ggbio: visualization toolkits for genomic data

Tengfei Yin

January 21, 2013
Contents

1 An Introduction to *ggbio* 5
 1.1 Introduction .. 5
 1.2 Documentation 6
 1.3 Support ... 6
 1.4 Installation ... 6
 1.5 Citation ... 7

2 Quick start .. 9

3 Tracks: bind and align plots 34
 3.1 Objective .. 34
 3.2 Motivation .. 34
 3.3 Usage .. 36
 3.3.1 A minimal example for *ggplot2* graphics 36
 3.3.2 Labeling and naming a track 40
 3.3.3 Arith method + 46
 3.3.4 Modification 47
 3.3.5 Customized themes for plots and tracks 57
 3.3.6 Zoom in/out 66
 3.3.7 Backup/restore utilities 72
 3.3.8 Reset and backup 72
 3.4 Discussion ... 77

4 mold method .. 78
5 ggplot generic method and low level utilities

5.1 Objective .. 79
5.2 ggplot .. 79
5.3 Components ... 89

6 Autoplot method ... 92

6.1 API .. 92

6.2 Usage .. 92

6.2.1 autoplot,GRanges 92
6.2.2 autoplot,Seqinfo 101
6.2.3 autoplot,IRanges 101
6.2.4 autoplot,GRangesList 103
6.2.5 autoplot,Rle .. 105
6.2.6 autoplot,RleList 108
6.2.7 autoplot,TranscriptDb 108
6.2.8 autoplot,GappedAlignment 115
6.2.9 autoplot,BamFile 115
6.2.10 autoplot,character 118
6.2.11 autoplot,matrix 118
6.2.12 autoplot,Views 126
6.2.13 autoplot,ExpressionSet 131
6.2.14 autoplot,SummarizedExperiment 132
6.2.15 autoplot,VCF 144
6.2.16 autoplot,BSgenome 144

7 Ideogram .. 151

7.1 Introduction ... 151

7.2 Usage ... 151

7.2.1 Visualization of ideogram for single chromosome 151
7.2.2 Get ideogram or customize the colors 164
7.2.3 Plot ideogram directly from Seqinfo 170
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Visualize genomic features</td>
<td>172</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>172</td>
</tr>
<tr>
<td>8.2</td>
<td>Usage</td>
<td>173</td>
</tr>
<tr>
<td>8.2.1</td>
<td>autoplot</td>
<td>173</td>
</tr>
<tr>
<td>8.2.2</td>
<td>geom_alignment</td>
<td>181</td>
</tr>
<tr>
<td>9</td>
<td>Circular view</td>
<td>183</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>183</td>
</tr>
<tr>
<td>9.2</td>
<td>Tutorial</td>
<td>183</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Step 1: understand the layout circle</td>
<td>183</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Step 2: get your data ready to plot</td>
<td>184</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Step 3: low level API: layout_circle</td>
<td>186</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Step 4: Complex arrange of plots</td>
<td>192</td>
</tr>
<tr>
<td>10</td>
<td>Manhattan plot</td>
<td>197</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>10.2</td>
<td>Understand the new coordinate</td>
<td>197</td>
</tr>
<tr>
<td>10.3</td>
<td>Step 2: Simulate a SNP data set</td>
<td>200</td>
</tr>
<tr>
<td>10.4</td>
<td>Step 3: Start to make Manhattan plot by using autoplot</td>
<td>202</td>
</tr>
<tr>
<td>10.5</td>
<td>Convenient plotGrandLinear function</td>
<td>202</td>
</tr>
<tr>
<td>11</td>
<td>Karyogram overview</td>
<td>215</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>11.2</td>
<td>Usage</td>
<td>215</td>
</tr>
<tr>
<td>11.2.1</td>
<td>autoplot</td>
<td>215</td>
</tr>
<tr>
<td>11.2.2</td>
<td>plotKaryogram</td>
<td>224</td>
</tr>
<tr>
<td>11.2.3</td>
<td>layout_karyogram</td>
<td>224</td>
</tr>
<tr>
<td>12</td>
<td>Ranges-link-to-data plot</td>
<td>229</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>229</td>
</tr>
<tr>
<td>13</td>
<td>Case studies</td>
<td>234</td>
</tr>
</tbody>
</table>
Chapter 1

An Introduction to ggbio

1.1 Introduction

The ggbio package extends and specializes the grammar of graphics for biological data. The graphics are designed to answer common scientific questions, in particular those often asked of high throughput genomics data. All core Bioconductor data structures are supported, where appropriate. The package supports detailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several splicing summaries.

