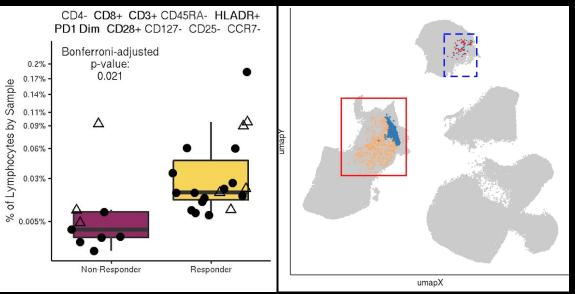
Benchmarking and Methods for Emerging Data

Greg Finak and Matt Ritchie

Fred Hutch Cancer Immunotherapy Program

Fresh Blood at baseline (pre-treatment)



Automated discovery and annotation of a novel biomarker of therapeutic response in MCC.

- High throughput (measure many cells) is critical to detect rare cell populations.
- Dimension reduction is just a visual aid, doesn't tell the full story.

THE FAUST ALGORITHM

An Interpretable machine learning approach

Unambiguously finds all cell populations in a data-driven manner

Complete phenotypic annotations and cell counts for biomarker screening, e.g. CD3+/CD4-/CD8+/PD1 Dim

Robust to biological and technological heterogeneity, diverse marker panels

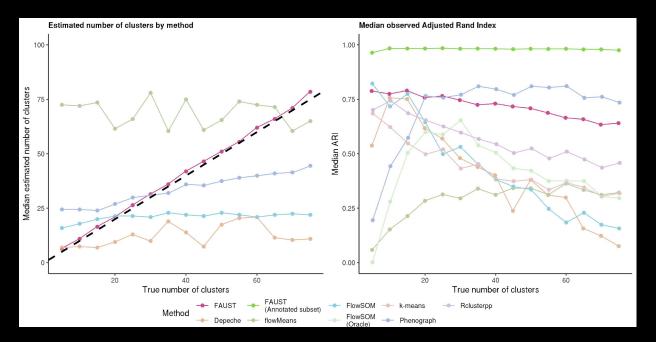
Flow and mass cytometry data can be used for biomarker discovery

Preprint available at biorxiv.org/content/10.1101/702118v2

FAUST RETURNS A SPARSE SUMMARY OF DATA SETS

	Total number of samples in data set	Number of markers per data set	Number of Markers Selected by FAUST	Total possible number of phenotypes	Total number of discovered phenotypes	Discovery ratio
Data Set 1	~170	37	21	4,194,304	300	0.01%
Data Set 2	~190	27	19	1,769,472	663	0.04%
Data Set 3	~190	26	19	1,179,648	660	0.06%
Data Set 4	~190	22	18	884,736	909	0.10%
Data Set 5	~170	35	17	131,072	137	0.11%
Data Set 6	~75	18	18	262,144	275	0.11%
Data Set 7	~50	23	16	98,304	119	0.12%
Data Set 8	~190	21	17	131,072	558	0.43%
Data Set 9	~70	25	16	65,536	307	0.47%
Data Set 10	~1,160	16	13	8,192	76	0.93%
Data Set 11	~70	11	11	4,608	162	3.52%
Data Set 12	~360	11	10	3,456	165	4.77%
Data Set 13	~80	11	10	2,304	206	8.94%
Data Set 14	~30	11	9	512	82	16.02%

BENCHMARKING FAUST



- 10 simulated samples
- 10-dimensional data
- Use default settings.
- Estimate the number of cell populations
- Know ground truth.
- Non-gaussian and more realistic
- How well do we estimate the true number of clusters?
- How well do we recover the true cluster structure?

