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Aims for this Lecture

Understand the basic principles of hypothesis testing, its 

pitfalls, strengths, use cases and limitations 

What changes when we go from single to multiple testing? 

False discovery rates, p-value ‘adjustments’, filtering and 

weighting 
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Figure 6.6. We can always decrease the false positive rate (FPR) by shifting
the threshold to the right. We can become more “conservative”. But this
happens at the price of higher false negative rate (FNR). Analogously, we
can decrease the FNR by shifting the threshold to the left. But then again,
this happens at the price of higher FPR.
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Figure 6.6: The trade-off between type I
and II errors. The densities represent the
distributions of a hypothetical test statistic
either under the null or the alternative.
The peak on the left (light and dark blue
plus dark red) represents the test statistic’s
distribution under the null. It integrates to
1. Suppose the decision boundary is the
black line and the hypothesis is rejected if
the statistic falls to the left. The probability
of a false positive (the FPR) is then simply
the dark red area. Similarly, if the peak
on the right (light and dark red plus dark
blue area) is the test statistic’s distribution
under the alternative, the probability of a
false negative (the FNR) is the dark blue
area.

A bit on terminology: the FPR is the same as the probability a that we
mentioned above. 1 � a is also called the specificity of a test. The FNR is
sometimes also called b, and 1 � b the power, sensitivity or true positive
rate of a test.
Question 6.4.1
At the end of Section 6.3 we learned about one- and two-sided tests. Why does
this distinction exist – why don’t we alway just use the two-sided test, which is
sensitive to a larger class of alternatives?

6.5 The t-test

Many experimental measurements are reported as real numbers, and the
simplest comparison we can make is between two groups, say, cells treated
with a substance compared to cells that are not. The basic test for such
situations is the t-test. The test statistic is defined as

t = c
m1 � m2

s
, (6.2)

where m1 and m2 are the mean of the values in the two groups, s is the
pooled standard deviation and c is a constant that depends on the sample
sizes, i. e., the numbers of samples n1 and n2 in the two groups. To be
totally explicit,
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where xg,i is the ith data point in the gth group. Let’s try this out with
the PlantGrowth data from R’s datasets package.
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Figure 6.7: The PlantGrowth data.

data("PlantGrowth")

ggplot(PlantGrowth, aes(y = weight, x = group, col = group)) +

geom_jitter(height = 0, width = 0.4) +

theme(legend.position = "none")

tt <- with(PlantGrowth,

t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

tt

Testing vs Classification

(any function of the data)



Accuracy vs Precision - Bias vs Variance
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Karl Popper (1902-1994)

Logical asymmetry between verification  
and falsifiability. 

No number of positive outcomes at the level  
of experimental testing can confirm a scientific theory, but a 
single counterexample is logically decisive: it shows the theory 
is false.



Toss a coin a number of times ⇒ 

If the coin is fair, then heads should  
appear half of the time (roughly).  

But what is “roughly”? We use combinatorics / 
probability theory to quantify this. 

Suppose we flipped the coin 100 times and got 59 
heads. Is this ‘significant’? 

Example



Binomial Distribution
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Let’s plot Equation (6.1); for good measure, we also mark the observed
value numHeads with a vertical blue line.
k <- 0:numFlips

numHeads <- sum(coinFlips == "H")

binomDensity <- data.frame(k = k,

p = dbinom(k, size = numFlips, prob = 0.5))

library("ggplot2")

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p), stat = "identity") +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,
according to Equation (6.1).

Suppose we didn’t know about Equation (6.1). We could still manoeu-
vre our way out by simulating a reasonably good approximation of the
distribution.
numSimulations <- 10000

outcome <- replicate(numSimulations, {

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(0.5, 0.5))

sum(coinFlips == "H")

})

ggplot(data.frame(outcome)) + xlim(0, 100) +

geom_histogram(aes(x = outcome), binwidth = 1) +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.4: An approximation of the
binomial distribution from 104 simulations
(same parameters as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the
number of coin flips. But we see that other numbers near 50 are also
not unlikely. How do we quantify whether the observed value, 59, is
among those values that we are likely to see from a fair coin, or whether
its deviation from the expected value is already big enough for us to
conclude with enough confidence that the coin is biased? We divide the set
of all possible k’s (0 to 100) in two complementary subsets, the acceptance
region and the rejection region. A natural choice5 is to fill up the rejection 5 More on this below.

region with as many k as possible while keeping the total probability
below some threshold a (say, 0.05). So the rejection set consists of the
values of k with the smallest probabilities (6.1), so that their sum remains
 a.
library("dplyr")

alpha <- 0.05

binomDensity <- arrange(binomDensity, p) %>%

mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +

scale_colour_manual(

values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +

theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is a = 0.05.

In the code above, we used the functions arrange and mutate from the
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with high certainty. We can also think of this as an application of Occam’s
razor2 – don’t come up with a more complicated solution if a simpler one 2 See also https://en.wikipedia.org/

wiki/Occam%27s_razordoes the job.

6.2 An Example: Coin Tossing

To understand multiple tests, let’s first review the mechanics of single
hypothesis testing. For example, suppose we are flipping a coin to see if
it is a fair coin3. We flip the coin 100 times and each time record whether 3 The same kind of reasoning, just with

more details, applies to any kind of
gambling. Here we stick to coin tossing
since everything can be worked out easily,
and it shows all the important concepts.

it came up heads or tails. So, we have a record that could look something
like this:

H H T T H T H T T ...
Which we can simulate in R. We set probHead different from 1/2, so we

are sampling from a biased coin:
set.seed(0xdada)

numFlips <- 100

probHead <- 0.6

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(probHead, 1 - probHead))

head(coinFlips)

## [1] "T" "T" "H" "T" "H" "H"

Now, if the coin were fair, we expect half of the time to get heads. Let’s
see.
table(coinFlips)

## coinFlips

## H T

## 59 41

So that is different from 50/50. Suppose we didn’t know whether the
coin is fair or not – but our prior assumption is that coins are, by and large,
fair: would these observed data be strong enough to make us conclude
that this coin isn’t fair? We know that random sampling differences are to
be expected. To decide, let’s look at the sampling distribution of our test
statistic –the total number of heads seen in 100 coin tosses– for a fair coin4. 4 We haven’t really defined what we mean

be fair – a reasonable definition would
be that head and tail are equally likely,
and that the outcome each coin toss is
completely independent of the previous
ones. For more complex applications,
nailing down the exact null hypothesis can
take a bit more thought.