A mature graphic eco-system always has a well-developed data model, a grammar and a powerful computing platform. Grammar of graphics is the essential part to help people understand the underlying data by using a general visualization framework. What’s more, object-oriented graphics is especially useful for a well-developed infrastructure system that have carefully defined data model to store specific data sets for special purpose. Let’s say, given a GRanges we know it represents annotated genetic intervals, given TranscriptDb we know it represents transcripts-centric annotation data, given matrix, in biology, we probably expect a heatmap.

Let’s scrutinize what we have in R:

- **data model**: Bioconductor tries hard to define and generalize infrastructure for storing particular biological data. For example, we have ExpressionSet to store microarray data, we have GappedAlignments to store NGS alignments, and IRanges to represent numeric intervals. This is especially useful, which make object-oriented programming for specific biological questions much easier, and make object-oriented visualization possible in Bioconductor too.

- **Powerful computing platform**: R is a modern statistical computing environment, provides plenty of models and computing method for multivariate data analysis, at the same time, Bioconductor has numerous data mining tools in genetic analysis and other fields. These well-developed and tested tool kits make processing and analysis easier than before. And we have to pay attention to that many useful graphics are just statistical summary of raw data, so statistical transformation exists could be implemented as part of the visualization procedure.

1. "The grammar of graphics" by Leland Wilkinson
• **The grammar of graphics**: This conceptual framework is proposed by Leland Wilkinson\(^2\). Hadley Wickham extended the grammar and also first implemented it in R in his package `ggplot2` with great success. `ggbio` is built on `ggplot2` and extends the grammar to genomic data with new features and extended components.

1.2 Documentation

From Bioconductor 2.11, I have two documentation:

- One is like all other bioconductor package, one single vignettes knitted from sweave file. Yes, it’s the one you are reading now. This vignette is trying to make a general tutorial for this graphical framework, with plenty of examples and case studies, following the logical order.

- The other source is under `ggbio` official websites, \,http://tengfei.github.com/ggbio\, under documentation tab, I will use knitr to knit the Rd manual and put it under manual section(\,http://tengfei.github.com/ggbio/docs/man), so all the help manual with examples code hybrided with graphics is shown there only. It’s a very good companion for this pdf based vignette, or R help, because you won’t see vivid graphics in your help manual. Also more complete examples are present in the on-line help documentations too.

These two documentation are reproducible with the version of packages specified in `sessionInfo`, knitr is the key to make them reproducible. For more information about how those documentation generated, please visit knitr’s websites\(^3\).

1.3 Support

As described on-line \,http://tengfei.github.com/ggbio/support.html\.

For issue/bug report and questions about usage, you could

- File a issue/bug report at \,https://github.com/tengfei/ggbio/issues\, this will make sure I don’t really forget to fix it later. `ggbio` is a huge and flexible package, combination of components are not all tested, you probably could hit a bug or issue the future, I will appreciate it if you could let me know it and help me improve and fix the problem.

- Send me email at yintengfei at gmail dot com directly.

- or ask question about `ggbio` on biocondcutor.

1.4 Installation

As described on-line \,http://tengfei.github.com/ggbio/download.html\.

\(^2\)Please check Wilkinson’s book “The grammar of graphics” for more detail.

\(^3\)http://yihui.name/knitr/
Tips: github is only used for issue/bugs report and homepage build purpose, development has been stopped and removed from there already. I only use bioconductor to maintain and develop my package.

After R 2.15, R release cycle falls into annual release instead of semi-annual release cycle, at the same time, Bioconductor project still follows semi-annual release cycle. So now you can install both released and developmental version for the same version of R.

