
Conducting Genomic Symphonies with
Bioconductor

Michael Lawrence

December 4, 2017

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

Fast facts about Genentech and Roche

• Genentech
• Founded in 1976
• Headquartered in South San

Francisco
• ~14,000 employees
• Became a member of the Roche

Group in March 2009
• Headquarters for all Roche

pharmaceutical operations in the U.S.

• Roche Group
• Founded in 1896
• Headquartered in Basel, Switzerland
• ~88,500 employees worldwide, active

in 150 countries
• World’s largest biotech company
• Top five globally in pharmaceuticals
• Number one globally in in vitro

diagnostics

 Slide 2

Statistics from 2016

2,100 gRED employees

1,200 researchers and scientists

785,000
square feet dedicated to
research; the largest in the
world

3,303 peer-reviewed publications
in the last ten years

22 Nature, Science and Cell
publications in 2014

#1
employer according to Science
for 8 of 13 past years; always
in the top 3

gRED’s emphasis on scientific research Slide 4

Statistics from 2015

A growing scientific advantage: the ability to
combine rich forward and reverse translation

• The best information about human disease, including response to drug, is in
the context of actual human patients.

• Beyond randomization, clinical data are always associative. Nailing down
cause and effect—in order to fully justify new therapeutic strategies—requires
controlled experiments.

Laboratory
discovery

Clinical
discovery

Research,
target &

biomarker
discovery

Forward translation

Reverse translation

 Slide 8

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

Genomic workflows are symphonies of different tools

FASTQ
BAM

Raw Data Preprocessing/
Reduction

Y

X

Exploratory analysis,
visualization, modeling

Reporting

Genomic workflows are symphonies of different tools

FASTQ
BAM

Y

X

sa
mt
oo
ls

jup
yte
r

Rm
d

ma
tpl
otl
ib

gg
plo
t2

lim
ma

GA
TK

MA
CS

BW
A

ka
llis
to

be
dto
ols

Tweet-size example from bedtools tutorial

Tweet-size example from bedtools tutorial

Tweet-size example from bedtools tutorial

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Tweet-size example from bedtools tutorial

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Typical real-world example from bedtools tutorial

Compute the pairwise similarity between samples of DNAse
hypersensitivity regions, according to the bedtools Jaccard
statistic.

File 1

Compute pairwise Jaccard statistic

File 2

File 3

File 20

File 1

File 2

File 3

File 20

20 x 20
distance
matrix

Munge Plot

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python
I R

Side-effects

I 400 .jaccard

I pairwise.txt

I pairwise.mat

bedtools solution

Languages used

I shell
I GNU parallel
I awk

I sed
I perl
I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Compute pairwise distances in parallel

parallel "bedtools jaccard -a {1} -b {2} \
| awk ’NR>1’ \
| cut -f 3 \
> {1}.{2}.jaccard" \
::: `ls *.merge.bed`
::: `ls *.merge.bed`

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl

I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Combine jaccard files

find . \
| grep jaccard \
| xargs grep "" \
| sed -e s"/\.\///" \
| perl -pi -e "s/.bed./.bed\t/" \
| perl -pi -e "s/.jaccard:/\t/" \
> pairwise.txt

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python

I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Reshape into matrix

awk ’NF==3’ pairwise.txt \
| awk ’$1 ~ /^f/ && $2 ~ /^f/’ \
| python make-matrix.py \
> pairwise.mat

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Plot the matrix

R

library(gplots)
library(RColorBrewer)
jaccard_df <-

read.table(’pairwise.dnase.mat’)
jaccard_matrix <-

as.matrix(jaccard_df[,-1])
heatmap.2(jaccard_matrix,

col = brewer.pal(9, "Blues"),
margins = c(14, 14),
density.info = "none",
lhei = c(2, 8),
trace = "none")

Typical obstacles in implementing genomic data analyses

I Tools are difficult to build, install and run
I Limitations require mixing languages and semi-compatible,

inconsistently documented toolsets
I Interoperability depends on inefficient, complex file formats
I Analyst has to directly manipulate and manage files, instead of

focusing on the analysis
I Reproducibility is hard

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

R is a platform and language for statistical computing

I Core principes according to John Chambers in
"Extending R":

I Everything is an object
I Everything that happens is a function call
I Interfaces to other software are core to R

I Addendum: every published extension is a
package

I Primary mechanism for distributing statistical
computing research

R packages are easy to install

I CRAN, Bioconductor distribute vetted packages
I Tested as a cohort
I Standardized through R CMD check

I Package installation usually just works
I install.packages("gplots")

R has consistent, function-level documentation
Standalone programs provide documentation in different ways:

I man bedtools?
I bedtools intersect --help?
I Google?