BENCHMARKING FAUST SIMULATING AN IMPERFECT BIOMARKER

All subjects are treated

N=100 samples 15,000 cell populations Aiming to be fair to all methods

Simulated Simulated Simulated Simulated Simulated log odds log odds log odds log odds log odds: 0.847 ĭ 099 1 386 1.735 2.197 P(C)=0.5: prevalence Ó 2 3 -1 Ó 2 -1 Boot-strapped estimate of log odds of association between biomarker and response to therapy (95% CI) FlowSOM FALIST Phenograph (Oracle) Method FlowSOM k-means - Relusterpp (2*Oracle)

Response mediated through some cell population

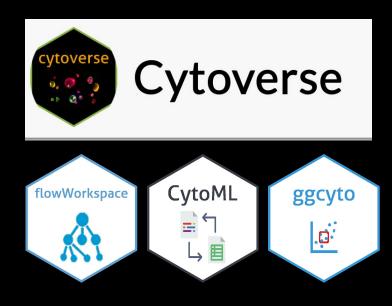
Cell Population

Treatment

P(R|C) varies, biomarker is imperfect

Response

SINGLE-CELL SOFTWARE INFRASTRUCTURE



FAUST built on top of the Bioconductor "*cytoverse*" cytometry infrastructure.

- Mature tools with 10+ years of development.
- Disk-backed data storage (hdf5, tiledb).
- Optimized for millions of cells and hundreds of samples per cell.
- Hierarchical representations of cell populations and relationships
- Lots of "historical baggage" from the flow cytometry field.

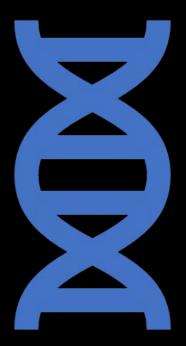
Single cell RNA Seq

- core BioConductor infrastructure + other tools (Seurat).
 - New technology with ongoing development.
- Need adaptors between the flow cytometry and single-cell RNA seq worlds but it's a moving target.

MULTIMODAL PROTEIN AND RNA SEQ TECHNOLOGIES

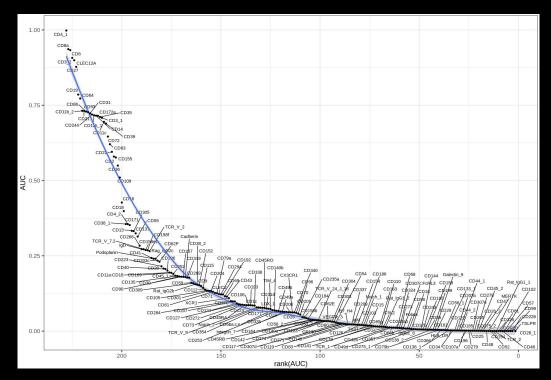
CITE-Seq, SCITOSeq are high-throughput RNAseq technology that enable simultaneous measurement of transcriptomic and cell surface protein data.

- Antibodies are conjugated with sequence tags.
- Cells encapsulated by drops.
- Each drop can contain zero, one, or more cells.
- Cells from multiple donors.
 - SNP information from sequencing used to identify different donors.
- Limitations
 - Not many large high throughput CITE-Seq data sets available until recently.
 - Small Vx data set (60k cells, 228 markers).
 - T cell data set (13k, 40+markers).
- SCITO-Seq: (Byungjin Hwang et al. 2020): 100k-200k cells 28 markers
 - Each pool has its own sequence tags.
 - Each pool stained with a complete antibody cocktail.



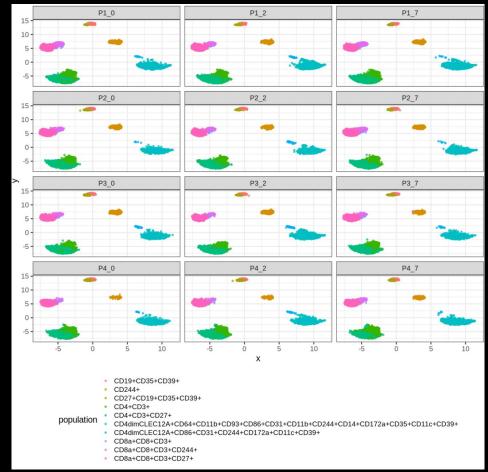
EX: 65K CELLS AND 228 MARKERS

- FAUST tells us how informative is each marker
 - i.e. how reliably a marker can be used to discriminate between cells of different phenotypes.
- Most markers are not very informative.
- Too few cells to reliably use these markers.



