Hypothesis Testing

Wolfgang Huber, EMBL
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Aims for this Lecture

Understand the basic principles of hypothesis testing, its
pitfalls, strengths, use cases and limitations

What changes when we go from single to multiple testing?

False discovery rates, p-value ‘adjustments’, filtering and
welghting



Testing vs Classification
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Accuracy vs Precision - Bias vs Variance

accuracy—

dispersion—

+— precision



Logical asymmetry between verification
and falsifiability.

No number of positive outcomes at the level
of experimental testing can confirm a scientific theory but a
single counterexample Is logically decisive: it shows the theory

IS false.



Example

Toss a coin a number of times =

It the coin is fair, then heads should
appear half of the time (roughly).

But what is “roughly” ? We use combinatorics /
probability theory to quantify this.

Suppose we flipped the coin 100 times and got b9
heads. Is this ‘significant’/



Binomial Distribution
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,

P(K=k|n,p) = ( ; )P" (1—p)*



Rejection Region
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is & = 0.05.



Questions

Does the fact that we don't reject the null hypothesis mean
that the coin is fair?

Would we have a better chance of detecting that the coin is
not fair if we did more coin tosses? How many?

I we repeated the whole procedure and again tossed the
coin 100 times, might we then reject the null hypothesis?

Our rejection region is asymmetric - its left part ends with
40, while its right part starts with 61. Why is that? \Which
other ways of defining the rejection region might be useful?



The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function for
the effect that you are interested in: the test statistic

Set up a null hypothesis: a simple, computationally tractable
model of reality that lets you compute the null distribution of the
test statistic, i.e. the possible outcomes and each of their
probabllities.

Decide on the rejection region, i.e., a subset of possible
outcomes whose total probability is small
(<= significance level).

Do the experiment, collect data,
compute the test statistic.

Make a decision: reject null hypothesis
If the test statistic is in the rejection region.




The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function for
the effect that you are interested in: the test statistic

Set up a null

model of rea o _ _ _
test statistic, This is the idealised scenario,

“orthodoxy”
Reality, esp. In retrospective ‘data-

Decide on th mining’ is typically different.
outcomes w

(<= significa

probabllities.

Do the experiment, collect data,
compute the test statistic.

Make a decision: reject null hypothesis
If the test statistic is in the rejection region.




Examples of Null Hypotheses:

e The coin is fair

e [he new drug Is no better or worse than a
placebo

e The effect of that RNAI-treatment on my cells
IS no different than that of a negative control
treatment

These are not Null Hypotheses:

e The number of heads and tails were the same
e The coin is not fair

e The drug Is worth 1ts money



Types of Error in Testing

Test vs reality Null hypothesis is true ...1s false

Reject null hypothesis Type I error (false positive) True positive

Do not reject True negative Type II error (false negative)
0.3-
0.2-
>
0.1-
0.0- #
0 3 6 9

test statistic



Parametric Theory vs Simulation
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,

according to Equation (6.1).
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Figure 6.4: An approximation of the

binomial distribution from 10* simulations
(same parameters as Figure 6.3).



Parametric Theory vs Simulation
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p-Values as Random Variables

test statistic

100 p-value
- 513§ 9487
500 distribution >
] function E
600{ 242 271 g 200
300 A 100
-4 -2 26 2 0.00 0.25

0.50 0.75

1.00
p-value



The Test Statistic

Suppose we observed b0 tails in a row, and then 50
heads in a row. Is this a perfectly fair coin?

\We could use a different test statistic: number of times
we see two tails in a row

|s this statistic generally and always preferable?
Power

There can be several test statistics, with different
power, for different types of alternative



Continuous Data: Ic
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t- (and |t|-) Distribution

If the data are
identically normal
distributed and
Independent, then
under Ho, t follows a
‘t-distribution” with
parameter ni+n.
(a.k.a. degrees of
freedom)




t- (and |t|-) Distribution

If the data are |
iIdentically norm
distributed and 4\, does the distribution
independent, th  of t| look?

under Ho, t follo
‘t-distribution” with
parameter ni1+n;
(a.k.a. degrees of
freedom)




t- (and |t|-) Distribution
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Figure 6.8: The null distribution of the

(absolute) t-statistic determined by simula-
tions — namely, by random permutations of
the group labels.
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Comments and Pitfalls

Derivation of the t-distribution assumes that
observations are independent and follow a normal
distribution: a sufficient, but not necessary, condition

Deviation from normality - heavier talls: test still
maintains type-| error control, but may no longer have
optimal power.

