Performance and Parallel Evaluation

Martin Morgan (martin.morgan@roswellpark.org)
Roswell Park Cancer Institute
Buffalo, NY, USA

16 June, 2017
Performance & Parallel Evaluation

My code is slow, how do I make it run faster?

Write better R code
- Correct, then efficient
- 10-1000× speed-up, great satisfaction

Parallel evaluation
- Computer: 5-10× speed-up, 2-5× frustration
- Cluster: 10-100× speed-up, 10-20× frustration
- Cloud: 100+× speed-up, 20-50× frustration
Priorities

1. Correct!
2. Robust – works for most realistic inputs
3. Simple
4. Fast
R code: deadly sins

1. Unnecessary iteration

   ```r
   x <- 1:10000; for (i in seq_along(x)) x[i] = log(x[i])
   ```

2. Copy-and-append iteration

   ```r
   answer <- numeric()
   for (i in 1:10000) answer <- c(answer, 1/i)
   for (i in 1:10000) answer[i] <- 1/i
   ```

3. Unnecessary evaluation

   ```r
   x <- 1:1000000
   for (i in seq_along(x)) x[i] = x[i] * sqrt(2)
   ```

4. Re-implementation
> fun1 <- function(n) {
+ ## How many sins?
+ x <- numeric()
+ for (i in 1:n)
+ x <- c(x, log(i) * sqrt(2))
+ x
+ }
> fun2 <- function(n)
+ log(seq_len(n)) * sqrt(2)
R code: saving graces II

1. Validation – identical(), all.equal()

   ```r
   > identical(fun1(1000), fun2(1000))
   [1] TRUE
   ```

2. Timing – system.time(), microbenchmark()

   ```r
   > library(microbenchmark)
   > microbenchmark(fun1(1000), fun2(1000))
   
   Unit: microseconds

   expr       min       lq    mean   median      uq     max neval cld
   fun1(1000) 2347.294 2707.3970 10069.0306 2827.5615 3219.231 644050.89 100  a
   fun2(1000)  67.188   71.0295   132.8585   82.0295   92.960   4788.03 100  a
   ```
3. ‘Experience’ – available packages & functions
4. Profiling – `Rprof()`
5. Foreign languages – e.g., C, `Rcpp`
Parallel evaluation

- Most often: ‘embarrassingly parallel’ evaluation of iterative for loops / lapply()

Other packages

- parallel – a base package; single computer
- foreach – popular ‘for’ loop paradigm
- BatchJobs – clusters with job schedulers
- Rmpi – classic HPC

BiocParallel

- Consistent interface
- Plays well with many Bioconductor packages
Parallel evaluation

```r
> library(BiocParallel)
> fun <- function(i) {
+   Sys.sleep(1)
+   i
+ }
> system.time(res1 <- lapply(1:5, fun))

   user  system elapsed
 0.005   0.000   5.009

> system.time(res2 <- bplapply(1:5, fun))

   user  system elapsed
 0.049   0.074  15.362

> identical(res1, res2)

[1] TRUE
```
Parallel evaluation: *BiocParallel*

- Different *Param()* objects for styles of computing, e.g.,
 - `SerialParam()`: no parallel evaluation
 - `MulticoreParam()`: separate forked processes on one computer
 - `BatchJobsParam()`: jobs submitted to a cluster queuing system
- `register()` a param or provide it as an argument for use in `bplapply()`.
- Sensible default values.
Parallel evaluation: errors and debugging

- `bptry()` to capture partial results and errors.
- `BPRED0` argument to `bplapply()` to evaluate just the errors.
- `BPPARAM=SerialParam()` to make problematic code run locally for easy debugging.
- See the vignette *Errors, Logs, and Debugging*
Parallel evaluation: processing large genomic files

Restrict input to minimum necessary data

- Select columns or fields of files to import, e.g., `colClasses` argument to `read.table()`, `ScanBamParam()` and `ScanVcfParam()`.
- Use a data base, hdf5, or other file format that allows queries or slices of the data to be imported.

Iterate through files to manage memory use

- File connections in base R
 - `BamFile("my.bam", yieldSize=1000000)`

GenomicFiles

- Functions to help manage collections of genomic files
Parallel evaluation: extended example

Goal: for a vector of paths to bam files, fls, summarize GC content of each aligned read.

```r
> library(Rsamtools); library(GenomicFiles)
> bfls <- BamFileList(fls, yieldSize=100000)
> yield <- function(bfl) # input a chunk of alignments
+   readGAlignments(bfl, param=ScanBamParam(what="seq"))
> map <- function(aln) { # GC content, bin & cummulate
+   gc <- letterFrequency(mcols(aln)$seq, "GC",
+     as.prob=TRUE)
+   cumsum(tabulate(1 + gc * 50, 51))
+ }
> reduce <- `+`
> gc <- bplapply(bfls, reduceByYield, yield, map, reduce)
```
Summary

- **Correct** first, performance second
- No need to worry about code that doesn’t take very long!
- ‘Embarassingly’ parallel (lapply()-like) problems easily parallelized, especially on a single computer.
- Opportunity for very scalable computations, e.g., via AMI & StarCluster.
Acknowledgments

▶ Core: Valerie Obenchain, Hervé Pagès, Lori Shepherd, Marcel Ramos, Nitesh Turaga, Daniel van Twisk.

▶ The research reported in this presentation was supported by the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health under Award numbers U24CA180996 and U41HG004059. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

https://bioconductor.org,
https://support.bioconductor.org