This is really easy to work out with elementary combinatorics:

P(K = k | n, p) =

 
n
k

!
pk (1 � p)n�k (6.1)

Let’s parse the notation: n is the number of coin tosses (100) and p is the
probability of head (0.5 if we assume a fair coin). k is the number of heads.
Statisticians like to make a difference between all the possible values of
a statistic and the one that was observed, and we use the lower case k
for the possible values (so k can be anything between 0 and 100), and the
upper case K for the observed value. We pronounce the left hand side of
the above equation as “the probability that the observed number takes the
value k, given that n is what it is and p is what it is”.



Rejection Region
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Let’s plot Equation (6.1); for good measure, we also mark the observed
value numHeads with a vertical blue line.
k <- 0:numFlips

numHeads <- sum(coinFlips == "H")

binomDensity <- data.frame(k = k,

p = dbinom(k, size = numFlips, prob = 0.5))

library("ggplot2")

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p), stat = "identity") +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,
according to Equation (6.1).

Suppose we didn’t know about Equation (6.1). We could still manoeu-
vre our way out by simulating a reasonably good approximation of the
distribution.
numSimulations <- 10000

outcome <- replicate(numSimulations, {

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(0.5, 0.5))

sum(coinFlips == "H")

})

ggplot(data.frame(outcome)) + xlim(0, 100) +

geom_histogram(aes(x = outcome), binwidth = 1) +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.4: An approximation of the
binomial distribution from 104 simulations
(same parameters as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the
number of coin flips. But we see that other numbers near 50 are also
not unlikely. How do we quantify whether the observed value, 59, is
among those values that we are likely to see from a fair coin, or whether
its deviation from the expected value is already big enough for us to
conclude with enough confidence that the coin is biased? We divide the set
of all possible k’s (0 to 100) in two complementary subsets, the acceptance
region and the rejection region. A natural choice5 is to fill up the rejection 5 More on this below.

region with as many k as possible while keeping the total probability
below some threshold a (say, 0.05). So the rejection set consists of the
values of k with the smallest probabilities (6.1), so that their sum remains
 a.
library("dplyr")

alpha <- 0.05

binomDensity <- arrange(binomDensity, p) %>%

mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +

scale_colour_manual(

values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +

theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is a = 0.05.

In the code above, we used the functions arrange and mutate from the



Questions

• Does the fact that we don't reject the null hypothesis mean 
that the coin is fair? 

• Would we have a better chance of detecting that the coin is 
not fair if we did more coin tosses? How many? 

• If we repeated the whole procedure and again tossed the 
coin 100 times, might we then reject the null hypothesis? 

• Our rejection region is asymmetric - its left part ends with 
40, while its right part starts with 61. Why is that? Which 
other ways of defining the rejection region might be useful?



The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function for 

the effect that you are interested in: the test statistic 

Set up a null hypothesis: a simple, computationally tractable 

model of reality that lets you compute the null distribution of the 

test statistic, i.e. the possible outcomes and each of their 

probabilities. 

Decide on the rejection region, i.e., a subset of possible 

outcomes whose total probability is small  
(<= significance level). 

Do the experiment, collect data,  
compute the test statistic. 

Make a decision: reject null hypothesis  
if the test statistic is in the rejection region.



The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function for 

the effect that you are interested in: the test statistic 

Set up a null hypothesis: a simple, computationally tractable 

model of reality that lets you compute the null distribution of the 

test statistic, i.e. the possible outcomes and each of their 

probabilities. 

Decide on the rejection region, i.e., a subset of possible 

outcomes whose total probability is small  
(<= significance level). 

Do the experiment, collect data,  
compute the test statistic. 

Make a decision: reject null hypothesis  
if the test statistic is in the rejection region.

This is the idealised scenario, 
“orthodoxy”.  
Reality, esp. in retrospective ‘data-
mining’ is typically different.



Examples of Null Hypotheses: 
•  The coin is fair 
•  The new drug is no better or worse than a 

placebo 
•  The effect of that RNAi-treatment on my cells 

is no different than that of a negative control 
treatment  

These are not Null Hypotheses: 
•  The number of heads and tails were the same 
•  The coin is not fair 
• The drug is worth its money
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Figure 6.6. We can always decrease the false positive rate (FPR) by shifting
the threshold to the right. We can become more “conservative”. But this
happens at the price of higher false negative rate (FNR). Analogously, we
can decrease the FNR by shifting the threshold to the left. But then again,
this happens at the price of higher FPR.
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Figure 6.6: The trade-off between type I
and II errors. The densities represent the
distributions of a hypothetical test statistic
either under the null or the alternative.
The peak on the left (light and dark blue
plus dark red) represents the test statistic’s
distribution under the null. It integrates to
1. Suppose the decision boundary is the
black line and the hypothesis is rejected if
the statistic falls to the left. The probability
of a false positive (the FPR) is then simply
the dark red area. Similarly, if the peak
on the right (light and dark red plus dark
blue area) is the test statistic’s distribution
under the alternative, the probability of a
false negative (the FNR) is the dark blue
area.

A bit on terminology: the FPR is the same as the probability a that we
mentioned above. 1 � a is also called the specificity of a test. The FNR is
sometimes also called b, and 1 � b the power, sensitivity or true positive
rate of a test.
Question 6.4.1
At the end of Section 6.3 we learned about one- and two-sided tests. Why does
this distinction exist – why don’t we alway just use the two-sided test, which is
sensitive to a larger class of alternatives?