In your R session, please run following code to install released version of ggbio, but if you are using developmental version of R, you will get developmental version of ggbio automatically. Because what you get depends on the bioconductor installer, which is implemented in package BiocInstaller and its version decides which version of Bioconductor you got.

```r
source("http://bioconductor.org/biocLite.R")
biocLite("ggbio")
```

After you run the code above, next time if you wish to install something new from Bioconductor, you can simply run

```r
library("BiocInstaller")
biocLite("ggbio")
```

Or you can check all released bioc packages here.

To install developmental version, run

```r
library("BiocInstaller")
useDevel(TRUE)
biocLite("ggbio")
```

For developers, please you can find latest source code in bioc svn, username and password are all "read-only" (without quotes).

1.5 Citation

```r
citation("ggbio")
```

```r
# To cite package 'ggbio' in publications use:
#
# Tengfei Yin, Dianne Cook and Michael Lawrence (2012): ggbio: an R package for extending the grammar of graphics for
# genomic data Genome Biology 13:R77
#
# A BibTeX entry for LaTeX users is
```
@Article{
 title = {ggbio: an R package for extending the grammar of graphics for genomic data},
 author = {Tengfei Yin and Dianne Cook and Michael Lawrence},
 journal = {Genome Biology},
 volume = {13},
 number = {8},
 pages = {R77},
 year = {2012},
 publisher = {BioMed Central Ltd},
}
Chapter 2

Quick start

This chapter gives your a very rough overview about the usage of ggbio, but not a complete coverage for all contents.

autoplot is the generic function which support most core Bioconductor objects, try to make different types of graphics for specific object. Please check Chapter [6] and manual for autoplot for more information.

```r
library(ggbio)
```

```r
## Loading required package: ggplot2
## Need specific help about ggbio? try mailing
## the maintainer or visit http://tengfei.github.com/ggbio/
##
## Attaching package: 'ggbio'
## The following object(s) are masked from 'package:ggplot2':
## geom_bar, geom_rect, geom_segment, stat_bin, stat_identity,
## xlim

library(GenomicRanges)
```

```r
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following object(s) are masked from 'package:stats':
## ztabs
## The following object(s) are masked from 'package:base':
## Filter, Find, Map, Position, Reduce, anyDuplicated, cbind,
```
Loading required package: IRanges

```r
set.seed

GRanges sample c "chr1" "chr2" "chr3"
IRanges sample

IRanges sample c "+" "-" "*

tnorm rnorm

sample c "Normal" "Tumor"

autoplot
```
NULL

`autoplot(gr, stat = "coverage", geom = "area")`

Object of class "ggbio"
NULL

`autoplot(gr, aes(y = value), geom = "point")`

Object of class "ggbio"
NULL

```r
autoplot(gr, aes(y = value), geom = "point") + geom_line()
```

Object of class "ggbio"
```r
## NULL

autoplot(gr, aes(y = value), geom = "point") + geom_line() + stat_smooth()

## Object of class "ggbio"

## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.
```
NULL

```r
autoplot(gr, aes(y = value), geom = "point") + stat_smooth()
```

Object of class "ggbio"

geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.
NULL

```r
autoplot(gr, layout = "circle")
```

Object of class "ggbio"
NULL

```r
seqlengths(gr)
```

chr1 chr2 chr3
NA NA NA

```r
seqlengths(gr) <- c(400, 500, 1000)
autoplot(gr, layout = "circle", aes(fill = seqnames))
```

Object of class "ggbio"
```r
## NULL

autoplot(gr, coord = "genome")

## using coord:genome to parse x scale

## Object of class "ggbio"
```
`ggplot` generic method provides flexible API for constructing graphics layer by layer following the grammar of graphics. Actually `autoplot` method use `ggplot` and other low level utilities to construct customized graphics. Please check Chapter 5 and manual for more information.

```
ggplot(gr) + geom_rect()
```

Object of class "ggbio"
ggplot(gr) + geom_rect(aes(fill = value))

Object of class "ggbio"
NULL

for primitive geom from ggplot2, add facet manually for now

```r
ggplot(gr, aes(x = midpoint, y = value)) + geom_point() + facet_grid(. ~ seqnames)
```

Object of class "ggbio"
NULL

```r
ggplot(gr, aes(x = midpoint, y = value)) + facet_grid(. ~ seqnames) + geom_point() + stat_smooth()
```