Options: use permutations; transform (e.g. ranks -
Wilcoxon test)

It the data are dependent, then p-values will likely be
totally wrong (e.qg., for positive correlation, too
optimistic).
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Frequency

Frequency
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t-Test Looses Error Control
It Independence Assumption Does not Hold

uncorrelated

- - I _ - ma - [library("mvtnorm“)

i L0 A am e AR B A (AL e AL nl{ library("genefilter")

30 ## number of samples
20000 +## number of genes

P
\n

mu = rep(@, p)
dp = diag(p)

sigma = list(

0.0

‘uncorrelated' = dp, ## unity matrix
0.2 04 0.6 0.8 1.0 | 'correlated (band-diagonal)' = ## band diagonal

. (row(dp)==col(dp)) + 0.5 * (abs(row(dp)-col(dp))==1))

p value lapply(sigma, print)

(## generate data
. x = lapply(sigma, function(s) rmvnorm(n = n, mean = mu, sigma = s))
correlated (band-diagonal)
## tests
tt = lapply(x, rowttests)

par(mfrow=c(length(tt), 1))

|for(i in seq(along=tt))

| hist(tt[[i]]$p.value, breaks=100, col=c("skyblue", "orange")[il,
main=names(tt) [i], xlab="p value")

0.0

0.2 0.4 0.6 0.8 1.0

p value



Frequency

Frequency

150

t-Test Looses Error Control
It Independence Assumption Does not Hold

uncorrelated
library("mvtnorm")
library("genefilter")

p =30 ## number of samples

batch effects!

TTOW=CT T TCTT 77

=5s))

400 800

0

poT T S ASLAR T ]
[for(i in seq(along=tt))
hist(tt[[i]]1$p.value, breaks=100, col=c("skyblue", "orange")[il,
main=names(tt) [i], xlab="p value")

0.0 0.2 0.4 0.6 0.8 1.0

p value



Avold Fallacy

The p-value Is the probability

that the data could happen,

under the condition that the
null hypothesis Is true.

It Is not the probability that
the null hypothesis Is true.

Absence of evidence *+
evidence of absence




Recap: Single Hypothesis Testing

p-values are random variables: uniformly distributed if the null
hypothesis is true - and should be close to zero if the

alternative holds.
Note: We only observe one draw.

We prove something by disproving (‘rejecting’) the opposite
(the null hypothesis). Reject = Discover.

Not rejecting does not prove the null hypothesis

Repeating the experiment (under the null): Around 5% of the

times the p-value will be less than 0.05 by chance

All this reasoning is probabilistic. Testing & p-values are for
rational decision making in uncertain contexts.
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What Is p-Value Hacking ?

On the same data, try different tests until one is
significant

On the same data, try different hypotheses until one is
significant (HARKing - hypothesizing after results are known)

Moreover...:

retrospective data picking

‘outlier’ removal

the 5% threshold and publication bias



What Is p-Value Hacking ?

On the same data, try different tests until one is
significant

On the same data, try different hypotheses until one is
significant (HARKing - hypothesizing after results are known)

The ASA's Statement on p-Values:
Context, Process, and Purpose

MOFGOVGF_ o Ronald L. Wasserstein & Nicole A.
. . . Lazara DOI:
retrospective data picking 10.1080/00031305.2016.1154108

‘outlier’ removal

the 5% threshold and publication bias


http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

What Is p-Value Hacking ?

On the same data, try different tests until one is
significant

On the same data, try different hypotheses until one is
significant (HARKing - hypothesizing after results are known)

The ASA's Statement on p-Values:
Context, Process, and Purpose

MOFGOVGF_ o Ronald L. Wasserstein & Nicole A.
. . . Lazara DOI:
retrospective data picking 10.1080/00031305.2016.1154108

‘outlier’ removal

the 5% threshold and publication bias

VWhat can we do about this?


http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

Multiple Testing
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Multiple Testing
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Multiple Testing
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Multiple Testing

Many data analysis

approaches in genomics e 7 W T W

employ item-by-item L e

testing: e S

« Expression profiling

« Differential microbiome ” L
analysis

« Genetic or chemical e
compound screens =

« Genome-wide association -~ &
studies R ©

» Proteomics

e Variant calling




The Multiple Testing Burden

When performing several tests, type | error goes up: for

& = 0.05 and n indep. tests, probability of no false positive result is

095-095-...-09 <« 0.9

n—times
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False Positive Rate and False Discovery Rate

FPR: fraction of FP among all
true negatives

FDR: fraction of FP among
hits called

Example:
20,000 genes, b00 are d.e.,

100 hits called, 10 of them
wrong.

