 Count matrix input
 - 1.3.4 tximport: transcript abundance summarized to gene-level
 - 1.3.5 HTSeq input
 - 1.3.6 Pre-filtering
 - 1.3.7 Note on factor levels
 - 1.3.8 Collapsing technical replicates
 - 1.3.9 About the pasilla dataset
 - 1.4 Differential expression analysis

\(^1\)https://bioconductor.org/packages/release
\(^2\)e.g., https://bioconductor.org/packages/edgeR
\(^3\)e.g., https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
\(^4\)http://bioconductor.org/help/workflows
Learn & use

- biocViews¹
- Landing pages²
 - Description
 - Installation
 - Documentation
- Vignettes³
- Workflows⁴, F1000 channel

¹https://bioconductor.org/packages/release
²e.g., https://bioconductor.org/packages/edgeR
³e.g., https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
⁴http://bioconductor.org/help/workflows
Bioconductor provides software to help analyze diverse high-throughput genomic data. Common workflows include:

Basic Workflows

- **Sequence Analysis** Import fasta, fastq, BAM, gff, bed, wig, and other sequence formats. Trim, transform, align, and manipulate sequences. Perform quality assessment, ChIP-seq, differential expression, RNA-seq, and other workflows. Access the Sequence Read Archive.
- **Oligonucleotide Arrays** Import Affymetrix, Illumina, Nimblegen, Agilent, and other platforms. Perform quality assessment, normalization, differential expression, clustering, classification, gene set enrichment, genetical genomics and other workflows for expression, exon, copy number, SNP, methylation and other assays. Access GEO, ArrayExpress, Biomart, UCSC, and other community resources.
- **Annotation Resources** Introduction to using gene, pathway, gene ontology, homology annotations and the AnnotationHub. Access GO, KEGG, NCBI, Biomart, UCSC, vendor, and other sources.
- **Annotating Genomic Ranges** Represent common sequence data types (e.g., from BAM, gff, bed, and wig files) as genomic ranges for simple and advanced range-based queries.
- **Annotating Genomic Variants** Read and write VCF files. Identify structural location of variants and compute amino acid coding changes for non-synonymous variants. Use SIFT and PolyPhen database packages to predict consequence of amino acid coding changes.
- **Chaining genomic coordinate systems with rtracklayer::liftOver** The liftOver facilities developed in conjunction with the UCSC browser track infrastructure are available for transforming data in GRanges formats. This is illustrated here with an image of the NHGRI GWAS catalog that is, as of Oct. 31 2014, distributed with coordinates defined by NCBI build hg38.

Advanced Workflows

1. https://bioconductor.org/packages/release
2. e.g., https://bioconductor.org/packages/edgeR
Bioconductor

Input: description of experimental design and summary of read counts overlapping regions of interest.

```r
assay <- read.table("assay.tab")  # Plain text files
pdata <- read.table("pdata.tab")

library(DESeq2)
dds <- DESeqDataSetFromMatrix(assay, pdata, ~ cell + dex)
result(DESeq(dds))
```

Output: top table of differentially expressed genes, log fold change, adjusted P-value, etc.
1 About

2 'Omics workflows

3 Lessons learned

4 Challenges

5 Opportunities
A typical work flow: RNA-seq

1. Experimental design
2. Wet-lab
3. Sequencing; QC – FASTQ
4. Alignment – BAM
5. Data reduction – count tables
6. Statistical analysis
7. Comprehension

http://bio.lundberg.gu.se/courses/vt13/rnaseq.html
A typical work flow: RNA-seq

1. Experimental design
2. Wet-lab
3. Sequencing; QC – FASTQ
4. Alignment – BAM
5. Data reduction – count tables
6. Statistical analysis
7. Comprehension

http://bio.lundberg.gu.se/courses/vt13/rnaseq.html
A typical work flow: RNA-seq

1. Experimental design
2. Wet-lab
3. Sequencing; QC – FASTQ
4. **Psuedo-alignment** – count tables
5. Statistical analysis
6. Comprehension

kallisto\(^5\), salmon\(^6\), . . .

