Overview of *GGtools* for investigating genetics of gene expression

VJ Carey <stvjc@channing.harvard.edu>

October 18, 2007

1 Introduction

The *GGtools* package supports data analysis activities that link genotypic information such as SNP configurations to gene expression phenotype. We will attach the library and have a look at a basic demonstration resource.

```r
> library(GGtools)
> data(chr20GGdem)
> class(chr20GGdem)

[1] "racExSet"
attr(,"package")
[1] "GGtools"

> chr20GGdem

racExSet instance (SNP rare allele count + expression)
rare allele count assayData:
  Storage mode: lockedEnvironment
  featureNames: rs4814683, rs6076506, ..., rs6062370, rs6090120 (117417 total)
  Dimensions:
    racs
  Features 117417
  Samples 58

expression assayData
  Storage mode: lockedEnvironment
  featureNames: 1007_s_at, 1053_at, ..., AFFX-r2-P1-cre-3_at, AFFX-r2-P1-cre-5_at (8793 total)
  Dimensions:
    exprs
```
Features 8793
Samples 58

phenoData
An object of class "AnnotatedDataFrame"
 rowNames: NA06985, NA06993, ..., NA12892 (58 total)
 varLabels and varMetadata description:
 sample: hapmap id

Experiment data
 Experimenter name: Cheung VG
 Laboratory: Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
 Contact information:
 Title: Mapping determinants of human gene expression by regional and genome-wide association.
 URL:
 PMIDs: 16251966

 Abstract: A 180 word abstract is available. Use 'abstract' method.

Annotation [1] "hgfocus"

The racExSet class is an extension of the eSet class. It represents expression data from the hgfocus chip on 48 individuals in the CEU CEPH group, and SNP data obtained from their HapMap genotyping results.

 The data are organized into an 8793 by 58 matrix of expression values accessible with the exprs method, and an 117417 by 58 of rare allele counts:

 > dim(exprs(chr20GGdem))

[1] 8793 58

 > dim(snps(chr20GGdem))

[1] 117417 58

 > snps(chr20GGdem)[1:5, 1:5]

<table>
<thead>
<tr>
<th></th>
<th>NA06985</th>
<th>NA06993</th>
<th>NA06994</th>
<th>NA07000</th>
<th>NA07022</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4814683</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>rs6076506</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>rs6139074</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>rs1418258</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>rs7274499</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>
We need some genetic metadata about SNPs; these are derived from SNP genotyping panels released on a chromosome-by-chromosome basis for CEPH participants by HapMap project:

> data(chr20meta)
> chr20meta[1:4,]

<table>
<thead>
<tr>
<th>pos</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4814683</td>
<td>9795</td>
</tr>
<tr>
<td>rs6076506</td>
<td>11231</td>
</tr>
<tr>
<td>rs6139074</td>
<td>11244</td>
</tr>
<tr>
<td>rs1418258</td>
<td>11799</td>
</tr>
</tbody>
</table>

A basic task is to compute a screen (over the genome, or, more practically, if seeking interactive performance with commodity hardware, over a chromosome) of genotypic determination of expression. The `snpScreen` method helps with this; we illustrate an example related to results in Cheung and Spielman 2005:

> chr20GGdem = exclMono(chr20GGdem)
> S100 = snpScreen(chr20GGdem, chr20meta, genesym("CPNE1"), ~., + lm, gran = 30)
> S100

GGtools snpScreenResult for call:
`.local(racExSet = racExSet, snpMeta = snpMeta, gene = gene, formTemplate = formTemplate,
 fitter = fitter, gran = gran)
There were 13 attempted fits,
and 13 were successful.

A primitive display is obtained as follows. We know that `lm` was used, so the relevant p-values are in the coefficient component of the summarized fit objects.