Object of class "ggbio"

geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = "x"' to change the smoothing method.

geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = "x"' to change the smoothing method.
geom_smooth

method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.

```r
ggplot(gr) + layout_circle(aes(fill = seqnames), geom = "rect")
```

NULL

```
```
NULL

Slightly different with autoplot api

ggplot(gr) + geom_rect() + coord_genome()

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

Object of class "ggbio"
NULL

\texttt{ggplot(gr) + stat_aggregate(aes(y = value))}

Object of class "ggbio"
NULL

```r
ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot")
```

Object of class "ggbio"
plotSingleChrom and plotIdeogram provides functionality to construct ideogram and you could download it on the fly or save it and use it later. tracks function provides convenient control to bind your individual graphics as tracks. Please check Chapter 3 about tracks and Chapter 7 about ideogram and manual for more information.

```r
library(ggbio)
## require internet connection
p.ideo <- plotIdeogram(genome = "hg19")

## Loading required package: rtracklayer
## Loading...
## Done
## use chr1 automatically

```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)

Loading required package: GenomicFeatures
Loading required package: AnnotationDbi
Loading required package: Biobase
Welcome to Bioconductor
##
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
wh <- GRanges("chr16", IRanges(30064491, 30081734))
p1 <- autoplot(txdb, which = wh, names.expr = "tx_name:::gene_id")

Aggregating TranscriptDb...
Parsing exons...
Parsing cds...
Parsing transcripts...
Aggregating...
Done
Constructing graphics...

p2 <- autoplot(txdb, which = wh, stat = "reduce", color = "brown", fill = "brown")

Aggregating TranscriptDb...
Parsing exons...
Parsing cds...
Parsing transcripts...
Aggregating...
Done
Constructing graphics...

tracks(p.ideo, full = p1, reduce = p2, heights = c(1.2, 5, 1)) + ylab("") + theme_tracks_sunset()
```
plotGrandLinear to plot the whole genome Manhattan plot. Please check Chapter 10 and manual for more information.

```r
data(hg19IdeogramCyto, package = "biovizBase")
data(hg19Ideogram, package = "biovizBase")
chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))
seqlths <- seqlengths(hg19Ideogram)[chrs]
set.seed(1)
nc <- length(chrs)
nnsps <- 100
gr.snp <- GRanges(rep(chrs, each = nnsps), IRanges(start = do.call(c, lapply(chrs, function(chr) {
 N <- seqlths[chr]
 runif(nnsps, 1, N)
}), list(chrs))))
```
```r
SNP = sapply(1:(nchr * nsnsps), function(x) paste("rs", x, sep = "")), pvalue = -log10(runif(nchr * nsnsps)), group = sample(c("Normal", "Tumor"), size = nchr * nsnsps, replace = TRUE))

define genome
genome(gr.snp) <- "hg19"

get seqnames
nms <- seqnames(seqinfo(gr.snp))

rename chr to "" in seqnames
nms.new <- gsub("chr", "", nms)

rename seqlevels
names(nms.new) <- nms

keep certain seqlevels
gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))

gr.snp

GRanges with 2400 ranges and 3 metadata columns:
seqnames ranges strand | SNP
<Rle> <IRanges> <Rle> | <character>
[1] 1 [66178199, 66178199] * | rs1
[4] 1 [226371355, 226371355] * | rs4
[7] 1 [235460897, 235460897] * | rs7
[8] 1 [164704260, 164704260] * | rs8
[9] 1 [156807066, 156807066] * | rs9
...
[2392] Y [36501485, 36501485] * | rs2392
[2393] Y [30054272, 30054272] * | rs2393
[2394] Y [20065602, 20065602] * | rs2394
[2395] Y [19541601, 19541601] * | rs2395
[2396] Y [34038689, 34038689] * | rs2396
[2397] Y [3010837, 3010837] * | rs2397
[2398] Y [23806602, 23806602] * | rs2398
[2399] Y [15474595, 15474595] * | rs2399
[2400] Y [10016302, 10016302] * | rs2400

pvalue group
<numeric> <character>
[1] 1.22380 Normal
[2] 1.27916 Normal
[3] 0.01199 Tumor
[4] 0.09985 Normal
[5] 1.49938 Tumor
[6] 0.26497 Tumor
[7] 1.75456 Tumor
[8] 0.10976 Tumor
[9] 0.12073 Tumor
...
[2392] 0.93515 Normal
[2393] 0.08353 Tumor
[2394] 0.05148 Normal
[2395] 0.10976 Normal
[2396] 0.17601 Normal
```

## Tumor
## Normal
## Normal
## Normal
## ---
## seqlengths:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
## NA NA

plotGrandLinear(gr.snp, aes(y = pvalue))

## using coord:genome to parse x scale

## Object of class "ggbio"
## NULL

`layout.karyogram` to plot the karyogram overview. Please check Chapter 11 and manual for more information.

```r
hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y")))
autoplot(hg19, layout = "karyogram", cytoband = TRUE)
```

## Object of class "ggbio"
Chapter 3

Tracks: bind and align plots

Tips: To read this chapter, you don’t need any background about biology. Basic knowledge about \texttt{ggplot2} is preferred.

3.1 Objective

1. Get yourself familiar with basic \texttt{ggplot2} functions.
2. Get yourself familiar with basic grammar of graphics.
3. Get yourself familiar with \texttt{ggbio}'s track usage.

3.2 Motivation

It might be surprising that the first chapter we are going to talk about is about alignments of plots and especially for tracks. This is fundamental components used almost everywhere in the documentations, what’s more important, this function could be used independently with any other \texttt{ggplot2} graphics, not just for graphics produced by \texttt{ggbio}, well, this is the right time to tell you that, \texttt{ggbio} depends on \texttt{ggplot2} and extends it to genomic world, so every graphics produced by \texttt{ggbio} is essentially a \texttt{ggplot2} object or a combination of them, so you can use any tricks works for \texttt{ggplot2} on \texttt{ggbio} graphics., but of course, we bring more features which doesn’t exists in \texttt{ggplot2} at all.

Tips: If you want to manipulate graphics from \texttt{ggbio} more freely, I strongly recommend you to read documentation about \texttt{ggplot2}, most time the edit you want could be achieved by some basic functionality already in \texttt{ggplot2}, so enjoy those handy tools and don’t reinvent the wheel! What’s more, if you want to be an expert, knowledge about \texttt{grid}, \texttt{gtable} are necessary. Tracks relies on the new \texttt{gtable} package heavily, it has several convenient ways to manipulate the graphic objects.
Track-based view are widely used in almost all genome viewers, it usually stacks multiple plots row by row and align them on exactly the same coordinate, which in most cases, the genomic coordinates. In this way, we could be able to align various annotation data against each other to make an efficient comparison. UCSC genome browser\(^1\) is one of the most widely used track-based genome browser, as shown in Figure ??.

There are some other packages in R, that support track-based view like UCSC genome browser, such as Gviz. General tracks for viewing genomic data should probably have following features:

- Align each plot in exactly the same X coordinate (genomic coordinate).
- Naming ability for each track, this is different from Y-label, which is used to illustrate variable used as y.
- Shared “scale” track.
- Multiple ways to visualize the data, as points, line, bar chart or density, etc.

As comparison, ggbio is trying to be even more general in terms of building tracks, and offer more features.

- You can bind any graphics produced by ggplot2, not necessarily produced by ggbio, in that way, ggplot2 users will find it pretty convenient that they can construct plots independently, and tracks will align them for you. So you can use tracks to align your own data, e.g. time series data.
- Easy-to-use utilities for zooming, backup, restore a view. This is useful when you tweak around with your best snapshot, so you can always go back.
- A extended ”+” method. If you are familiar with ggplot2’s ”+” method to edit an existing plot, this is the way it works, if tracks is ”+” with anything behind, it will be applied to each track. This make it easy to tweak with theme and update all the plots.

---

\(^1\) [http://genome.ucsc.edu/cgi-bin/hgGateway](http://genome.ucsc.edu/cgi-bin/hgGateway)
• You could specify whether you want to label a plot or not by using `labeled`, `labeled<--`, and to specify whether you what the plot x-axis synchronized with other tracks or not by using function `fixed`, `fixed<--`

• Creating your own customized themes for not only single plot but also tracks! We will show an example how to create a theme called `theme_tracks_subset` in the following sections.

• Support not only vertical alignments, but also horizontal alignments.

**Tips:** `tracks` function only support graphic objects produced by either `ggplot2` or `ggbio`. If you want to align plots, produced by other grid based system, like lattice, users need to tweak in grid level, to insert a lattice grob to a layout.

### 3.3 Usage

Function `tracks` is a constructor for an object with class `Tracks`. This object is a container for each plot you are going to align, and all the graphic attributes controlling the appearance of tracks.

#### 3.3.1 A minimal example for `ggplot2` graphics

Instead of showing you the genomic examples for constructing tracks, let me first do a small favor for `ggplot2` users, suppose you don’t have any background about biology, all you want to do is to align two time series data. We can construct any graphics independently without worrying about aligning them. Just use your knowlegge about `ggplot2` to create any simple or fancy graphics, only one thing you need to make sure about is that the x-axis you are going to align must have the same meanings, in this minimal example, it’s `time`.

I am going to introduce some basic usage about `ggplot2` all the way through this vignette every now and then, to make it easier for people who first use `ggplot2` or `ggbio` and not quite familiar with its grammar.