Every R package provides a man page of each function:
?brewer.pal

ColorBrewer palettes

Description:

Creates nice looking color palettes especially for thematic maps

Usage:

brewer.pal(n, name)

Arguments:

n: Number of different colors in the palette, minimum 3, maximum
depending on palette

name: A palette name from the lists below

R enables reproducibility

I Dependencies trackable through versioned packages
I Packages like switchr and packrat make it easy to record and

restore sets of package versions
I sessionInfo()

R Under development (unstable) (2017-08-02 r73018)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] gplots_3.0.1 RColorBrewer_1.1-2

loaded via a namespace (and not attached):
[1] compiler_3.5.0 tools_3.5.0 KernSmooth_2.23-15 gdata_2.18.0
[5] caTools_1.17.1 bitops_1.0-6 gtools_3.5.0

R unifies workflows through object-oriented interfaces

An object affords interoperability and abstraction:
library(gplots)
library(RColorBrewer)
jaccard_df <- utils::read.table(’pairwise.mat’)
jaccard_matrix <- as.matrix(jaccard_df[,-1])
heatmap.2(jaccard_matrix, col = brewer.pal(9, "Blues"))

R is improving
Pushing object orientation down to the C level

R 3.5 will add:
I Object-oriented mechanism for custom

implementations of R vectors
Compact representations Run-length

encodings, 1:10 sequences
External storage Spark, databases, HDF5,

Arrow, etc
I Notions of sortedness and any missingness

to the vector API
I Heuristics that construct compact vectors

when it makes sense
Luke Tierney, Gabe Becker, Tomas Kalibera

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

Bioconductor

A unified platform for the analysis and
comprehension of high-throughput genomic
data.

I Started 2002
I Led by Martin Morgan
I Core infrastructure maintained by about 8

people, based in Roswell Park CRC in
Buffalo, NY

I 1476 software packages that form a
unified platform

I Well-used and respected.
I 53k unique IP downloads / month.
I 21,700 PubMedCentral citations.

I Embraces the R principles of object,
function, interface and package

Bioconductor is growing

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

source("https://bioconductor.org/biocLite.R")
biocLite()
biocLite("Gviz")

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

se <- TENxBrainData()
se

class: SingleCellExperiment
dim: 27998 1306127
metadata(0):
assays(1): counts
rownames: NULL
rowData names(2): Ensembl Symbol
colnames(1306127): AAACCTGAGATAGGAG-1 AAACCTGAGCGGCTTC-1 ...
TTTGTCAGTTAAAGTG-133 TTTGTCATCTGAAAGA-133
colData names(4): Barcode Sequence Library Mouse
reducedDimNames(0):
spikeNames(0):

libSize <- colSums(assay(se)[, 1:1000])
range(libSize)

[1] 1453 34233

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

I 1064 unique package maintainers
I Web users by country:

Bioconductor is built on shared infrastructure

S4Vectors

Summarized
Experimentrtracklayer

0
1 00 01

11 1110010

Variant
Annotation

Central data structures of Bioconductor

Data on genomic ranges Summarized data

GRanges: data on genomic ranges

249250621chr1
hg19

seqnames start end strand . . .
chr1 1 10 +
chr1 15 24 -

I Plus, sequence information (lengths, genome, etc)

SummarizedExperiment: the central data model

Bioconducting the tweeted workflow

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Bioconducting the tweeted workflow

bedtools genomecov -i a.bam
-bga

Compute coverage

awk ‘$4 == 0’

Select zero runs
bedtools intersect -a b.bed -a
-

Find intersection with regions

coverage(“a.bam”) %>% GRanges() subset(score > 0) intersect(import(“b.bed”))

Bioconducting the pairwise Jaccard workflow

Define a function for the Jaccard statistic

jaccard <- function(x, y) {
gr_x <- import(x)
gr_y <- import(y)
intersects <- intersect(gr_x, gr_y, ignore.strand=TRUE)
unions <- union(gr_x, gr_y, ignore.strand=TRUE)
sum(width(intersects)) / sum(width(unions))

}

Bioconducting the pairwise Jaccard workflow

Compute the statistics in parallel

files <- Sys.glob("*.merge.bed")
jaccard_matrix <- outer(files, files,

function(a, b) mcmapply(jaccard, a, b))

Bioconducting the pairwise Jaccard workflow

Make the plot

library(gplots)
library(RColorBrewer)
heatmap.2(jaccard_matrix, col = brewer.pal(9, "Blues"))

GenomicWidgets: interactive genomic plots for Shiny/RMD
by Alicia Schep, Sarah Kummerfeld at Genentech

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

The Ranges infrastructure is an incubator

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

I Should be accessible to the average Bioconductor user

Is the transition happening?