FPR: 10/19,500 = 0.05%
FDR: 10/100 = 10%

“Wait a minute! Isn’t anyone here a real sheep?”



Experiment-Wide Type | Error Rates

Test vs Reality Null Hypothesis is true ...is false Total

Rejected \% S R
Not rejected U T m — R
Total ) m — my m

* m: total number of hypotheses
* mp: number of null hypotheses
e V: number of false positives (a measure of type I error)

Family-wise error rate (FVWER): The probability of one or
more false positives, P( V> 0). For large m,, this is

difficult to keep small.

False discovery rate (FDR): The expected fraction of false
positives among all discoveries, E[ V/ max {R, 1} 1.

NB: if my=m, then FDR=FWER



Bonferroni Correction

i i N :
~ e - - e '.. o 5
Ny =

For m tests, multiply each p-value with m.

Then see if anyone still remains below «.



The Multiple Testing Opportunity

DID THE SUN JUST EXPLODE?
(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROWS TWO DICE. IF THEY
BOTH COME UP SiX, IT UES TO US.
OTHERWISE, FFTEILSTHETRUIH.

LETS TRY.

DETECTOR! HAS THE
swaavswm? 25

MiM

FREQUENTIST STRSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABLITY OF THS RESULT

HAPPENING BY CHANCE 15 3,=0027. BET YOU $50
SNCE p<0.05;, T CONCLUDE IV HEENT
mﬂrmammswwow )
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Data set 1: RNA—Seq
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Transcriptome changes in four
samples of primary human airway

constrict

smooth muscle cells treated with I A= A

dexamethasone, a synthetic ya O

glucocorticoid. 1 pM for 18 h. Wi s el
</ \

cellline dexamethasone

N61311  untrt . : : :
DESeq2 differential expression analysis:

N61311 trt
N052611 untrt . :
gene i, sample j:
052611 trt Ki; NB(mean = 1, dispersion = «;)
N080611 untrt /ﬁ e ol ’
NO80611 trt | ” .
N061011  untrt 0g9qi; = ;xjrﬁrj
NO61011 trt design <- ~ cellline + dexamethasone

Himes et al. “RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene
that Modulates Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 GEO: GSEL2778.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778

Transcri
sample
smooth
dexame
glucoca

log fold change

cell
N61
N61

NOS5 I I I
NOS5 1 100 10000

NO8 mean of normalized counts

NO8
NO61
N061011 trt design <- ~ cellline + dexamethasone

analysis:

persion = «;)

Himes et al. “RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene
that Modulates Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 GEO: GSEL2778.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778

Data set 2: hQTL

ChlP-seq for histone marks in HakzTac |

lymphoblastoid cell lines from {Cm%eq Hﬁmﬂa} “eference maps

/5 sequenced individuals. W rvers

Local QTLs: find best- :; b

correlated SNP within 2kb of SR AL A a

peak boundaries: 14,142 v

hQTLs, involving ~10% of all

H3K27ac peaks (FDR=0.1, S -

permutations) N (]

Distal: distance cutoffs from — SNPH l ) "\

50 to 300 kb, also HiC [ Brosoles, | Jong] >50 kb away kel
histone QTLs histone QTLs

Grubert, Zaugg, Kasowski, et al. Genetic control of chromatin states in humans involves local and distal
chromosomal interactions. Cell (2015).



False Discovery Rate

250 - false discoveries _ EDR

all discoveries
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p.value

Method of Benjamini & Hochberg (1995)



Method of Benjamini & Hochberg
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Method of Benjamini & Hochberg
0.100 - /

i <- length(p):1

o <- order (p, decreasing = TRUE)
ro <- order (o)

pmin(l, cummin(n/i * p[o])) [ro]

BH

il
—~—

}
takes a list of p-values as input and returns a matched list

of ‘adjusted’ p-values.

0.000 / E

0 2000 4000 6000
rank




The Two-Groups Model and
the Local False Discovery Rate

f(p) = 1o+ (1 —T0) fare(p)

fdr(p) = o)

FDR: a set property. A single

number that applies to a whole
set of discoveries.

fdr: a local property. It applies to
Individual hypotheses.