FAUST PHENOTYPIC ANNOTATIONS

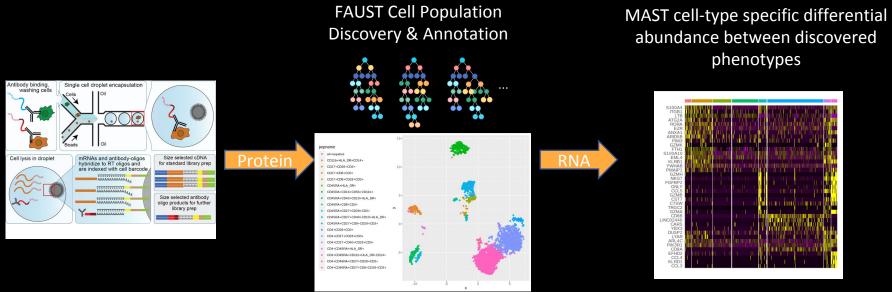
- Automated selection of # of populations.
- Phenotypes defined using 19 markers.
- Broadly:
 - B-cells
 - CD4 and CD8 T cells
 - Activated T cells (CD4 and CD8)



Multimodal Data Measures Protein and Gene Expression

FAUST resolves complex phenotypes.

 Protein provides much more reliable information
 Two-stage analysis of protein ->



MAST: Finak et al. Genome Biol. **16**, 278 (2015) Code: <u>http://github.com/RGLab/MAST</u>

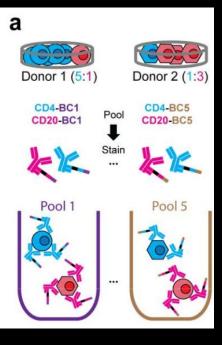
RNA

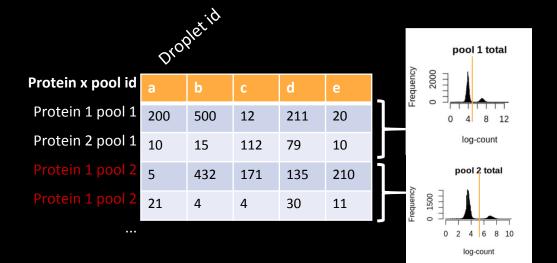
Preprint: Greene *et al.* Biorxiv: <u>https://doi.org/10.1101/702118</u> Code: <u>http://github.com/RGLab/FAUST</u>

Will show an application of this pipeline to data from a recent preprint by Byungjin Hwang *et al.* bioRXiv <u>https://doi.org/10.1101/2020.03.27.012633</u>.

SCITOSEQ: USE INFORMATION FROM MULTIPLE POOLS

RESOLVE DROPLETS WITH DOUBLETS, MULTIPLETS, ETC





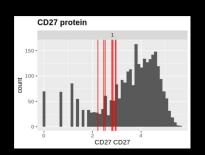
Byungjin Hwang, et al. 2020

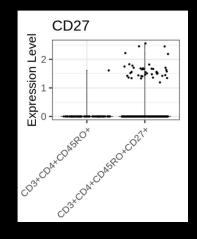
Application of FAUST to Phenotyping Multiplexed CITE-Seq Data

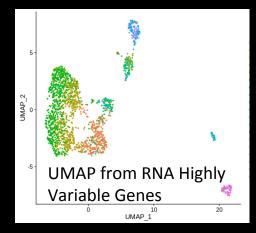
100k PBMCs & 28 markers, 10 pools 24 Cell Populations Annotated

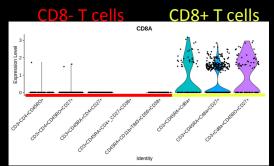


- FAUST resolves complex phenotypes not immediately obvious in dimension reduction.
- Protein provides much more reliable information than gene expression.
- Two-stage analysis of protein -> RNA









Accurate Cell Population Annotation will be Critical to Make the Most of Integrated Single-Cell Data