6.5 The t-test

Many experimental measurements are reported as real numbers, and the
simplest comparison we can make is between two groups, say, cells treated
with a substance compared to cells that are not. The basic test for such
situations is the t-test. The test statistic is defined as

t = c
m1 � m2

s
, (6.2)

where m1 and m2 are the mean of the values in the two groups, s is the
pooled standard deviation and c is a constant that depends on the sample
sizes, i. e., the numbers of samples n1 and n2 in the two groups. To be
totally explicit,
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where xg,i is the ith data point in the gth group. Let’s try this out with
the PlantGrowth data from R’s datasets package.
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Figure 6.7: The PlantGrowth data.

data("PlantGrowth")

ggplot(PlantGrowth, aes(y = weight, x = group, col = group)) +

geom_jitter(height = 0, width = 0.4) +

theme(legend.position = "none")

tt <- with(PlantGrowth,

t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

tt

Types of Error in Testing
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the result is called the t-distribution. Such modelling assumptions may be
more or less realistic. Simulating the null distribution offers a potentially
more accurate, more realistic and perhaps even more intuitive approach.
The drawback of simulating is that it can take a rather long time, and
we have to work extra to get a systematic understanding of how varying
parameters influence the result. Generally, it is more elegant to use the
parametric theory when it applies8. When you are in doubt, simulate – or 8 The assumptions don’t need to be exactly

true – it is sufficient if the theory’s predic-
tions are an acceptable approximation of
the truth.

do both.
As for the rejection region: how small is small enough? That is your

Rejection regionchoice of the significance level a, which is the total probability of the test
statistic falling into this region if the null hypothesis is true9. Even when a 9 Some people at one point in time for a

particular set of questions colluded on
a = 0.05 as being “small”. But there is
nothing special about this number.

is given, the choice of the rejection region is not unique. A further condi-
tion that we require from a good rejection region is that the probability of
the test statistic falling into it is as large possible if the null hypothesis is
indeed false. In other words, we want our test to have high power.

In Figure 6.5, the rejection region is split between the two tails of the
distribution. This is because we anticipate that unfair coins could have a
bias either towards head or toward tail; we don’t know. If we did know,
we could instead concentrate our rejection region all on the appropriate
side, e. g., the right tail if we think the bias would be towards head. Such
choices are also refered to as two-sided and one-sided tests.

6.4 Types of Error

Having set out the mechanics of testing, we can assess how well we are
doing. Table 6.2 compares reality (whether or not the null hypothesis is in
fact true) with the decision whether or not to reject it.

Test vs reality Null hypothesis is true . . . is false

Reject null hypothesis Type I error (false positive) True positive

Do not reject True negative Type II error (false negative)

Table 6.2: Types of error in a statistical test.

The two types of error we can make are in the lower left and upper
right cells of the table. It’s always possible to reduce one of the two error
types on the cost of increasing the other one. The real challenge is to
find an acceptable trade-off between both of them. This is exemplified in
Figure 6.6. We can always decrease the false positive rate (FPR) by shifting
the threshold to the right. We can become more “conservative”. But this
happens at the price of higher false negative rate (FNR). Analogously, we
can decrease the FNR by shifting the threshold to the left. But then again,
this happens at the price of higher FPR. A bit on terminology: the FPR is
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Let’s plot Equation (6.1); for good measure, we also mark the observed
value numHeads with a vertical blue line.
k <- 0:numFlips

numHeads <- sum(coinFlips == "H")

binomDensity <- data.frame(k = k,

p = dbinom(k, size = numFlips, prob = 0.5))

library("ggplot2")

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p), stat = "identity") +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,
according to Equation (6.1).

Suppose we didn’t know about Equation (6.1). We could still manoeu-
vre our way out by simulating a reasonably good approximation of the
distribution.
numSimulations <- 10000

outcome <- replicate(numSimulations, {

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(0.5, 0.5))

sum(coinFlips == "H")

})

ggplot(data.frame(outcome)) + xlim(0, 100) +

geom_histogram(aes(x = outcome), binwidth = 1) +

geom_vline(xintercept = numHeads, col="blue")

0

200

400

600

800

0 25 50 75 100
outcome

co
un

t

Figure 6.4: An approximation of the
binomial distribution from 104 simulations
(same parameters as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the
number of coin flips. But we see that other numbers near 50 are also
not unlikely. How do we quantify whether the observed value, 59, is
among those values that we are likely to see from a fair coin, or whether
its deviation from the expected value is already big enough for us to
conclude with enough confidence that the coin is biased? We divide the set
of all possible k’s (0 to 100) in two complementary subsets, the acceptance
region and the rejection region. A natural choice5 is to fill up the rejection 5 More on this below.

region with as many k as possible while keeping the total probability
below some threshold a (say, 0.05). So the rejection set consists of the
values of k with the smallest probabilities (6.1), so that their sum remains
 a.
library("dplyr")

alpha <- 0.05

binomDensity <- arrange(binomDensity, p) %>%

mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +

scale_colour_manual(

values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +

theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is a = 0.05.

In the code above, we used the functions arrange and mutate from the
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Suppose we didn’t know about Equation (6.1). We could still manoeu-
vre our way out by simulating a reasonably good approximation of the
distribution.
numSimulations <- 10000

outcome <- replicate(numSimulations, {

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(0.5, 0.5))

sum(coinFlips == "H")

})

ggplot(data.frame(outcome)) + xlim(0, 100) +
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geom_vline(xintercept = numHeads, col="blue")
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Figure 6.4: An approximation of the
binomial distribution from 104 simulations
(same parameters as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the
number of coin flips. But we see that other numbers near 50 are also
not unlikely. How do we quantify whether the observed value, 59, is
among those values that we are likely to see from a fair coin, or whether
its deviation from the expected value is already big enough for us to
conclude with enough confidence that the coin is biased? We divide the set
of all possible k’s (0 to 100) in two complementary subsets, the acceptance
region and the rejection region. A natural choice5 is to fill up the rejection 5 More on this below.

region with as many k as possible while keeping the total probability
below some threshold a (say, 0.05). So the rejection set consists of the
values of k with the smallest probabilities (6.1), so that their sum remains
 a.
library("dplyr")

alpha <- 0.05

binomDensity <- arrange(binomDensity, p) %>%

mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +

scale_colour_manual(

values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +

theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is a = 0.05.

In the code above, we used the functions arrange and mutate from the
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library("ggplot2")

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p), stat = "identity") +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,
according to Equation (6.1).