Not all Hypothesis lests
are Created Equal

5 10

asinh(baseMean)
Figure 6.15: Histogram of baseMean. We 0 5000 10000 15000 20000
see that it covers a large dynamic range, rank(baseMean)

from close to 0 to around 3.3 x 10°.



Application

Covariate

Differential RNA-Seq,
ChIP-Seq, CLIP-seq, ...

(Normalized) mean of
counts for each gene

eQTL analysis SNP — gene distance
GWAS Minor allele frequency
t-tests Overall variance

Two-sided tests

Sign

All applications

Sample size; measures of
signal-to-noise ratio




Independent Filtering

Two steps:

= All hypotheses H; with RNA-Seq
X; < x get filtered.

m Apply BH to remaining
hypotheses.

(Bourgon, Gentleman, Huber
PNAS 2010)

mean counts



RNA-Seq p-value histogram stratified by average
read count

1 ] il ' 1 ] 1 ] 1 1} ' ’ 1 L} 1 L 1) ] ' ]
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pvalue



Welghted Benjamini-Hochberg method

m Letw; >0and = > w; =1 ("weight budget”).
m Define Q; = P;/w;.
m Apply BH to ); instead of P;.

m Proven Type-l error (FDR) control (Genovese, Roeder,
Wasserman Biometrika 2000).

m |fw; > 1, then H; is easier to reject.



Welighted Benjamini-Hochberg method

m Letw; > 0and .- 7" w; = 1 ("weight budget”).

m Define Q; = Pz-/wz-.

= Proven Ty Ser
Wasserm

mfw; >1



Weighted Benjamini-Ho Y Mmethod
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Independent hypothesis weighting
(IHW): basic idea

m Stratify the tests into G bins, by covariate X
m Choose «

m For each possible weight vector w = (wyq, ..., wg)
apply weighted BH procedure. Choose w that
maximizes the number of rejections at level «.

m Report the result with the optimal weight vector w*.



RNA-Seg example (DESeg2)
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Avolding overfitting

Hypothesis splitting: randomly split hypotheses
iInto k folds. Learn weights for the
hypotheses in a fold from the other Nikos Ignatiadis
k—1 folds

Regularisation:
e for ordered covariate: X, |wy— wy4| < A

* for categorical covariate: 2, |w,;— 1] < A

Convex relaxation: for weight optimisation (only), replace
ECDFs of the p-values with Grenander estimators (least
concave majorant of the ECDF)



Rejections
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Histone-QTL example (H3K27ac)
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2D decision boundaries
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Summary

* Multiple testing 1s not a problem
but an opportunity

* Heterogenelty across tests

* Informative covariates are often Nikos Ignatiadis
apparent to domain scientists

- Independent of test statistic under the null
- Informative on 111, Fai

» Data-driven weighting

» Scales well to millions of hypotheses

» Controlling ‘overoptimism’
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B] OCO n d U Cto r Install Developers About

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 3.3 » Software Packages » IHW (development version)

Documentation »

I H W Bioconductor

* Package vignettes and manuals.
* Workflows for learning and use.

platforms [all | downloads available in Bioc 'devel only * Course and conference material.
* Videos.
m commits 0.17 test coverage  unknown = Community resources and tutorials.

R / CRAN packages and documentation
This is the development version of IHW; to use it, please install the devel version of Bioconductor.

Independent Hypothesis Weighting

Bioconductor version: Development (3.3)

»
Independent hypothesis weighting (IHW) is a multiple testing procedure that increases power compared Support
to the method of Benjamini and Hochberg by assigning data-driven weights to each hypothesis. The input Please read the postina auide. Post
to IHW is a two-column table of p-values and covariates. The covariate can be any continuous-valued or questions aboutuﬂ_Biocondu R
categorical variable that is thought to be informative on the statistical properties of each hypothesis test, the following locations:

while it is independent of the p-value under the null hypothesis.
= Support site - for questions about

Author: Nikos Ignatiadis [aut, cre] Bioconductor packages
s g > = Bioc-devel mailing list - for package
Maintainer: Nikos Ignatiadis <nikos.ignatiadisO1 at gmail.com> developers

Citation (from within R, enter citation("1Hw")):

Ignatiadis N, Klaus B, Zaugg J and Huber W (2015). “Data-driven hypothesis weighting increases Pa p e rS "

In:etta:taioﬂr;l:'owerin big data analytics.” bioRxiv. Nature MethOdS, June 2016
arXiv, January 2017

To install this package, start R and enter:




