Metabolomics data analysis with Bioconductor

Johannes Rainer (Eurac Research, Italy)¹

June 12, 2017 @CSAMA2017

¹email: johannes.rainer@eurac.edu, github/twitter: jotsetung = < = < = < < < > < = < < < < < > < < > < < > < < > < > < < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > > < > < > > < > < > < > < > > > < > < > < > < > < > > < > > < > > < >

- Very short introduction to metabolomics data analysis.
- Focus on pre-processing of LCMS data.
- Focus on the xcms package (*new* user interface), but other exist too (e.g. yamss).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Metabolomics?

- Is the large-scale study of small molecules (metabolites) in a system (cell, tissue or organism).
- Metabolites are intermediates and products of cellular processes (metabolism).
- Metabolome?:
 - Genome: what can happen.
 - Transcriptome: what appears to be happening.
 - Proteome: what makes it happen.
 - Metabolome: what actually happened. Influenced by genetic and environmental factors.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Nuclear magnetic Resonance (NMR) - not covered here.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Mass spec (MS)-based metabolomics

Mass Spectrometry (MS)

 Problem: unable to distinguish between metabolites with the same mass-to-charge ratio (m/z).

・ロト ・得ト ・ヨト ・ヨト

32

Liquid Chromatography Mass Spectrometry (LCMS)

- Combines physical separation via LC with MS for mass analysis.
- Additional time dimension to separate different ions with same m/z.
- LCMS metabolomics: identify peaks in the m/z rt plane.

LCMS-based metabolomics data pre-processing

- Input: mzML or netCDF files with multiple MS spectra per sample.
- Output: matrix of abundances, rows being *features*, columns samples.
- feature: ion with a unique mass-to-charge ratio (m/z) and retention time.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

```
faahK0 <- readMSData2(cdf_files)</pre>
```

• OnDiskMSnExp: small memory size, loads data on-demand.

LCMS-based metabolomics data pre-processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Chromatographic peak detection.
- Sample alignment.
- Correspondence.

- Goal: Identify chromatographic peaks within slices along mz dimension.
- What type of peaks have to be detected?

```
mzr <- c(241.1, 241.2)
chrs <- extractChromatograms(faahKO, mz = mzr, rt = c(3550, 3800))
cols <- brewer.pal(3, "Set1")[c(1, 1, 2, 2)]
plotChromatogram(chrs. col = paste0(cols. 80))</pre>
```

241.1 - 241.2

retention time

• centWave (Tautenhahn et al. BMC Bioinformatics, 2008):

イロト イポト イヨト イ

∋) ∋

• Step 1: Detection of regions of interest

mz-rt regions with low mz-variance.

• Step 2: Peak detection using continuous wavelet transform (CWT)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Allows to identify peaks with different widths.

Example: centWave-based peak detection:

faahK0 <- findChromPeaks(faahK0, param = CentWaveParam())</pre>

 Result: XCMSnExp, container for LC/GC-MS results, extends OnDiskMSnExp.

head(chromPeaks(faahK0))

mz mzmin mzmax rt rtmin rtmax into intb maxo [1,] 425,9 425,9 425,9 2520,158 2510,768 2527,982 9999.769 9984 120 741 [2,] 464.3 464.3 464.3 2518.593 2504.508 2532.677 32103.270 32082.926 1993 [3,] 499.1 499.1 499.1 2524.852 2520.158 2527.982 4979.194 4904.709 883 [4,] 572.7 572.7 572.7 2524.852 2520.158 2527.982 2727.446 2721.187 559 [5,] 579.8 579.8 579.8 2524.852 2520.158 2527.982 2450.477 2444.218 468 [6,] 453.2 453.2 453.2 2506.073 2501.378 2527.982 1007408.973 1007380.804 38152 sn sample is_filled [1.] 740 0 [2.] 1992 0 [3,] 13 1 0 [4,] 558 1 0 0 [5,] 467 1 1 a [6,] 38151

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

LCMS pre-processing: Alignment

- Goal: Adjust retention time differences/shifts between samples.
- Total ion chromatogram (TIC) representing the sum of intensities across a spectrum.

- Overview of algorithms: (Smith et al. Brief Bioinformatics 2013).
- xcms: *peak groups* (Smith et. al *Anal Chem* 2006), obiwarp (Prince et al. *Anal Chem*, 2006),

LCMS pre-processing: Alignment

• <u>Example</u>: use obiwarp to align samples.

faahK0 <- adjustRtime(faahK0, param = ObiwarpParam())</pre>

• TIC after adjustment:

- Assumptions:
 - Samples relatively similar (either similar chromatograms or a set of common metabolites present in all).
 - Analyte elution order same in all samples.

LCMS pre-processing: Alignment

• Example: effect of alignment on example peak.

```
chrs_adj <- extractChromatograms(faahKO, mz = mzr, rt = c(3550, 3800))</pre>
```

```
par(mfrow = c(2, 1))
plotChromatogram(chrs, col = paste0(cols, 80), main = "Before alignment")
plotChromatogram(chrs_adj, col = paste0(cols, 80), main = "After alignment")
```


retention time

LCMS pre-processing: Correspondence

- Goal: Group detected chromatographic peaks across samples.
- Peaks that are close in rt (and m/z) are grouped to a *feature*.
- xcms: *peak density* method:

900

LCMS pre-processing: Correspondence

• Example: peak grouping.

```
faahK0 <- groupChromPeaks(faahK0, param = PeakDensityParam())</pre>
```

• featureValues: extract values for each feature from each sample.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

```
## Access feature intensities
head(featureValues(faahKO, value = "into"))
```

	ko15.CDF	ko16.CDF	wt15.CDF	wt16.CDF
FT0001	6029.945	NA	4586.527	NA
FT0002	1144.015	NA	1018.815	NA
FT0003	NA	774.576	1275.475	NA
FT0004	NA	NA	1284.728	1220.7
FT0005	2759.095	3872.963	NA	NA
FT0006	7682.585	3806.080	NA	NA

• Fill-in values for missing peaks: fillChromPeaks.

What next? Data normalization

- Adjust within and between batch differences.
- MetNorm RUV for metabolomics (Livera et al. Anal Chem 2015).
- Injection order dependent signal drift (Wehrens et al. *Metabolomics* 2016).

🗄 ૧૧૯

- Annotate features to metabolites.
- Each metabolite can be represented by multiple features (ion adducts, isotopes).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Starting point: CAMERA package.
- On-line spectra databases (e.g. MassBank).

thank you for your attention!

- Hands on in the afternoon labs:
 - Proteomics lab.
 - Metabolomics lab (pre-processing of LCMS data).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?