- Very fast
- Very memory efficient
- Good enough for many applications

Bioconductor

- `tximport`
- `limma` `voom()`

\(^5\)https://pachterlab.github.io/kallisto/
\(^6\)http://salmon.readthedocs.io/
A typical work flow: RNA-seq

1. Experimental design
2. Wet-lab
3. Sequencing; QC – FASTQ
4. Psuedo-alignment – count tables
5. Statistical analysis
6. Comprehension

- **DESeq2, edgeR**
- Gene set / pathway analysis
- Annotation & visualization
1 About

2 'Omics workflows

3 Lessons learned

4 Challenges

5 Opportunities
Differential expression

limma, edgeR, DESeq2

```r
library(DESeq2)
dds <- DESeqDataSetFromMatrix(assay, pdata, ~ cell + dex)
result(DESeq(dds))
```

- Batch effects (e.g., surrogate variable analysis)
- Library size differences (robust normalization)
- Appropriate statistical model (negative binomial)
- Moderated, data-driven parameter estimates (shared design; small sample size)
- Multiple testing (independent hypothesis weighting)
GenomicRanges

- Genomic coordinates to represent data (e.g., aligned reads) and annotations (e.g., genes, binding sites).
- `findOverlaps()` and friends.

SummarizedExperiment

- Coordinate ‘assay’ data with row (feature) and column (sample) information.

```r
> gr = exons(TxDb.Hsapiens.UCSC.hg19.knownGene); gr
GRanges with 289969 ranges and 1 metadata column:
  seqnames ranges strand exon_id
[1] chr1 [11874, 12227] + 1
[2] chr1 [12595, 12721] + 2
... ...
[289967] chrY [59358329, 59359508] - 277748
[289968] chrY [59360007, 59360115] - 277749
[289969] chrY [59360501, 59360854] - 277750
```

.seqinfo: 93 sequences (1 circular) from hg19 genome
Interoperability & reproducibility: classes

GenomicRanges
- Genomic coordinates to represent data (e.g., aligned reads) and annotations (e.g., genes, binding sites).
- `findOverlaps()` and friends.

SummarizedExperiment
- Coordinate ‘assay’ data with row (feature) and column (sample) information.
Classic, tidy, rich: RNA-seq count data

Classic
- Sample x (phenotype + expression) Feature data.frame

Tidy
- 'Melt' expression values to two long columns, replicated phenotype columns. End result: long data frame.

Rich, e.g., SummarizedExperiment
- Phenotype and expression data manipulated in a coordinated fashion but stored separately.
df0 <- as.data.frame(list(mean=colMeans(classic[, -(1:22)])))
df1 <- tidy %>% group_by(probeset) %>%
 summarize(mean=mean(exprs))
df2 <- as.data.frame(list(mean=rowMeans(assay(rich))))
ggplot(df1, aes(mean)) + geom_density()
Classic, tidy, rich: RNA-seq count data

Vocabulary
- Classic: extensive
- Tidy: restricted endomorphisms
- Rich: extensive, meaningful

Constraints (e.g., probes & samples)
- Tidy: implicit
- Classic, Rich: explicit

Flexibility
- Classic, tidy: general-purpose
- Rich: specialized

Programming contract
- Classic, tidy: limited
- Rich: strict

Lessons learned / best practices
- Considerable value in semantically rich structures
- Endomorphism, simple vocabulary, consistent paradigm aid use

R / Bioconductor for 'Omics Analysis
1. About
2. ’Omics workflows
3. Lessons learned
4. Challenges
5. Opportunities
Single-cell analysis

- Large & sparse
 - Outlier detection
 - Zero-inflated models
 - E.g., MAST
- Challenging
 - E.g., developmental trajectories

Trapnel et al.5

5http://bioconductor.org/packages/monocle
Comprehension

Gene set & pathway analysis
-\textit{limma} \texttt{fr}y(); \textit{pathview}; \textit{ReactomePA}

Visualization
- \textit{Gviz}, \textit{ComplexHeatmap}, \ldots

Communication
- Reports; interactive apps
- Statistical nuance, especially uncertainty, multiple testing
Comprehension

Gene set & pathway analysis
- `limma` `fry()`, `pathview`, `ReactomePA`

Visualization
- `Gviz`, `ComplexHeatmap`, ...