I From a typical package submission:
Imports: checkmate, dplyr, ggplot2, tidyr

I A typical initial response:

Aspects of software quality: the ilities

Aspects of software quality: the ilities

Cognitive Dimensions of Notations

I Thomas Green and Marian Petre (1996) proposed 14
dimensions of usability in the context of visual programming

I Many are interrelated and in balance with each other
I Guide for evaluating usability and as a framework for

discussing interface design trade-offs

Green’s cognitive dimensions

I Abstraction gradient
I Closeness of mapping
I Consistency
I Diffuseness
I Error-proneness
I Hard mental operations
I Hidden dependencies

I Provisionality
I Premature commitment
I Progressive evaluation
I Role-expressiveness
I Secondary notation
I Viscosity (robustness)
I Visibility

Abstraction

Procedural abstraction
A compound operation that enables the user tell the computer
what to do without telling it how to do it.

Data abstraction
"A methodology that enables us to isolate how a
compound data object is used from the details of how it is
constructed from more primitive data objects"

Structure and Interpretation of Computer Programs (1979)

In the absence of abstraction

I We often start with a BED file:
bash-3.2$ ls *.bed

my.bed

I And we turn to R to analyze the data
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chrom", "start", "end")

chrom start end
1 chr7 127471196 127472363
2 chr7 127472363 127473530
3 chr7 127473530 127474697
4 chr9 127474697 127475864
5 chr9 127475864 127477031

But file formats differ in important ways

Now for a GFF file:
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chr", "start", "end")

GFF

chr start end
1 chr7 127471197 127472363
2 chr7 127472364 127473530
3 chr7 127473531 127474697
4 chr9 127474698 127475864
5 chr9 127475865 127477031

BED

chrom start end
1 chr7 127471196 127472363
2 chr7 127472363 127473530
3 chr7 127473530 127474697
4 chr9 127474697 127475864
5 chr9 127475864 127477031

Abstraction lets us focus on the important

BED File
Of Genes

Text

read.table()

Table

rtracklayer

0
1 00 01

11 1110010

Genomic
Ranges

Gene
Coordinates

I Abstraction is semantic enrichment
I Enables the user to think of data in terms of the problem

domain
I Hides implementation details
I Unifies frameworks

Semantic slack with adjectives

rtracklayer

0
1 00 01

11 1110010

Genomic
Ranges

Gene
Coordinates

> mcols(gr)
[1] “gene_name”
[2] “gene_symbol”

I Science defies rigidity: we define flexible objects that combine
strongly typed fields with arbitrary user-level metadata

Diffuseness (vs expressiveness)

I Relates to the information density of the code and how well it
communicates the intent of the programmer

I Enable the user to convey more meaning with less code
I Terseness for its own sake makes code obscure, difficult to

unpack
I For genomic data, we want the user to express computations

in terms of the biology

Our workflow could be more expressive

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

Our workflow could be more expressive

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

What is
this for?

Import
as

what?

Hard mental operations

How hard the user has to think about things other than the
motivating task

Bioconductor is intrinsically complex

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

Bioconductor is intrinsically complex

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

What is an
RleList? And a

GRanges?

Why does this work?
Inheritance? I have to
understand the entire

class hierarchy?

Imported as
what?

Language complexity

I Bioconductor has large, complex APIs
library(VariantAnnotation)
length(methods(class="GRanges"))

[1] 278

I Bioconductor has large, complex class hierarchies
pkgs <- package_dependencies("rtracklayer",

installed.packages())[[1L]]
pkgs <- setdiff(pkgs, c("methods", "XML", "RCurl"))
cl <- unlist(lapply(pkgs,

function(p) getClasses(getNamespace(p))))
length(cl)

[1] 243

I In total, 2239 methods on 422 generics

What needs to improve?

I Education?
I Documentation?
I The software?
I All of the above?

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

HelloRanges: an onramp to Bioconductor

I bedtools has a low barrier to entry but lacks the supporting
ecosystem to cleanly handle realistic workflows

I We want to teach new users how to perform bedtools-style
operations within R/Bioconductor

I HelloRanges compiles R code from bedtools invocations, so
the student can learn by:

I studying the output,
I integrating it into the workflow,
I and potentially customizing it

I Output prompts the user to fill in details like the genome build
I Supports all bedtools operations and arguments
I Research goal: comparative analysis of bedtools and

Bioconductor

HelloRanges exposes the complexity of Bioconductor

bedtools_genomecov(“-i a.bam -bga”)

Compute coverage

subset(score > 0)

Select zero runs

R_bedtools_intersect(cov_gr, “b.bed”)

Find intersection with regions

Data structures required:
I Seqinfo
I GAlignments
I GRanges
I RleList
I Pairs

HelloRanges exposes the complexity of Bioconductor

bedtools_genomecov(“-i a.bam -bga”)

Compute coverage

subset(score > 0)

Select zero runs

R_bedtools_intersect(cov_gr, “b.bed”)

