Overview of *GGtools* for genetical genomics

VJ Carey <stvjc@channing.harvard.edu>

October 3, 2006

1 Introduction

We use the term *genetical genomics* to refer to data analysis activities that link genotypic information such as SNP configurations to gene expression phenotype. The *GGtools* package includes various demonstration resources and analysis tools for these activities. We will attach the library and have a look at a basic demonstration resource.

> library(GGtools)

Kern Smooth 2.22 installed
Copyright M. P. Wand 1997

> data(chr20GGdem)
> class(chr20GGdem)

[1] "racExSet"
attr(,"package")
[1] "GGtools"

> chr20GGdem

racExSet instance (SNP rare allele count + expression)
rare allele count assayData:
 Storage mode: environment
 featureNames: rs4814683, rs6076506, rs6139074, ..., rs6062370, rs6090120 (117417 total)
Dimensions:
 racs
Features 117417
Samples 58

expression assayData
 Storage mode: environment
featureNames: 1007_s_at, 1053_at, 117_at, ..., AFFX-r2-P1-cre-3_at, AFFX-r2-P1-cre-5_at
Dimensions:
 exprs
Features 8793
Samples 58

phenoData
 rowNames: NA06985, NA06993, ..., NA12892 (58 total)
 varLabels and varMetadata:
 sample: hapmap id

Experiment data
 Experimenter name: Cheung VG
 Laboratory: Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
 Contact information:
 Title: Mapping determinants of human gene expression by regional and genome-wide association.
 URL: http://example.com
 PMIDs: 16251966

Abstract: A 180 word abstract is available. Use 'abstract' method.

Annotation [1] "hgfocus"

The racExSet class is an extension of the eSet class. It represents expression data from the hgfocus chip on 48 individuals in the CEU CEPH group, and SNP data obtained from their HapMap genotyping results.

The data are organized into an 8793 by 58 matrix of expression values accessible with the exprs method, and an 117417 by 58 of rare allele counts:

```r
> dim(exprs(chr20GGdem))
[1] 8793  58
> dim(snps(chr20GGdem))
[1] 117417  58
> snps(chr20GGdem)[1:5, 1:5]
            NA06985 NA06993 NA06994 NA07000 NA07022
rs4814683  2      0      0      2      1
rs6076506  0      0      0      0  NA
rs6139074  2      0      0      2      1
rs1418258  2      0      0      2      1
rs7274499  0      0      0      0  NA
```
We need some genetic metadata about SNPs; these are culled from SNP genotyping panels released on a chromosome-by-chromosome basis for CEPH participants by HapMap project:

```r
> data(chr20meta)
> chr20meta[1:4, ]
```

```
<table>
<thead>
<tr>
<th>pos</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>9795</td>
<td>+</td>
</tr>
<tr>
<td>11231</td>
<td>+</td>
</tr>
<tr>
<td>11244</td>
<td>+</td>
</tr>
<tr>
<td>11799</td>
<td>+</td>
</tr>
</tbody>
</table>
```

A basic task is to compute a screen (over the genome, or, more practically, over a chromosome) of genotypic determination of expression. The `snpScreen` method helps with this; we illustrate an example related to results in Cheung and Spielman 2005:

```r
> chr20GGdem = exclMono(chr20GGdem)
> S100 = snpScreen(chr20GGdem, chr20meta, genesym("CPNE1"), ~., +
            lm, gran = 30)
> S100
```

```r
GGtools snpScreenResult for call:
snpScreen(racExSet = chr20GGdem, snpMeta = chr20meta, gene = genesym("CPNE1"),
          formTemplate = ~., fitter = lm, gran = 30)
There were 2125 attempted fits,
and 2125 were successful.
```

A primitive display is obtained as follows. We know that `lm` was used, so the relevant p-values are in the coefficient component of the summarized fit objects.

```r
> ps = as.numeric(sapply(S100, function(x) try(summary(x)$coef[2,
            4])))
> plot(S100@locs, -log10(ps), xlab = "chromosomal location")
```
2 Performance-oriented specialization

The `snpScreen` method illustrated above is very general (can accommodate and retain results of any R modeling function) but fairly slow. We have added an R function `fastAGM` for fast fitting of an additive genetic model (equivalent to but much faster than using `lm`).

```r
> ut = unix.time(sCPNE1 <- snpScreen(chr20GGdem, chr20meta, genesym("CPNE1"), + ., fastAGM, 75))
> ut

[1] 0.197 0.001 0.197 0.000 0.000

> sCPNE1
```

GGtools `snpScreenResult` for call:
snpScreen(racExSet = chr20GGdem, snpMeta = chr20meta, gene = genesym("CPNE1"),
formTemplate = ~., fitter = fastAGM, gran = 75)
There were 581 attempted fits, and 581 were successful.

> wm = which.min(pp <- extract_p(sCPNE1))
> pp[wm]

rs2425109
1.817641e-14

> plot_mlp(sCPNE1, chr20meta)

> plot_EvG(chr20GGdem, genesym("CPNE1"), "rs6060535")
3 Appendix: Package documentation for *GGtools*

Information on package 'GGtools'

Description:

Package: GGtools
Title: software and data for genetical genomics (c) 2006 VJ Carey
Version: 1.2.0
Author: stvjc <stvjc@channing.harvard.edu>
Description: dealing with hapmap SNP reports, GWAS, etc.
Depends: R (>= 2.2.0), methods, Biobase (>= 1.11.26), hgfocus, geneplotter(>= 1.11.8)
LazyData: yes

Maintainer: stvjc <stvjc@channing.harvard.edu>
License: Artistic (see COPYING)
Packaged: Thu Aug 10 11:02:04 2006; stvjc
Built: R 2.4.0; x86_64-unknown-linux-gnu; 2006-10-03 14:34:07; unix

Index:

HM2rac compute rare allele count from a hapmap file
HMworkflow function to bind together HapMap genotyping results and expression data
geneLocs gene metadata from NCBI
genoStrings create a character vector of genotype value strings
make_racExSet create a racExSet from simpler constituents
plot_EvG plot expression vs genotype
racExSet-class Class "racExSet" for combining RareAlleleCount representations of SNPs, gene expression data, and other phenotype data
snpMeta-class Class "snpMeta" -- HapMap-based metadata structures for SNPs
snpScreen compute model fits over a sequence of SNPs
snps accessor for genotype data in a ggExprSet

Further information is available in the following vignettes in directory '/tmp/Rinst2092998059/GGtools/doc':

GGoverview: GGtools overview (source)

Session information for this vignette build:

> sessionInfo()

R version 2.4.0 (2006-10-03)
x86_64-unknown-linux-gnu
locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGE=en_US

attached base packages: [1] "tools" "methods" "stats" "graphics" "grDevices" "utils" [7] "datasets" "base"

other attached packages:
GGtools geneplotter annotate hgfocus Biobase
"1.2.0" "1.12.0" "1.12.0" "1.14.0" "1.12.0"