> ps = as.numeric(sapply(S100, function(x) try(summary(x)$coef[2, + 4])))
> plot(S100@locs, -log10(ps), xlab = "chromosomal location")
2 Performance-oriented specialization

The `snpScreen` method illustrated above is very general (can accommodate and retain results of any R modeling function) but is fairly slow. We have added an R function `fastAGM` for fast fitting of an additive genetic model (equivalent to but much faster than using `lm`). This function is wrapped in an object, `fastAGMfitter`, to provide reflectance.

```r
> ut = unix.time(sCPNE1 <- snpScreen(chr20GGdem, chr20meta, genesym("CPNE1"),
+ ~., fastAGMfitter))
> ut

    user  system elapsed
   3.256   0.184   3.439
```

> `sCPNE1`
GGtools snpScreenResult for call:

\[
\text{.local(racExSet = racExSet, snpMeta = snpMeta, gene = gene, formTemplate = formTemplate, fitter = fitter, gran = gran)}
\]

There were 42442 attempted fits, and 42442 were successful.

```r
> wm = which.min(pp <- extract_p(sCPNE1))
> pp[wm]

rs6058296
1.395072e-14
```

```r
> data(geneLocs_hsa)
> plot_mlp(sCPNE1, chr20meta, geneLocDF = geneLocs_hsa)
```

human CPNE1 (chr 20)

```r
> plot_EvG(chr20GGdem, genesym("CPNE1"), "rs6060535")
```
3 Creating new racExSet instances and supporting objects

Genotypes are available for a wide number of reference strains of mice through the Wellcome Trust; expression studies of such mice can be obtained using GEO. The data structure gse2031GG is an example:

```r
> data(gse2031GG)
> gse2031GG
```

racExSet instance (SNP rare allele count + expression)

rare allele count assayData:
- Storage mode: lockedEnvironment
- featureNames: `rs3683945`, `rs3707673`, ..., `rs4232414`, `mCV23022620` (13368 total)
- Dimensions:
 - racs
Features 13368
Samples 44

expression assayData
 Storage mode: lockedEnvironment
 featureNames: 100001_at, 100002_at, ..., AFFX-b-ActinMur/M12481_M_at, AFFX-b-ActinMur/M12481_M_st (12488 total)
 Dimensions:
 exprs
Features 12488
Samples 44

phenoData
An object of class "AnnotatedDataFrame"
 rowNames: GSM36673, GSM36674, ..., GSM36716 (44 total)
 varLabels and varMetadata description:
 strain: strain from GEO soft file for series
 gsm: GEO id

Experiment data
 Experimenter name:
 Laboratory:
 Contact information:
 Title:
 URL:
 PMIDs:
 No abstract available.

Annotation [1] "mgu74av2"

The expression data are obtained by applying RMA to a collection of CEL files readily obtainable from GEO. The strains of the mice giving rise to the samples are obtained from the WebQTL "contacts" link.

The genotype data for a large number of strains can be obtained from the INBREDS distribution at Wellcome Trust. The URL is www.well.ox.ac.uk/mouse/INBREDS. An example of the genotype data can be seen using the following code:

```r
> ff = readLines(system.file("fileDemos/StrainInit.txt", package = "GGtools"))
> t(sapply(strsplit(ff[1:5][" "], " "), function(x) x[c(1, 2, 3, 55, + 56, 57, 101)]))

[1,] "SNP" "CHR" "POSITION" "AKXD-6/TyJ" "AKXD-7/TyJ" "AKXD-8/TyJ"
[2,] "rs3683945" "1" "3157748" "A" "A" "A"
```

No abstract available.
There are various representations provided in various places. Tightening the path to accurate genotyping data for reference strains would be useful.