Communication
- Reports; interactive apps
- Statistical nuance, especially uncertainty, multiple testing
Comprehension

Gene set & pathway analysis
- \texttt{limma \ fry()}; \texttt{pathview}; \texttt{ReactomePA}

Visualization
- \texttt{Gviz}, \texttt{ComplexHeatmap}, . . .

Communication
- Reports; interactive apps
- Statistical nuance, especially uncertainty, multiple testing
Comprehension

Gene set & pathway analysis
- \textit{limma}_	exttt{fry()}; \texttt{pathview}; \texttt{ReactomePA}

Visualization
- \texttt{Gviz}, \texttt{ComplexHeatmap}, . . .

Communication
- Reports; interactive apps
- \textbf{Statistical nuance}, especially uncertainty, multiple testing
Multi-’omic integration

Gene differential expression
- RNA-seq – *DESeq2*, *edgeR*, *limma* `voom()`
- Microarray – *limma*
- Single-cell – *scde*

Gene regulation
- ChIP-seq – *csaw*, *DiffBind*
- Methylation arrays – *missMethyl*, *minfi*
- Gene sets and pathways – *topGO*, *limma*, *ReactomePA*

Variants
- SNPs – *VariantAnnotation*, *VariantFiltering*
- Copy number
- Structural – *InteractionSet*

Flow cytometry
- *flowCore* & 41 other packages

Proteomics
- *mzR*, *xcms*, and 90 other packages
Multi-’omic integration

![Histogram](image)

MultiAssayExperiment
- Easily manage multiple assays on overlapping samples

ExperimentHub
- Curated, summarized, large-scale experiment data (e.g., GEO RNA-Seq; HMP, TCGA) for incorporation in local analysis

R / Bioconductor for ’Omic Analysis Challenges
Big data

Key strategies
- Efficient R code
- Restriction to data of interest
- Chunk-wise iteration through large data

GenomicFiles
- Management of file collections, e.g., VCF, BAM, BED.

BiocParallel
- Parallel evaluation on cores, clusters, clouds.

HDF5Array
- On-disk storage.
- Delayed evaluation.
- Incorporates into SummarizedExperiment.
1 About

2 ’Omics workflows

3 Lessons learned

4 Challenges

5 Opportunities
Install, learn, use, develop

Install
- Get started with Bioconductor
 - Install Bioconductor
 - Explore packages
 - Get support
 - Latest newsletter
 - Follow us on twitter
 - Install R

Learn
- Master Bioconductor tools
 - Courses
 - Support site
 - Package vignettes
 - Literature citations
 - Common work flows
 - FAQ
 - Community resources
 - Videos

Use
- Create bioinformatic solutions with Bioconductor
 - Software, Annotation, and Experiment packages
 - Amazon Machine Image
 - Latest release announcement
 - Support site

Develop
- Contribute to Bioconductor
 - Developer resources
 - Use BioC `devtools`
 - `Devel` Software, Annotation and Experiment packages
 - Package guidelines
 - New package submission
 - Build reports

Install
- R, RStudio, Bioconductor

Learn
- Courses, vignettes, workflows

Use
- Vignettes, manuals, support site

Develop

6) https://bioconductor.org
7) https://support.bioconductor.org
From student to developer

A common transition

- Naive users become proficient while developing domain expertise that they share with others in their lab or more broadly
- Share via packages
- Really easy!

Best practices

- `devtools` `create()`, `build()`, `check()`, `install()`
- Version control – github
- Unit tests, e.g., using `testthat`
- ‘Continuous integration’
Acknowledgments

Core team (current & recent): Yubo Cheng, Valerie Obenchain, Hervé Pagès, Marcel Ramos, Lori Shepherd, Dan Tenenbaum, Greg Wargula.

Technical advisory board: Vincent Carey, Kasper Hansen, Wolfgang Huber, Robert Gentleman, Rafael Irizzary, Levi Waldron, Michael Lawrence, Sean Davis, Aedin Culhane

Scientific advisory board: Simon Tavare (CRUK), Paul Flicek (EMBL/EBI), Simon Urbanek (AT&T), Vincent Carey (Brigham & Women’s), Wolfgang Huber (EBI), Rafael Irizzary (Dana Farber), Robert Gentleman (23andMe)

Research reported in this presentation was supported by the National Human Genome Research Institute and the National Cancer Institute of the National Institutes of Health under award numbers U41HG004059 and U24CA180996. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.