- Use methods and lessons learned from flow cytometry for automated phenotype assignment in multimodal single-cell CITE-seq data.
- Larger data sets will be critical for making the most of these technologies.
- Building infrastructure to integrate flow / mass cytometry single cell data and scRNASeq data.
 - Benchmark against manual / expert annotation

Acknowledgements

Evan Greene

Raphael Gottardo

Paul Nghiem

Candice Church

Leonard D'Amico

Steve Fling

Nirasha Ramachandran

Human Cell Atlas

Cancer Immunotherapy Trials Network

of Health

Characterization of full-length isoforms in single cells with Nanopore long-read sequencing and FLAMES

Matt Ritchie

Single cell RNA sequencing with nanopore sequencing technology

Inter

Obtain full-length cDNA during 10X library preparation and sequence on Oxford Nanopore Technologies (ONT) PromenthION platform

Advantage:

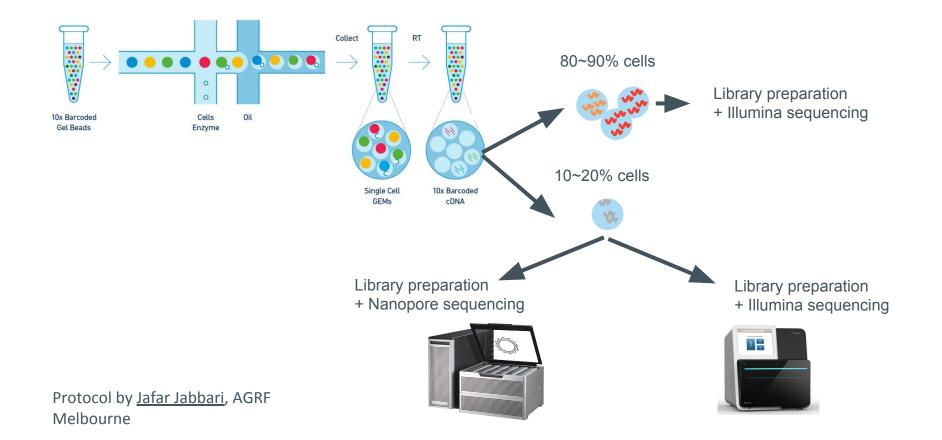
Full gene-body coverage Isoform characterization at single cell level

Challenge:

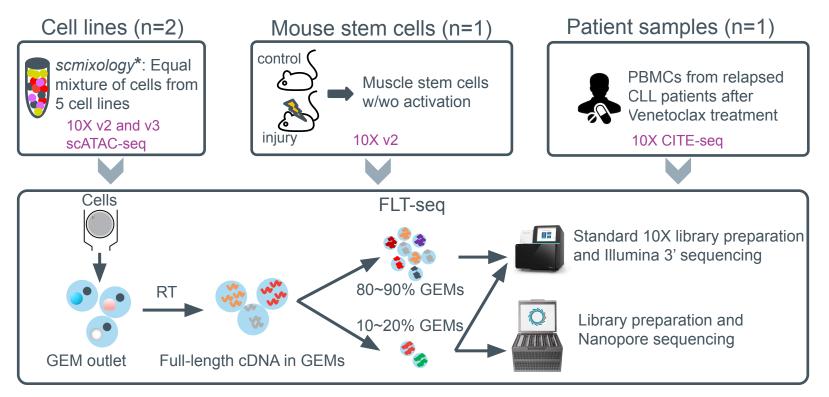
Limited throughput compared to short reads (~40M PromethION vs ~400M Nextseq) Limited tools for data analysis

> ScISOr-Seq Gupta *et al.* Nat Biotechnol 2018 RAGE-seq Singh *et al.* Nat Commun 2019 Lebrigand *et al.* bioRxiv 2019

Full-Length Transcriptome sequencing (FLT-seq)

