Graphics
Wolfgang Huber
Horror Picture Show
Why graphics?

1. To explore data (interactively)
2. To communicate data & preliminary insights with collaborators
3. To publish results
Goals for this lecture

- Review base R plotting
- Understand the **grammar of graphics** concept
- Introduce ggplot2's ggplot function
- See how to plot 1D, 2D, 3-5D data and understand faceting
- Visualisation for quickling viewing large datasets and discover large-scale trends (e.g. batch effects)
- Use colours like a pro
Canvas model: a series of instructions that sequentially fill the plotting canvas

```r
head(DNase)
##   Run conc density
## 1   1   0.0488   0.017
## 2   1   0.0488   0.018
## 3   1   0.1953   0.121
## 4   1   0.1953   0.124
## 5   1   0.3906   0.206
## 6   1   0.3906   0.215

plot(DNase$conc, DNase$density, ylab = attr(DNase, "labels")$y, xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x), pch = 3, col = "blue")
```
Canvas of original section plot.

```r
head(DNase)
##   Run conc DNase$density DNase$DNase
## 1    1    1       0.05846        0.058
## 2    2    1       0.05846        0.058
## 3    3    1       0.05846        0.058
## 4    4    1       0.05846        0.058
## 5    5    1       0.05846        0.058
## 6    6    1       0.05846        0.058
```

```r
plot(DNase$conc, DNase$density, xlab = paste("Run", attr(DNase, "run")), ylab = attr(DNase, "labels"), pch = 3, col = "blue")
```

ZUSE Plotter Z64 (presented in 1961).
Drawbacks:

- Layout choices have to be made with no ‘global’ overview over what may still be coming
- Resizing often leads to unsatisfactory results
- Different functions for different plot types with different interfaces
- Many routine tasks require a lot of ‘boilerplate’ code
- No concept of facets / lattices / viewports
- Default colours are poor
The grammar of graphics

The components of \texttt{ggplot2}'s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual properties (aesthetics) of the geometric objects, and an associated scale, (e. g., linear, logarithmic, rank)
4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

\begin{verbatim}
\texttt{ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup))} +
\texttt{geom_bar(stat = "identity")} +
\texttt{scale_fill_manual(values = groupColour, name = "Groups")} +
\texttt{theme(axis.text.x = element_text(angle = 90, hjust = 1))}
\end{verbatim}
```r
ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +
  geom_point(aes(colour = sampleColour), shape = 19) +
  geom_smooth(method = "loess") +
  scale_colour_discrete(guide = FALSE)
```

The `ggplot` function is used to create a scatter plot with two variables, `X1426642_at` and `X1418765_at`. The data frame `dftx` is used as input. `geom_point` is used to add points to the plot, with the color of the points determined by `sampleColour` and a shape of 19. `geom_smooth` is used to add a smooth regression line, with the method set to "loess". `scale_colour_discrete` is used to control the colors of the points, setting the guide to `FALSE`. This allows for a clear visual representation of the data relationship and the application of the grammar of graphics.
A more complex example: themes

```r
pb <- ggplot(data.frame(
    name = names(groupSize),
    size = as.vector(groupSize)),
    aes(x = name, y = size))

No geom defined yet!

pb <- pb + geom_bar(stat = "identity") +
    aes(fill = name) +
    scale_fill_manual(values = groupColour, name = "Colour code") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    xlab("Groups") + ylab("Number of Samples")

pb.polar <- pb + coord_polar() +
    theme(axis.text.x = element_text(angle = 0, hjust = 1),
        axis.text.y = element_blank(),
        axis.ticks = element_blank()) +
    xlab("") + ylab("")

pb.polar
```
1D data

It's easy to show the same data with boxplots.

Another way to represent the same data is by lines plots of the density.

Such plots are seen a lot in the biological sciences, as well as in the popular biological literature.

A fun alternative is provided by the package ggplot2.
Discussion of 1D plot types

Boxplot makes sense for unimodal distributions

Histogram requires definition of bins (width, positions) and can create visual artifacts esp. if the number of data points is not large

Density requires the choice of bandwidth; obscures the sample size (i.e. the uncertainty of the estimate)

ecdf does not have these problems; but is more abstract and interpretation requires more training. Good for reading off quantiles and shifts in location in comparative plots; OK for detecting differences in scale; less good for detecting multimodality.

Up to a few dozens of points - just show the data! (beeswarm)
Impact of non-linear transformation on the shape of a density

mixture of two normal distributions

Figure 3.22: Histograms of the same data, with and without logarithmic transformation. The number of modes is different.