Suppose we didn’t know about Equation (6.1). We could still manoeu-
vre our way out by simulating a reasonably good approximation of the
distribution.
numSimulations <- 10000

outcome <- replicate(numSimulations, {

coinFlips <- sample(c("H", "T"), size = numFlips,

replace = TRUE, prob = c(0.5, 0.5))

sum(coinFlips == "H")

})

ggplot(data.frame(outcome)) + xlim(0, 100) +

geom_histogram(aes(x = outcome), binwidth = 1) +

geom_vline(xintercept = numHeads, col="blue")
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Figure 6.4: An approximation of the
binomial distribution from 104 simulations
(same parameters as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the
number of coin flips. But we see that other numbers near 50 are also
not unlikely. How do we quantify whether the observed value, 59, is
among those values that we are likely to see from a fair coin, or whether
its deviation from the expected value is already big enough for us to
conclude with enough confidence that the coin is biased? We divide the set
of all possible k’s (0 to 100) in two complementary subsets, the acceptance
region and the rejection region. A natural choice5 is to fill up the rejection 5 More on this below.

region with as many k as possible while keeping the total probability
below some threshold a (say, 0.05). So the rejection set consists of the
values of k with the smallest probabilities (6.1), so that their sum remains
 a.
library("dplyr")

alpha <- 0.05

binomDensity <- arrange(binomDensity, p) %>%

mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +

geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +

scale_colour_manual(

values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +

theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is a = 0.05.

In the code above, we used the functions arrange and mutate from the
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Q: 
Discuss pros and contras for each
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The Test Statistic

Suppose we observed 50 tails in a row, and then 50 
heads in a row.  Is this a perfectly fair coin? 

We could use a different test statistic: number of times 
we see two tails in a row 

Is this statistic generally and always preferable? 

Power 

There can be several test statistics, with different 
power, for different types of alternative



Continuous Data: 
the t-Statistic
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A bit on terminology: the FPR is the same as the probability a that we
mentioned above. 1 � a is also called the specificity of a test. The FNR is
sometimes also called b, and 1 � b the power, sensitivity or true positive
rate of a test.
Question 6.4.1
At the end of Section 6.3 we learned about one- and two-sided tests. Why does
this distinction exist – why don’t we alway just use the two-sided test, which is
sensitive to a larger class of alternatives?

6.5 The t-test

Many experimental measurements are reported as real numbers, and the
simplest comparison we can make is between two groups, say, cells treated
with a substance compared to cells that are not. The basic test for such
situations is the t-test. The test statistic is defined as

t = c
m1 � m2

s
, (6.2)

where m1 and m2 are the mean of the values in the two groups, s is the
pooled standard deviation and c is a constant that depends on the sample
sizes, i. e., the numbers of samples n1 and n2 in the two groups. To be
totally explicit,

mg =
1

ng

ng

Â
i=1

xg,i g = 1, 2

s2 =
1

n1 + n2 � 2

 
n1

Â
i=1

(x1,i � m1)
2 +

n2

Â
j=1

�
x2,j � m2

�2
!

c =

r
n1n2

n1 + n2
. (6.3)

where xg,i is the ith data point in the gth group. Let’s try this out with
the PlantGrowth data from R’s datasets package.
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Figure 6.7: The PlantGrowth data.

data("PlantGrowth")

ggplot(PlantGrowth, aes(y = weight, x = group, col = group)) +

geom_jitter(height = 0, width = 0.4) +

theme(legend.position = "none")

tt <- with(PlantGrowth,

t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

tt

##

## Two Sample t-test

##

## data: weight[group == "ctrl"] and weight[group == "trt2"]

## t = -2.134, df = 18, p-value = 0.04685
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data("PlantGrowth")

ggplot(PlantGrowth, aes(y = weight, x = group, col = group)) +

geom_jitter(height = 0, width = 0.4) +

theme(legend.position = "none")

tt <- with(PlantGrowth,

t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

tt

##

## Two Sample t-test

##

## data: weight[group == "ctrl"] and weight[group == "trt2"]

## t = -2.134, df = 18, p-value = 0.04685

• Can also be adapted to one 
group only 

• Relation to z-score
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t- (and |t|-) Distribution

If the data are 

identically normal 

distributed and 

independent, then 

under H0, t follows a  
’t-distribution’ with 

parameter n1+n2 
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Q: 
How does the distribution 
of |t| look?



multiple testing 39

## 95 percent confidence interval:

## -0.980338117 -0.007661883

## sample estimates:

## mean of x mean of y

## 5.032 5.526

Question 6.5.1 What do you get from the comparison with trt1? What for trt1
versus trt2?
Question 6.5.2 What is the significance of the var.equal = TRUE in the above
call to t.test?
Question 6.5.3 Rewrite the above call to t.test using the formula interface, i. e.,
by using the notation weight ⇠ group.
To compute the p-value, the t.test function uses the asymptotic theory
for the t-statistic (6.2); this theory states that under the null hypothesis of
equal means in both groups, this quantity follows a known, mathematical
distribution, the so-called t-distribution with n1 + n2 degrees of freedom.
The theory uses additional technical assumptions, namely that the data are
independent and come from a Normal distribution with the same standard
deviation. We could be worried about these assumptions. Clearly they
do not hold: weights are always positive, while the Normal distribution
extends over the whole real axis. The question is whether this deviation
from the theoretical assumption makes a real difference. We can use
sample permutations to figure this out.
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Figure 6.8: The null distribution of the
(absolute) t-statistic determined by simula-
tions – namely, by random permutations of
the group labels.

abs_t_null <- with(

filter(PlantGrowth, group %in% c("ctrl", "trt2")),

replicate(10000,

abs(t.test(weight ~ sample(group))$statistic)))

ggplot(data_frame(‘|t|‘ = abs_t_null), aes(x = ‘|t|‘)) +

geom_histogram(binwidth = 0.1, boundary = 0) +

geom_vline(xintercept = abs(tt$statistic), col="red")

mean(abs(tt$statistic) <= abs_t_null)

## [1] 0.0471

Question 6.5.4 Why did we use the absolute value function (abs) in the above
code?