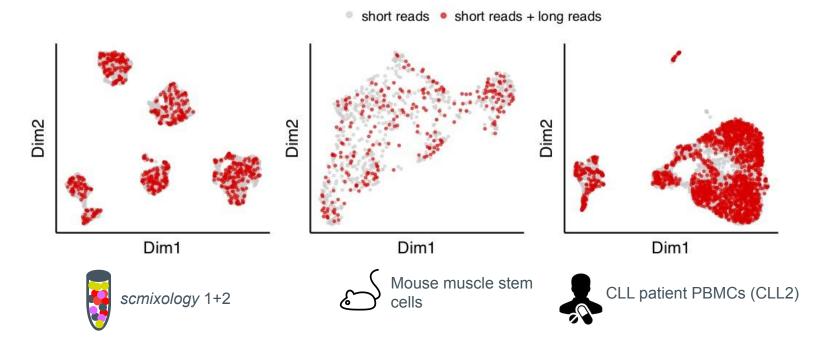


FLT-seq can be used on different cell types and 10X scRNAseq kits

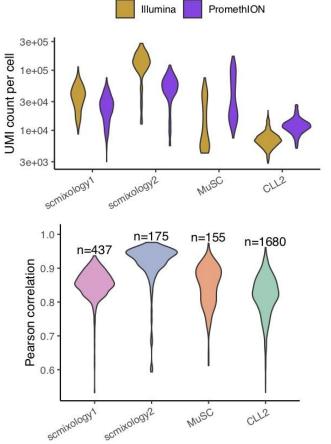


UMAP visualization of representative samples shows uniform sampling of cells

In total, we profiled ~2,500 single cells using PromethION, together with ~16,000 cells with Illumina short-reads

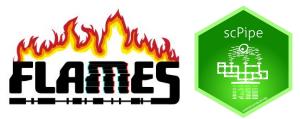


Basic QC, comparison to short read data

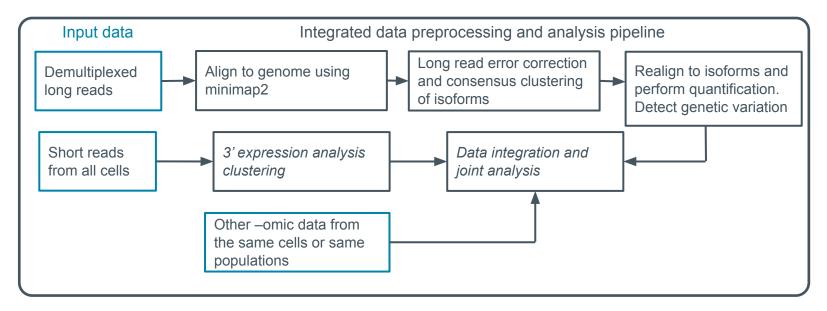


- 10X cell barcode could be detected in 40-60% of long-reads
- similar sequencing depth per cell achieved in long and short-read data
- high correlation in gene level quantification between long and short-read data

Data analysis pipeline

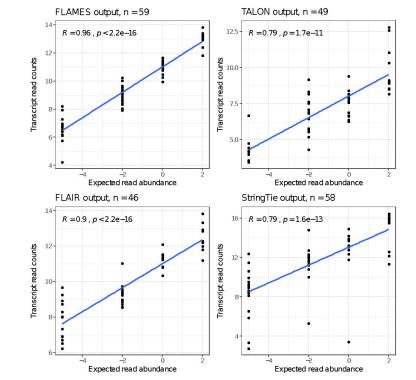


A new toolbox called *FLAMES* (*F*ull-*L*ength tr*A*nscript quantification, *M*utation and *S*plicing analysis for long-read data) was developed.



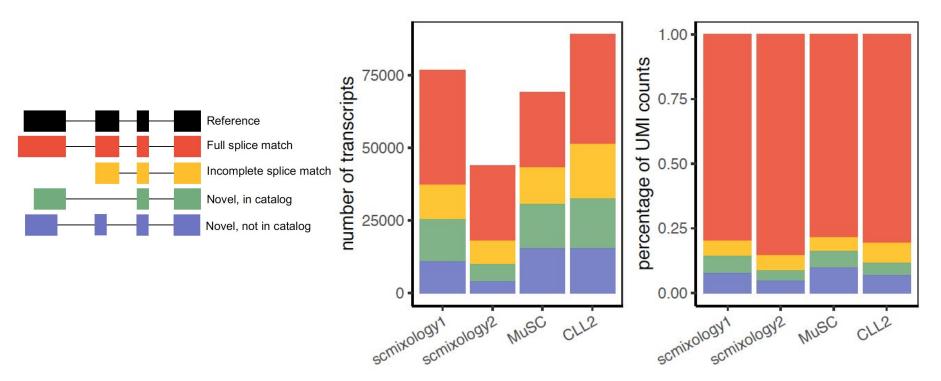
Benchmark isoform detection and quantification using SIRV spike-in dataset*