Find intersection with regions

genome <- Seqinfo(genome = NA_character_)
ga_a <- import("a.bam", genome = genome)
cov <- coverage(granges(ga_a))
cov_gr <- GRanges(cov)

genome <- Seqinfo(genome = NA_character_)
gr_a <- cov_gr
gr_b <- import("b.bed", genome = genome)
pairs <- findOverlapPairs(gr_a, gr_b,
 ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)

Data structures required:
I Seqinfo
I GAlignments
I GRanges
I RleList
I Pairs

HelloRanges exposes the complexity of Bioconductor

bedtools_genomecov(“-i a.bam -bga”)

Compute coverage

subset(score > 0)

Select zero runs

R_bedtools_intersect(cov_gr, “b.bed”)

Find intersection with regions

genome <- Seqinfo(genome = NA_character_)
ga_a <- import("a.bam", genome = genome)
cov <- coverage(granges(ga_a))
cov_gr <- GRanges(cov)

genome <- Seqinfo(genome = NA_character_)
gr_a <- cov_gr
gr_b <- import("b.bed", genome = genome)
pairs <- findOverlapPairs(gr_a, gr_b,
 ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)

Data structures required:
I Seqinfo
I GAlignments
I GRanges
I RleList
I Pairs

Lesson learned

I Better onramps only help to a point
I Simplifying the software would make everything easier
I The bedtools approach of "everything is a BED file"

motivates the axiom:

Everything is a GRanges (or SummarizedExperiment)
Consolidating to a small number of data structures enables:

I comprehension,
I endomorphism, and thus
I fluency and chainability

Outline

Genentech

Genomic workflows

R

Bioconductor

Usability

HelloRanges

plyranges

Simplify, but keep the semantics

It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as simple
and as few as possible without having to surrender the
adequate representation of a single datum of experience.
– Albert Einstein

Everything Should Be Made as Simple as Possible, But
Not Simpler
– Apocryphal Einstein quote, paraphasing above

Taking cues from the dplyr package

I dplyr is a API for tabular data manipulation
I Inspired by relational algebra, SQL
I Unified about a single, data model: the tibble
I Operations are:

I Cohesive (do a single thing)
I Endomorphic (return the same type as their input)
I Verb-oriented in syntax

I Fluency emerges from chaining of verbs

genes %>%
group_by(seqnames) %>%
summarize(count_per_chr=n())

Goal

Extend dplyr to genomics, a more complex problem domain, to
achieve the accessibility of bedtools

plyranges
https://github.com/sa-lee/plyranges

I A dplyr-based API for computing on genomic ranges
I Extending the relational algebra with genomic notions
I Large set of visible verbs acting only on the core data

structures:
GRanges represents annotated genomic ranges

SummarizedExperiment coordinates experimental assay data
with sample and feature annotations

I Collaboration with Stuart Lee and Di Cook @ Monash

plyranges is simple and expressive

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

plyranges is simple and expressive

coverage(“a.bam”) %>% GRanges()

Compute coverage

subset(score > 0)

Select zero runs

intersect(import(“b.bed”))

Find intersection with regions

compute_coverage(“a.bam”) filter(score > 0) intersect(read_bed(“b.bed”))

plyranges is simple and expressive

bedtools_genomecov(“-i a.bam -bga”)

Compute coverage

subset(score > 0)

Select zero runs

R_bedtools_intersect(cov_gr, “b.bed”)

Find intersection with regions

ga_a <- import("a.bam")
cov_gr <- GRanges(coverage(granges(ga_a)))

gr_b <- import("b.bed")
pairs <- findOverlapPairs(cov_gr, gr_b,
 ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)

plyranges is simple and expressive

bedtools_genomecov(“-i a.bam -bga”)

Compute coverage

subset(score > 0)

Select zero runs

R_bedtools_intersect(cov_gr, “b.bed”)

Find intersection with regions

ga_a <- import("a.bam")
cov_gr <- GRanges(coverage(granges(ga_a)))

gr_b <- import("b.bed")
pairs <- findOverlapPairs(cov_gr, gr_b,
 ignore.strand = TRUE)
pintersect(pairs, ignore.strand = TRUE)

read_bam(“a.bam”) %>% compute_coverage()

join_overlap_intersect(read_bed(“b.bed”))

The ever evolving Bioconductor

FASTQ
BAM

Raw Data Preprocessing/
Reduction

Y

X

Exploratory analysis,
visualization, modeling

Reporting

The ever evolving Bioconductor

FASTQ
BAM

Y

X

GenomicFiles
SingleCellExperiment

DelayedArray
HDF5

fst

plyranges

GenomicWidgets

	Genentech
	Genomic workflows
	R
	Bioconductor
	Usability
	HelloRanges
	plyranges