The t-test comes in multiple flavors, all of which can be chosen through
parameters of the t.test function. What we did above was a two-sided Different flavors of t-test
two-sample unpaired test with equal variance. Two-sided refers to the
fact that we were open to reject the null hypothesis if the weight of the
treated plants was either larger or smaller than that of the untreated ones.
Two-sample indicates that we compared the means of two groups to
each other; another option would be to compare the mean of one group
against a given, fixed number. Unpaired means that there was no direct
1:1 mapping between the measurements in the two groups. If, on the
other hand, the data had been measured on the same plants before and
other treatment, then a paired test would be more appropriate, as it looks

t- (and |t|-) Distribution

If the data are 

identically normal 

distributed and 

independent, then 

under H0, t follows a  
’t-distribution’ with 

parameter n1+n2 

(a.k.a. degrees of 

freedom)

Q: 
How does the distribution 
of |t| look?
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Comments and Pitfalls

Derivation of the t-distribution assumes that 
observations are independent and follow a normal 
distribution: a sufficient, but not necessary, condition

Deviation from normality - heavier tails: test still 
maintains type-I error control, but may no longer have 
optimal power.

Options: use permutations; transform (e.g. ranks - 
Wilcoxon test)

If the data are dependent, then p-values will likely be 
totally wrong (e.g., for positive correlation, too 
optimistic).



Different Data Distributions – Independent Case
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Avoid Fallacy 

The p-value is the probability 
that the data could happen, 
under the condition that the 

null hypothesis is true. 

It is not the probability that 
the null hypothesis is true. 

Absence of evidence ⧧ 
evidence of absence 



Recap: Single Hypothesis Testing

p-values are random variables: uniformly distributed if the null 

hypothesis is true - and should be close to zero if the 

alternative holds. 

Note: We only observe one draw. 

We prove something by disproving (‘rejecting’) the opposite 

(the null hypothesis). Reject = Discover. 

Not rejecting does not prove the null hypothesis 

Repeating the experiment (under the null): Around 5% of the 

times the p-value will be less than 0.05 by chance  

All this reasoning is probabilistic. Testing & p-values are for 

rational decision making in uncertain contexts.
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What is p-Value Hacking ?

On the same data, try different tests until one is 
significant

On the same data, try different hypotheses until one is 
significant (HARKing - hypothesizing after results are known)

Moreover…: 
retrospective data picking  
‘outlier’ removal  
the 5% threshold and publication bias

The ASA's Statement on p-Values: 
Context, Process, and Purpose 
Ronald L. Wasserstein & Nicole A. 
Lazara DOI: 
10.1080/00031305.2016.1154108 

What can we do about this?

http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108
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Multiple Testing 
Many data analysis 
approaches in genomics 
employ item-by-item 
testing: 

• Expression profiling 

• Differential microbiome 
analysis 

• Genetic or chemical 
compound screens 

• Genome-wide association 
studies 

• Proteomics 

• Variant calling 

• …



The Multiple Testing Burden

When performing several tests, type I error goes up:  for  
α = 0.05 and n indep. tests, probability of no false positive result is 

  



False Positive Rate and False Discovery Rate

FPR: fraction of FP among all 
true negatives 

FDR: fraction of FP among 
hits called 

Example: 
20,000 genes, 500 are d.e.,
100 hits called, 10 of them 
wrong. 

FPR: 10/19,500 ≈ 0.05% 
FDR: 10/100 = 10% 



Experiment-Wide Type I Error Rates

Slide 4

Family-wise error rate (FWER): The probability of one or 
more false positives,  P( V > 0 ). For large m0, this is 

difficult to keep small. 

False discovery rate (FDR): The expected fraction of false 
positives among all discoveries,  E[  V / max {R, 1} ]. 

NB: if m0=m, then FDR=FWER
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number). We just did what is called p-value hacking12 13. You see what 12 http://fivethirtyeight.com/features/
science-isnt-broken
13 Megan L Head, Luke Holman, Rob
Lanfear, Andrew T Kahn, and Michael D
Jennions. The extent and consequences
of p-hacking in science. PLoS Biol, 13(3):
e1002106, 2015

the problem is: in our zeal to prove our point we tortured the data until
some statistic did what we wanted. A related tactic is hypothesis switch-
ing or HARKing – hypothesizing after the results are known: we have a
dataset, maybe we have invested a lot of time and money into assembling
it, so we need results. We come up with lots of different null hypotheses,
test them, and iterate, until we can report something interesting. Avoid fallacy. Keep in mind that

our statistical test is never attempt-
ing to prove our null hypothesis
is true - we are simply saying
whether or not there is evidence
for it to be false. If a high p-value
were indicative of the truth of
the null hypothesis, we could
formulate a completely crazy null
hypothesis, do an utterly irrele-
vant experiment, collect a small
amount of inconclusive data, find
a p-value that would just be a
random number between 0 and
1 (and so with some high proba-
bility above our threshold a) and,
whoosh, our hypothesis would be
demonstrated!

All these tactics are not according to the rule book, as described in
Section 6.3, with a linear and non-iterative sequence of choosing the
hypothesis and the test, and then seeing the data. But, of course, they are
often more close to reality. With biological data, we tend to have so many
different choices for “normalising” the data, transforming the data, add
corrections for apparent batch effects, removing outliers, . . . . The topic
is complex and open-ended. Wasserstein and Lazar (2016) give a very
readable short summary of the problems with how p-values are used
in science, and of some of the misconceptions. They also highlight how
p-values can be fruitfully used. The essential message is: be completely
transparent about your data, what analyses were tried, and how they were
done. Provide the analysis code. Only with such contextual information
can a p-value be useful.

6.7 Multiple Testing

Question 6.7.1 Look up xkcd comic 882. Why didn’t the newspaper report the
results for the other colors?

The same quandary occurs with high-throughput data in biology. And
with force! You will be dealing not only with 20 colors of jellybeans, but,
say, with 20,000 genes that were tested for differential expression between
two conditions, or with 3 billion positions in the genome where a DNA
mutation might have happened. So how do we deal with this? Let’s look
again at our table relating statistical test results with reality (Table 6.2), this
time framing everything in terms of many null hypotheses.

Test vs Reality Null Hypothesis is true . . . is false Total

Rejected V S R

Not rejected U T m � R

Total m0 m � m0 m

Table 6.4: Types of error in multiple testing.
The letters designate the number of times
each type of error occurs.