* Garalde *et al.* Nat Methods 2018 Dong, Tian *et al.* bioRxiv 2020



Isoform quantification

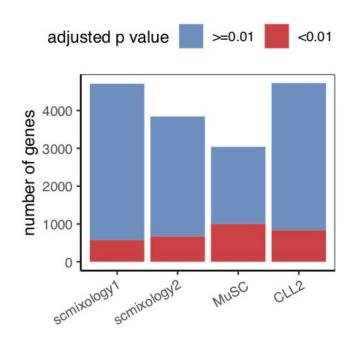
Characterization of isoforms



SQANTI2 (<u>https://github.com/Magdoll/SQANTI2</u>) Tardaguila *et al.* Genome Research 2018

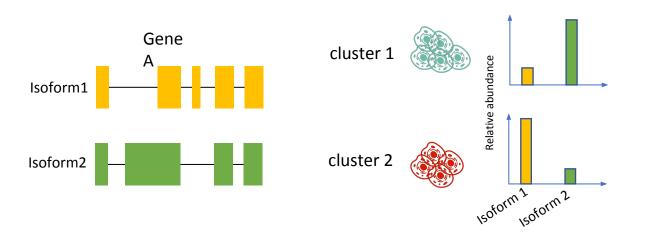
Differential transcript usage analysis

Find cluster/cell type specific transcripts

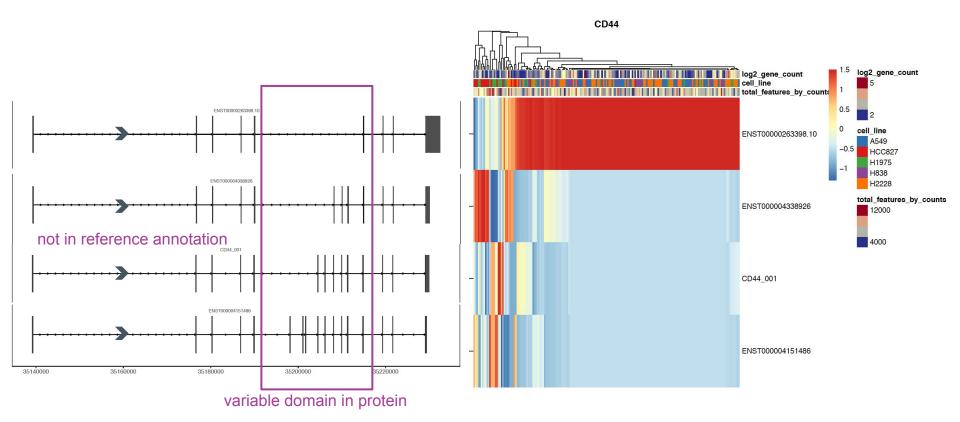


- After filtering by abundance, test for proportion differences between isoforms in different clusters for each gene
- 200 1,000 genes with *p*-value < 0.01