Code example
Showing 2D data

```r
scp <- ggplot(dfx, aes(x = '59 E4.5 (PE)',
                      y = '92 E4.5 (FGF4-KO)'))
scp + geom_point()

scp + geom_point(alpha = 0.1)
```

```r
scp + geom_density2d(h = 0.5, bins = 60)
```
4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the information is conveyed well. By default, the shape parameter, that is, the ratio, between the height of the graph and its width, is chosen by `ggplot2` based on the available space in the current plotting device. The width and height of the device are specified when it is opened in R, either explicitly by you or through default parameters. Moreover, the graph dimensions also depend on the presence or absence of additional decorations, like the colour scale bars in Figure ??.

```r
scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale + coord_fixed()
```
Yearly sunspot numbers 1849-1924

Changes in amplitude

Banking to 45 degrees:
Choose aspect ratio so that center of absolute values of slopes is 45 degrees

Sawtooth: Sunspot cycles typically rise more rapidly than they fall (pronounced for high peaks, less for medium and not for lowest)
Yearly sunspot numbers
1849-1924

Changes in amplitude

Plot shape, banking

For plots where x- and y-axis have same units: use 1:1 aspect ratio (PCA!)

Banking

Choose aspect ratio so that center of slopes is 45 degrees

Sawtooth: Sunspot cycles typically rise more rapidly than they fall (pronounced for high peaks, less for medium and not for lowest)
3-5 D and faceting

```r
ggplot(dftx, aes( x = X1426642_at, y = X1418765_at)) + geom_point() + facet_grid( . ~ lineage )
```

geom_point offers these aesthetics (beyond x and y):
- fill
- colour
- shape
- size
- alpha
Data from an agricultural field trial to study the crop barley.

At 6 sites in Minnesota, 10 varieties of barley were grown in each of two years.

Data: yield, for all combinations of site, variety, and year (6 x 10 x 2 = 120 observations)

Note the data for Morris - reanalysis in the 1990s using Trellis revealed that the years had been flipped!

```r
library("lattice")
example("barley")
```
Demo ggvis

1. in R-Studio
EDA for finding batch effects
Many reasonable defaults

Easy to add column and row ‘metadata’ at the sides

See also ComplexHeatmaps package
An important consideration when making plots is the colouring that we use in our visualisation. Oriented packages (including `ggplot2`) allow us to create the colour gradient used in Figures 4.30: Basic R colours.

We saw the function `display.brewer.all()` which allowed us to create the colour gradient used in Figures 4.30: Basic R colours. The default colours used by some of the more modern visualisation packages are much better already, but sometimes we want to make our own choices.

The `brewer.pal.info` package defines a great set of colour palettes, with combinations which lie at the extreme corners of the RGB color cube. We can see all of them at a glance by using the function `display.brewer.all()`.
Consider these:

Different requirements for line & area colours

Many people are red-green colour blind

Lighter colours tend to make areas look larger than darker colours → use colors of equal luminance for filled areas.
RGB color space
Motivated by computer screen hardware
HSV color space

Hue-Saturation-Value (Smith 1978)

V_{min}: black (one point)

V_{max}: a planar area of fully saturated colours, with white in the centre
HSV color space

GIMP colour selector

linear or circular hue chooser and a two-dimensional area (usually a square or a triangle) to choose saturation and value/lightness for the selected hue
(almost) 1:1 mapping between RGB and HSV space

Conversion from RGB to HSL or HSV

Let \(r, g, b \in [0,1] \) be the red, green, and blue coordinates, respectively, of a color in RGB space.

Let \(\max \) be the greatest of \(r, g, \) and \(b \), and \(\min \) the least.

To find the hue angle \(h \in [0, 360] \) for either HSL or HSV space, compute:

\[
h = \begin{cases}
0 & \text{if } \max = \min \\
(60^\circ \times \frac{g-b}{\max - \min} + 0^\circ) \mod 360^\circ, & \text{if } \max = r \\
60^\circ \times \frac{b-r}{\max - \min} + 120^\circ, & \text{if } \max = g \\
60^\circ \times \frac{r-g}{\max - \min} + 240^\circ, & \text{if } \max = b
\end{cases}
\]