• m: total number of hypotheses
• m0: number of null hypotheses
• V: number of false positives (a measure of type I error)



Bonferroni Correction

For m tests, multiply each p-value with m. 

Then see if anyone still remains below α.



The Multiple Testing Opportunity



Data set 1: RNA-Seq

Transcriptome changes in four 
samples of primary human airway 
smooth muscle cells treated with 
dexamethasone, a synthetic 
glucocorticoid. 1 μM for 18 h.

cellline   dexamethasone 

N61311     untrt 

N61311     trt  

N052611    untrt 

N052611    trt 

N080611    untrt 

N080611    trt 

N061011    untrt 

N061011    trt

Himes et al. “RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene 
that Modulates Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 GEO: GSE52778. 

design <-  ~ cellline + dexamethasone 

RNA-Seq example (DESeq2)
gene i, sample j:

Kij ∼ NB(mean = µij,dispersion = αj)

µij = sjqij

log qij =
∑

r

xjrβrj

RNA-Seq example (DESeq2)
gene i, sample j:

Kij ∼ NB(mean = µij,dispersion = αj)

µij = sjqij

log qij =
∑

r

xjrβrj

DESeq2 differential expression analysis:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
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Figure 1: MA-plot. These plots show the log2 fold changes from the treatment over the mean of normalized
counts, i.e. the average of counts normalized by size factors. The left plot shows the “unshrunken” log2
fold changes, while the right plot, produced by the code above, shows the shrinkage of log2 fold changes
resulting from the incorporation of zero-centered normal prior. The shrinkage is greater for the log2 fold
change estimates from genes with low counts and high dispersion, as can be seen by the narrowing of spread
of leftmost points in the right plot.

1.5.1 MA-plot

In DESeq2 , the function plotMA shows the log2 fold changes attributable to a given variable over the mean
of normalized counts. Points will be colored red if the adjusted p value is less than 0.1. Points which fall out
of the window are plotted as open triangles pointing either up or down.

plotMA(res, main="DESeq2", ylim=c(-2,2))

After calling plotMA, one can use the function identify to interactively detect the row number of individual
genes by clicking on the plot. One can then recover the gene identifiers by saving the resulting indices:

idx <- identify(res$baseMean, res$log2FoldChange)

rownames(res)[idx]

The MA-plot of log2 fold changes returned by DESeq2 allows us to see how the shrinkage of fold changes
works for genes with low counts. You can still obtain results tables which include the “unshrunken” log2 fold
changes (for a simple comparison, the ratio of the mean normalized counts in the two groups). A column
lfcMLE with the unshrunken maximum likelihood estimate (MLE) for the log2 fold change will be added with
an additional argument to results:

resMLE <- results(dds, addMLE=TRUE)

head(resMLE, 4)

## log2 fold change (MAP): condition treated vs untreated

## Wald test p-value: condition treated vs untreated

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778


ChIP-seq for histone marks in 
lymphoblastoid cell lines from 
75 sequenced individuals.   
Local QTLs: find best-
correlated SNP within 2kb of 
peak boundaries: 14,142 
hQTLs, involving ~10% of all 
H3K27ac peaks (FDR=0.1, 
permutations) 
Distal: distance cutoffs from 
50 to 300 kb; also HiC 

Data set 2: hQTL

Grubert, Zaugg, Kasowski, et al. Genetic control of chromatin states in humans involves local and distal 
chromosomal interactions. Cell (2015). 

Article

Genetic Control of Chromatin States in Humans
Involves Local and Distal Chromosomal Interactions

Graphical Abstract

Highlights
d Analyses of variations in histone marks reveal histone QTLs

in regulatory elements

d Physically interacting loci show genetically coordinated

chromatin levels

d Regulatory elements sharing hQTLs are enriched in

topologically associated domains

d hQTLs are enriched for GWAS SNPs and enable

identification of putative target genes

Authors
Fabian Grubert, Judith B. Zaugg, Maya

Kasowski, ..., Lars M. Steinmetz, Anshul

Kundaje, Michael Snyder

Correspondence
mpsnyder@stanford.edu

In Brief
Genetic variation in regulatory elements

can effect coordinate changes in

chromatin state and gene expression at

both local and distal sites, reflecting

associations in a three-dimensional

context. Integrating information from

expression, chromatin modification, and

chromosome contact analyses provides

a framework for assessing disease-

associated mutations.

Accession Numbers
GSE62742

Grubert et al., 2015, Cell 162, 1051–1065
August 27, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.07.048
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Method of Benjamini & Hochberg
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type I errors out of the rejections made, where the average is taken (at least
conceptually) over many replicate instances of the experiment.

6.9.2 The Benjamini-Hochberg algorithm for controlling the FDR

There is a more elegant alternative to the “visual FDR” method of the last
section. The procedure, introduced by Y. Benjamini and Y. Hochberg17 has 17 Y. Benjamini and Y. Hochberg. Controlling

the false discovery rate: a practical and
powerful approach to multiple testing.
Journal of the Royal Statistical Society B,
57:289–300, 1995

these steps:
• First, order the p-values in increasing order, p1 . . . pm

• Then for some choice of j (our target FDR), find the largest value of k
that satisfies: pk  j k/m

• Finally reject the hypotheses 1 . . . k
We can see how this procedure works when applied to our RNA-seq

p-values through a simple graphical illustration:
phi <- 0.10

awde <- mutate(awde, rank = rank(pvalue))

m <- nrow(awde)

ggplot(filter(awde, rank <= 7000), aes(x = rank, y = pvalue)) +

geom_line() + geom_abline(slope = phi / m, col="red")

0.000

0.025

0.050

0.075

0.100

0 2000 4000 6000
rank

pv
al

ue

Figure 6.12: Visualisation of the Benjamini-
Hochberg procedure. Shown is a zoom-in
to the 7000 lowest p-values.

The method now simply finds the rightmost point where the black (our
p-values) and red lines (slope j/m) intersect. Then it rejects all tests to the
left.
kmax <- with(arrange(awde, rank),

last(which(pvalue <= phi * rank / m)))

kmax

## [1] 4563

Question 6.9.4 Compare the value of kmax with the number of 4783 from above
(Figure 6.11). Why are they different?
Question 6.9.5 Look at the code associated with the option method="BH" of the
p.adjust function that comes with R. Compare it to what we did above.