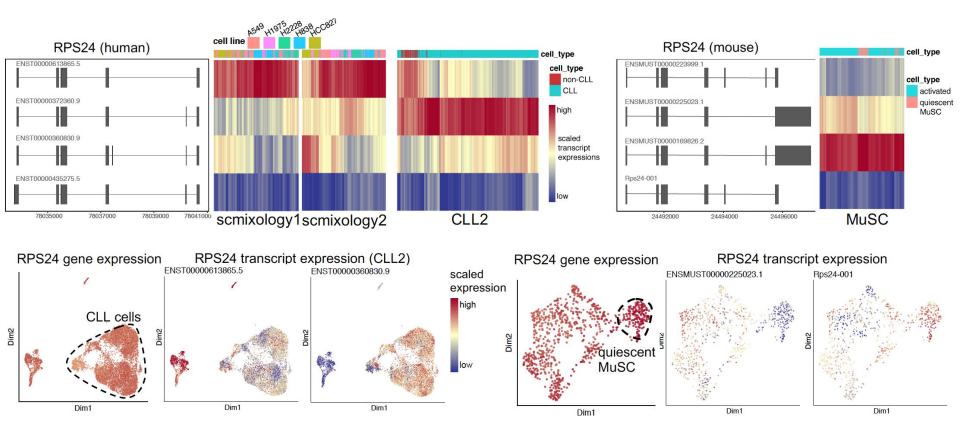
Find cluster/cell type specifc transcript



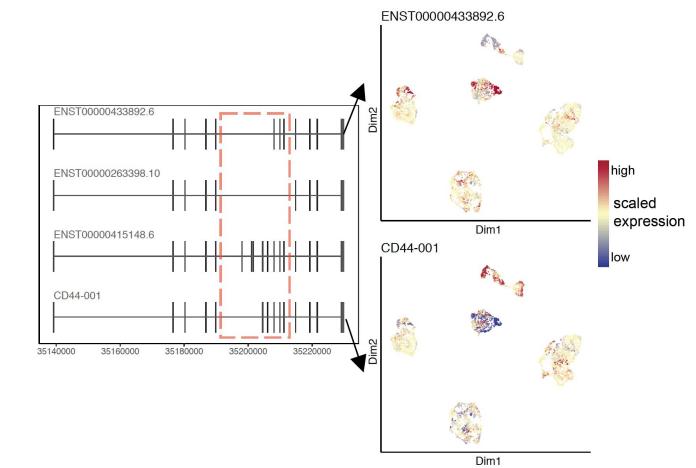
Expression of different CD44 isoforms in scmixology data