To find saturation and lightness \(s, l \in [0,1] \) for HSL space, compute:

\[
s = \begin{cases}
0 & \text{if } \max = \min \\
\frac{\max - \min}{\max + \min} = \frac{\max - \min}{2\max}, & \text{if } l \leq \frac{1}{2} \\
\frac{\max - \min}{2-(\max + \min)} = \frac{\max - \min}{2-2l}, & \text{if } l > \frac{1}{2}
\end{cases}
\]

\[l = \frac{1}{2}(\max + \min)\]

The value of \(h \) is generally normalized to lie between 0 and 360°, and \(h = 0 \) is used when \(\max = \min \) (that is, for grays) though the hue has no geometric meaning there, where the saturation \(s \) is zero. Similarly, the choice of 0 as the value for \(s \) when \(l \) is equal to 0 or 1 is arbitrary.

HSL and HSV have the same definition of hue, but the other components differ. The values for \(s \) and \(v \) of an HSV color are defined as follows:

\[
s = \begin{cases}
0, & \text{if } \max = 0 \\
\frac{\max - \min}{\max} = 1 - \frac{\min}{\max}, & \text{otherwise}
\end{cases}
\]

\[v = \max\]

The range of HSV and HSL vectors is a cube in the cartesian coordinate system; but since hue is really a cyclic property, with a cut at red, visualizations of these spaces invariably involve hue circles;\(^4\) cylindrical and conical (bi-conical for HSL) depictions are most popular; Spherical depictions are also possible.
Perceptual colour spaces

Human perception of colour corresponds neither to RGB nor HSV coordinates, and neither to the physiological axes light-dark, yellow-blue, red-green. Rather to polar coordinates in the colour plane (yellow/blue vs. green/red) plus a third light/dark axis. Perceptually-based colour spaces try to capture these perceptual axes:

1. hue (dominant wavelength)
2. chroma (colourfulness, intensity of colour as compared to grey)
3. luminance (brightness, amount of grey)
CIELUV and HCL

Commission Internationale de l’ Éclairage (CIE) in 1931, on the basis of extensive colour matching experiments with people, defined a “standard observer” who represents a typical human colour response (response of the three light cones + their processing in the brain) to a triplet (x,y,z) of primary light sources (in principle, this could be monochromatic R, G, B; but CIE choose something a bit more subtle)

1976: CIELUV and CIELAB are perceptually based coordinates of colour space.

CIELUV (L, u, v)-coordinates is prefered by those who work with emissive colour technologies (such as computer displays) and CIELAB by those working with dyes and pigments (such as in the printing and textile industries)

Ihaka 2003
HCL colours

(u,v) = chroma * (cos h, sin h)

L the same as in CIELUV, (C, H) are simply polar coordinates for (u,v)

1. hue (dominant wavelength)
2. chroma (colorfulness, intensity of color as compared to gray)
3. luminance (brightness, amount of gray)
Figure 2: Circles in HCL colorspace.

- **a**: circles in HCL space at constant $L = 75$, with the angular coordinate H varying from 0 to 360 and the radial coordinate $C = 0, 10, \ldots, 60$.
- **b**: constant $C = 50$, and $L = 10, 20, \ldots, 90$.

Pick your favourite

From A. Zeileis, Reisensburg 2007
Albert Munsell (1858-1918) divided the circle of hues into 5 main hues — R, Y, G, B, P (red, yellow, green, blue and purple).

Value, Chroma: ranges divided into 10 equal steps.

E.g. R 4/5 = hue of red with a value of 4 and a chroma of 5.
Albert Munsell (1858-1918) divided the circle of hues into 5 main hues — R, Y, G, B, P (red, yellow, green, blue and purple).

Value, Chroma: ranges divided into 10 equal steps.

E.g. R 4/5 = hue of red with a value of 4 and a chroma of 5.
Colour Harmony

Figure 3: The principal Munsell 5/5 colours. From the top these are R 5/5, Y 5/5, G 5/5, B 5/5 and P 5/5. This figure is redrawn from Birren (1969).

Figure 4: The same images as Figure 3, but drawn with full saturation HSV colours.
Balance

The intensity of colour which should be used is dependent on the area that that colour is to occupy. Small areas need to be more colourful than larger ones.

Choose colours centered on a mid-range or neutral value, or;

Choose colours at equally spaced points along smooth paths through (perceptually uniform) colour space: equal luminance and chroma and correspond to set of evenly spaced hues.
Acknowledgements

Susan Holmes
Robert Gentleman
Florian Hahne

Hadley Wickham
Ross Ihaka
Achim Zeileis
Kurt Hornik