6.10 The Local FDR

While the xkcd comic mentioned in Figure 6.1 ends with a rather sinister
intepretation of the multiple testing problem as a way to accumulate
errors, Figure 6.13 highlights the multiple testing opportunity: when we
do many tests, we can use the data to increase our understanding beyond
what’s possible with a single test.

Let’s get back to the histogram in Figure 6.11. Conceptually, we can
think of it in terms of the two-groups model 18: 18 Bradley Efron. Large-scale inference:

empirical Bayes methods for estimation,
testing, and prediction, volume 1. Cam-
bridge University Press, 2010

f (p) = p0 + (1 � p0) falt(p), (6.6)

slope: α / m
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type I errors out of the rejections made, where the average is taken (at least
conceptually) over many replicate instances of the experiment.

6.9.2 The Benjamini-Hochberg algorithm for controlling the FDR

There is a more elegant alternative to the “visual FDR” method of the last
section. The procedure, introduced by Y. Benjamini and Y. Hochberg17 has 17 Y. Benjamini and Y. Hochberg. Controlling

the false discovery rate: a practical and
powerful approach to multiple testing.
Journal of the Royal Statistical Society B,
57:289–300, 1995

these steps:
• First, order the p-values in increasing order, p1 . . . pm

• Then for some choice of j (our target FDR), find the largest value of k
that satisfies: pk  j k/m

• Finally reject the hypotheses 1 . . . k
We can see how this procedure works when applied to our RNA-seq

p-values through a simple graphical illustration:
phi <- 0.10

awde <- mutate(awde, rank = rank(pvalue))

m <- nrow(awde)

ggplot(filter(awde, rank <= 7000), aes(x = rank, y = pvalue)) +

geom_line() + geom_abline(slope = phi / m, col="red")
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Figure 6.12: Visualisation of the Benjamini-
Hochberg procedure. Shown is a zoom-in
to the 7000 lowest p-values.

The method now simply finds the rightmost point where the black (our
p-values) and red lines (slope j/m) intersect. Then it rejects all tests to the
left.
kmax <- with(arrange(awde, rank),

last(which(pvalue <= phi * rank / m)))

kmax

## [1] 4563
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f (p) = p0 + (1 � p0) falt(p), (6.6)

slope: α / m

BH = { 
        i <- length(p):1 
        o <- order(p, decreasing = TRUE) 
        ro <- order(o) 
        pmin(1, cummin(n/i * p[o]))[ro] 
    } 
takes a list of p-values as input and returns a matched list 

of ‘adjusted’ p-values. 
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Figure 6.13: From http://xkcd.com/1132 –
While the frequentist only has the currently
available data, the Bayesian can draw
on mechanistic insight or on previous
experience. As a Bayesian, she would know
enough about physics to understand that
our sun’s mass is too small to become a
nova. And if she does not know physics,
she might be an empirical Bayesian, and
draw her prior from countless previous
days where the sun did not go nova.
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Figure 6.14: Local false discovery rate and
the two-group model, with some choice
of falt(p), and p0 = 0.6. Top: densities,
bottom: distribution functions.

Here, f (p) is the density of the distribution (what the histogram would
look like with infinitely much data and infinitely small bins), p0 is a num-
ber between 0 and 1 that represents the size of the uniform component,
and falt is the alternative component. These functions are visualised in
the upper panel of Figure 6.14: the blue areas together correspond to the
graph of falt(p), the grey areas to that of fnull(p) = p0. If we now consider
one particular cutoff p (say, p = 0.1 as in Figure 6.14), then we can decom-
pose the value of f at the cutoff (red line) into the contribution from the
nulls (light red, p0) and from the alternatives (darker red, (1 � p0) falt(p)).
So we have the local false disovery rate

fdr(p) =
p0

f (p)
, (6.7)

and this quantity, which by definition is between 0 and 1, tells us the
probability that a hypothesis which we rejected at some cutoff p would
be a false positive. Note how the fdr in Figure 6.14 is a monotonically
decreasing function of p, and this goes with our intuition that the fdr
should be lowest for the smallest p and then gradually get larger, until it
reaches 1 at the very right end. We can make a similar decomposition not
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The Two-Groups Model and  
the Local False Discovery Rate

FDR: a set property. A single 

number that applies to a whole 

set of discoveries.  

fdr: a local property. It applies to 

individual hypotheses.
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only for the red line, but also for the area under the curve. This is

F(p) =
Z p

0
f (t) dt, (6.8)

and the ratio of the dark grey area (that is, p0 times p) to that is the tail
area false disovery rate (Fdr19). 19 The convention is to use the lower case

abbreviation fdr for the local, and the
abbreviation Fdr for the tail-area false
discovery rate in the context of the two-
groups model (6.6). The abbreviation FDR
is used for the original definition (6.5),
which is a bit more general.

Fdr(p) =
p0 p
F(p)

, (6.9)

We’ll use the data version of F for diagnostics in Figure 6.18.
The packages qvalue and fdrtool offer facilities to fit these models to data.

library("fdrtool")

ft <- fdrtool(awde$pvalue, statistic = "pvalue")

In fdrtool, what we called p0 above is called eta0:
ft$param[,"eta0"]

## eta0

## 0.7605948

Question 6.10.1 What do the plots show that are produced by the above call to
fdrtool?
Question 6.10.2 Explore the other elements of the list ft.
Question 6.10.3 What does the empirical in empirical Bayes methods stand for?

6.10.1 Local versus total

The FDR (or the Fdr) is a set property - it is a single number that applies to
a whole set of rejections made in the course of a multiple testing analysis.
In contrast, the fdr is a local property - it applies to individual additional
hypothesis. Recall Figure 6.14, where the fdr was computed for each point
along the x-axis of the density plot, whereas the Fdr depends on the areas
to the left of the red line.
Question 6.10.4 Check out the concepts of total cost and marginal cost in
economics. Can you seen an analogy with Fdr and fdr?

6.11 Independent Filtering and Hypothesis Weighting

The Benjamini-Hochberg method and the two-groups model, as we have
seen them so far, implicitly assume exchangeability of the hypotheses: all
we use are the p-values. Beyond these, we do not take into account any
additional information. This is not always optimal.