Expression of different RPS24 isoforms

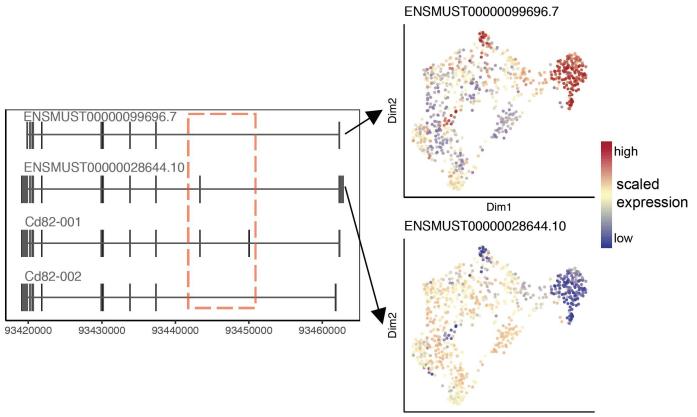


Expression of different CD44 isoforms in scmixology data

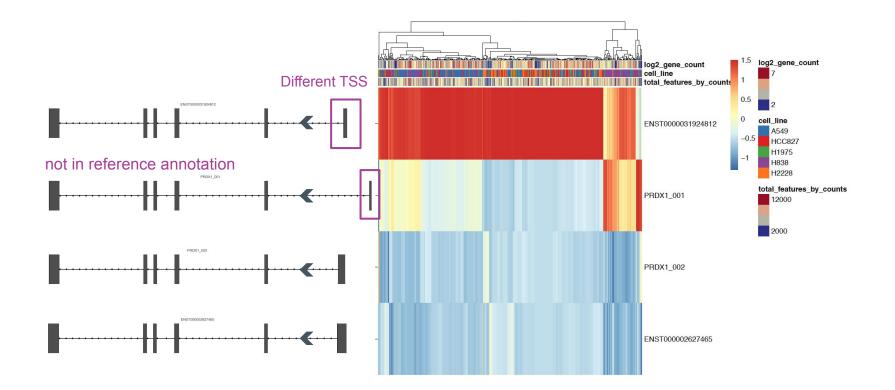


not in reference annotation

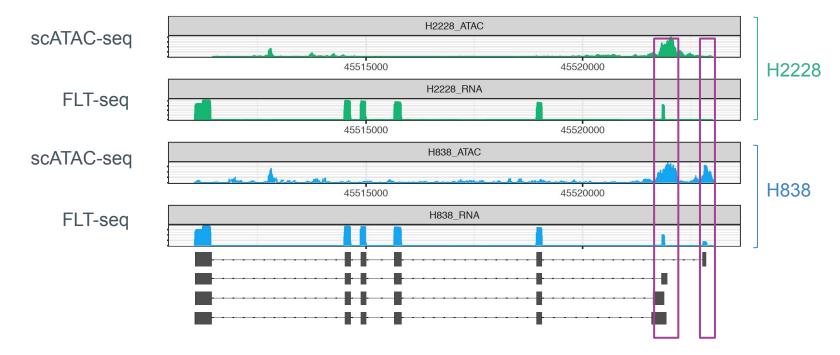
Expression of different CD82 isoforms in MuSC data



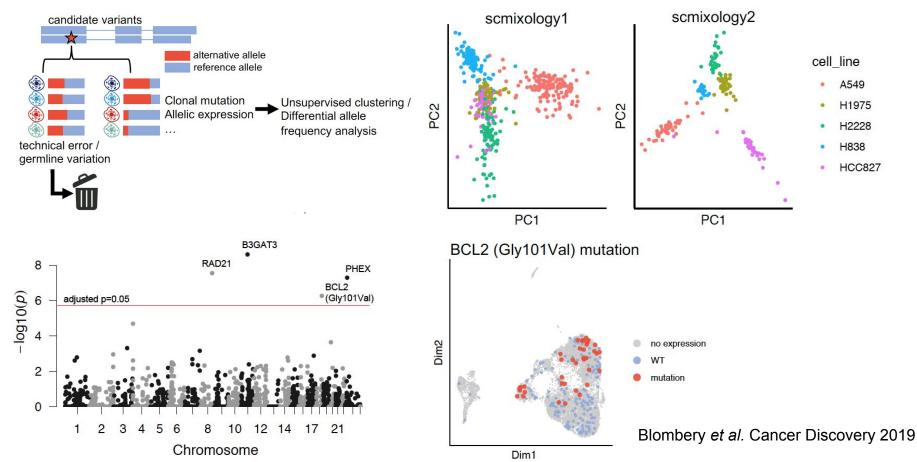
Expression of different PRDX1 isoforms in scmixology data



Different TSS correspond to different open chromatin regions after integration with scATAC-seq data



Shani Amarasinghe



FLAMES tests for differences in allele frequency between clusters

Summary

- Developed FLT-seq that couples the popular 10X scRNA-seq protocol with ONT long-read sequencing platform
- Created new software (*FLAMES*) to detect and quantify isoforms in single cell (and bulk) RNA-seq data and also look for mutations
- Summarized and compared splicing across multiple samples from diverse cell types and tissues
- Current work: FLAMES -> Bioconductor

Preprint -> bioRxiv

- Other projects underway:
 - Benchmarking of scRNA-seq preprocessing pipelines
 - Adapting *scPipe* to handle scATAC-seq data

scPipe

FLT-seq method available through protocols.io: dx.doi.org/10.17504/protocols.io.8d9hs96

FLAMES package available from GitHub: https://github.com/LuyiTian/FLAMES

Datasets submitted to GEO (10th July 2020, awaiting accession numbers)

Acknowledgements

Luyi Tian Shani Amarasinghe Quentin Gouil Has Kariyawasam Charity Law Xueyi Dong Yue You Shian Su Kathleen Zeglinski

Walter+Eliza Hall

David Huang Rachel Thijssen Mary Ann Anderson Andrew Roberts Hongke Peng Christoffer Flensburg <u>Jafar Jabbari</u> Alexis Lucattini Azadeh Seidi

Mike Clark James Ryall

Australian Government
National Health and Medical Research Council