Given an expression matrix and a genotyping file as provided at the INBREDS site, the INBREDSWorkflow function will help generate a \texttt{racExSet} instance:

```r
> args(INBREDSWorkflow)

function (inbfile, emat, estrains, pd, mi, anno, fixup = NULL, 
  fixchr = function(x) gsub("_random", ",", x))

The \texttt{estrains} argument is a vector of strings defining the reference strains from which columns of \texttt{emat} were obtained through microarray hybridization. This vector will typically be available from a \texttt{phenoData} variable on the \texttt{ExpressionSet} from which the expression matrix was obtained. For the \texttt{gse2031GG}, this is the variable \texttt{strain}:

```r
> as.character(gse2031GG$strain[1:5])

[1] "BXD6" "BXD6" "BXD8" "BXD8" "BXD11"
```

Now it appears that this nomenclature for strains is not always adopted directly. If we grep for a variation of BXD[nn] in the INBREDS strains file, we find

```r
> grep("BXD-", strsplit(ff[1], ", ")[[1]], value = TRUE)[1:5]

```

and we see there are lexical variations introduced – we want BXD6, but the labels in the INBREDS file have hyphens. A \texttt{fixup} parameter allows inline reformatting of deviant strain identifiers as column names of the INBREDS file. Additionally, chromosome names are sometimes postpended with “-random”, and some steps may be needed to simplify the chromosome nomenclature. The user must create/find the R code to obtain the desired results, or manually massage the source data files so that the desired regularities are present.
Once genotype codes are available with a strain naming convention that matches that of the expression samples, INBREDSworkflow will compute rare allele counts, bind the genotyping, expression, and phenotype data together, and generate a `racExSet` instance.

In summary, `make_racExSet` is a specification of materials that must be made mutually compatible for creation of a `GGtools` resource with which investigations of genetics of gene expression can be conveniently made. `HMworkflow` and `INBREDSworkflow` are utility functions that support this task for files coming from HapMap and Wellcome repositories.

4 Appendix: Package documentation for `GGtools`

Information on package 'GGtools'

Description:

Package:       GGtools  
Title:         software and data for genetical genomics (c) 2006 VJ Carey
Version:       1.6.1
Author:        Vince Carey <stvjc@channing.harvard.edu>
Description:   dealing with hapmap SNP reports, GWAS, etc.
Depends:       R (>= 2.5.0), methods, Biobase (>= 1.11.26), hgfocu, geneplotter(>= 1.11.8), mgu74av2
LazyData:      no
biocViews:     SNPsAndGeneticVariability, Genetics, Statistics
Maintainer:    Vince Carey <stvjc@channing.harvard.edu>
License:       Artistic (see COPYING)
                oneFit.R racExSet-methods.R snpScreenResult-methods.R  
                anno2chrRbd.R ogtes.R zzz.R
Built:         R 2.6.0; x86_64-unknown-linux-gnu; 2007-10-18 14:32:58; unix

Index:

GGfitter-class Class "GGfitter" wrapper for special functions
to do whole genome screens
HM2rac compute rare allele count from a hapmap file
HMworkflow function to bind together HapMap genotyping results and expression data
Strains2rac convert a Wellcome 'Strains' genotyping file to rare allele count form
geneLocs gene metadata from NCBI
genoStrings create a character vector of genotype value strings
make_racExSet create a racExSet from simpler constituents
oGtypeExSet-class Class "oGtypeExSet" ~~~
plot_EvG plot expression vs genotype
racExSet-class Class "racExSet" for combining RareAlleleCount representations of SNPs, gene expression data, and other phenotype data
snpMeta-class Class "snpMeta" -- HapMap (or Wellcome INBREDS) -based metadata structures for SNPs
snpScreen compute model fits over a sequence of SNPs
snps accessor for genotype data in a ggExprSet

Further information is available in the following vignettes in directory '/tmp/Rinst874332282/GGtools/doc':

GGoverview: GGtools overview (source)

Session information for this vignette build:

> sessionInfo()

R version 2.6.0 (2007-10-03)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGE=en_US;LC_IDENTIFICATION=C

attached base packages:

other attached packages:
[1] GGtools_1.6.1 mgu74av2_2.0.1 geneplotter_1.16.0
[4] lattice_0.17-1 annotate_1.16.0 xtable_1.5-2
[7] AnnotationDbi_1.0.6 RSQLite_0.6-3 DBI_0.2-4
[10] hgfocus_2.0.1 Biobase_1.16.1

loaded via a namespace (and not attached):
[1] grid_2.6.0 KernSmooth_2.22-21 RColorBrewer_1.0-1