Let’s look at an example. Intuitively, the signal-to-noise ratio for genes
with larger numbers of reads mapped to them should be better than for
genes with few reads, and that should affect the power of our tests. We
look at the mean of normalized counts across samples. In the DESeq2
software this quantity is called the baseMean.

0

250

500

750

5 10
asinh(baseMean)

co
un

t

Figure 6.15: Histogram of baseMean. We
see that it covers a large dynamic range,
from close to 0 to around 3.3 ⇥ 105.
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awde$baseMean[1]

## [1] 708.6022

cts <- counts(awfit, normalized = TRUE)[1, ]

cts

## SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517

## 663.3142 499.9070 740.1528 608.9063 966.3137 748.3722

## SRR1039520 SRR1039521

## 836.2487 605.6024

mean(cts)

## [1] 708.6022 0
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Figure 6.16: Scatterplot of the rank of
baseMean versus the negative logarithm of
the p-value. For small values of baseMean,
no small p-values occur. Only for genes
whose read counts across all samples
have a certain size, the test for differential
expression has power to come out with a
small p-value.

Next we produce its histogram across genes, and a scatterplot between
it and the p-values.
ggplot(awde, aes(x = asinh(baseMean))) +

geom_histogram(bins = 60)

ggplot(awde, aes(x = rank(baseMean), y = -log10(pvalue))) +

geom_hex(bins = 60) +

theme(legend.position = "none")

Question 6.11.1 Why did we use the asinh transformation for the histogram?
How does it look like with no transformation, the logarithm, the shifted logarithm,
i. e., log(x + const.)?
Question 6.11.2 In the scatterplot, why did we use � log10 for the p-values?
Why the rank transformation for the baseMean?
For convenience, we discretize baseMean into a factor variable group, which
corresponds to six equal-sized groups.
awde <- mutate(awde, stratum = cut(baseMean,

breaks = quantile(baseMean, probs =

seq(0, 1, length.out = 7)),

include.lowest = TRUE))

In Figures 6.17 and 6.18 we see the histograms of p-values and the
ECDFs stratified by stratum.
ggplot(awde, aes(x = pvalue)) +

geom_histogram(binwidth = 0.025, boundary = 0) +

facet_wrap( ~ stratum, nrow = 4)

ggplot(awde, aes(x = pvalue, col = stratum)) +

stat_ecdf(geom = "step")
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Figure 6.17: p-value histograms of the
airway data, stratified into 6equally sized
groups defined by increasing value of
baseMean.

If we were to fit the two-group model to these strata separately, we
would get quite different parameters (i. e., p0, falt). For the most lowly
expressed genes (those in the first baseMean-bin), the power of the DESeq2-
test is low, and the p-values essentially all come from the null component.
As we go higher in average expression, the height of the small-p-values
peak in the histograms increases, reflecting the increasing power of the
test.

Can we use that for a better multiple testing correction? It turns out that
this is possible. We can use either independent filtering 20 or independent 20 Richard Bourgon, Robert Gentleman,

and Wolfgang Huber. Independent
filtering increases detection power for
high-throughput experiments. PNAS, 107

(21):9546–9551, 2010. URL http://www.pnas.
org/content/107/21/9546.long

hypothesis weighting (IHW) 21.

21 Nikolaos Ignatiadis, Bernd Klaus, Judith
Zaugg, and Wolfgang Huber. Data-driven
hypothesis weighting increases detection
power in genome-scale multiple testing.
Nature Methods, 2016
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Figure 6.18: Same data as in Figure 6.17,
shown with ECDFs.
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RNA-Seq example (DESeq2)

Model: for gene i and sample j

Kij ∼ NB(mean = µij,dispersion = αj)

H0 : µi1 = µi1
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Ranking is not monotonous in raw p-values



Modified IHW 

Hypothesis splitting: randomly split hypotheses  
into k folds. Learn weights for the  
hypotheses in a fold from the other  
k−1 folds 

Regularisation:  

• for ordered covariate:       Σg |wg − wg−1|  ≤  λ   

• for categorical covariate:  Σg |wg − 1|  ≤  λ 

Convex relaxation: for weight optimisation (only), replace 
ECDFs of the p-values with Grenander estimators (least 
concave majorant of the ECDF)

Nikos Ignatiadis

Avoiding overfitting



histone-QTL example: H3K27ac
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2D decision boundaries
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FIGURE 3. True discovery rate and informative covariates. a) Schematic representation of the mixture density f

i

,
which is composed of the alternative density f1,i weighted by its prior probability ⇡1,i and the uniform null distribution
weighted by ⇡0,i. b-d) The true discovery rate (tdr) of individual tests can vary for different reasons. In b), the test has
high power, and the prior probability of the null is well below 1. In c), the test has equally high power, but the the prior
probability of the null is higher, leading to a reduced tdr. In d), the prior probabilities are like in b), but the test has little
power, again leading to a reduced tdr. e) If an informative covariate is associated with each test, the distribution of the
p-values from multiple tests is different for different values of the covariate. The contours schematically represent the
joint two-dimensional density of p-values and covariate. The rejection boundaries of the BH procedure do not take into
account covariates and only depend on the p-values (dashed red line). In contrast, the decision boundary of IHW is a
step function; each step corresponds to one group, i. e., to one weight. f) By virtue of Equation (1), the density of the tdr
also depends on the covariate. The decision boundary of the BH procedure is shown by the dashed red line; it leads to a
suboptimal set of rejections, in this example with lower than optimal tdr for small and large values of the covariate, and
higher than optimal tdr for intermediate values. In contrast, the decision boundary of IHW approximates a line of constant
tdr, implying a near-optimal use of the type I error budget to make as many rejections as possible. An important feature of
the IHW method is that it does not require explicit estimation of the two-dimensional densities, but instead works directly
on the p-values and the covariate.



• Multiple testing is not a problem  
but an opportunity 

• Heterogeneity across tests 

• Informative covariates are often  
apparent to domain scientists 

• independent of test statistic under the null 

• informative on π1, Falt 

• Data-driven weighting 

• Scales well to millions of hypotheses 

• Controlling ‘overoptimism’

Summary

Nikos Ignatiadis
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