```r
load ggbio automatically load ggplot2
library(ggbio)
make a simulated time series data set
df1 <- data.frame(time = 1:100, score = sin((1:100)/20) * 10)
p1 <- qplot(data = df1, x = time, y = score, geom = "line")
df2 <- data.frame(time = 30:120, score = sin((30:120)/20) * 10, value = rnorm(120 - 30 + 1))
p2 <- ggplot(data = df2, aes(x = time, y = score)) + geom_line() + geom_point(size = 4, aes(color = value))
```

In `ggplot2`, most working object are `data.frame`, in comparison, we support many other core data structure in `Bioconductor`, which we will introduce later mainly in Section[4] and Section[5] when we introduce function generic method such as `autoplot` and `ggplot`.

When you see `qplot` function, you have to know it’s `ggplot2`’s function(means ‘quick plot’), since `Bioconductor` 2.10, `ggbio` stop using a confusing generic `qplot` function, instead, we are using a new generic method introduced in `ggplot2`, called `autoplot`, we heavily override this function in `ggbio` to support more data structure.
To introduce \texttt{qplot} function, we need to first get an idea about grammar of graphics (GoG), it’s basically composed of following components:

- **Data**: Data you are going to visualize with a set of variables, it’s usually the first argument passed in function \texttt{autoplot}.

- **Statistical transformation**: Statistical methods performed on the variables of raw data and generate more informative summary. It’s usually controlled by the parameters \texttt{stat}.

- **Geometric object**: e.g. arrow, rectangle. It’s usually controlled by the parameters \texttt{geom}.

- **Coordinate system**: e.g. Cartesian. It’s usually controlled by the parameters \texttt{coord}.

- **Scales**: Transformation of scales, such as logarithm. It’s usually controlled by the parameters \texttt{scale}.

- **Facetting**: Subset the data by factors and create small panels for each subset of data with same representation of graphics. It’s usually controlled by the parameters \texttt{facets}.

So basically speaking we have two API or usage here for constructing graphics in \texttt{ggplot2}, it’s similar in \texttt{ggbio}.

- The first method is called quick plot in \texttt{ggplot2}, implemented in function \texttt{qplot}, it’s one general wrapper for quick mapping and constructing the grammar’s components. Similar in \texttt{ggbio}, we have \texttt{autoplot} for this purpose, what’s more, \texttt{autoplot} is more object-oriented visualization methods, which will be introduced in other chapter[6], so in the \texttt{qplot} API, we specify data to be the data frame and map \texttt{x} to \texttt{time} variable and map \texttt{y} to \texttt{score} variable, \texttt{geom} arguments means Geometric objects, we could use multiple \texttt{geom} in \texttt{qplot} function. To print the graphic object on the screen, simply call \texttt{print} on it or just type the name and show it.

- The second method is very flexible or more close to the grammar itself, the way it is constructed is like the way it is described in the grammar or like in plain human language. Let’s say we want to “use data \texttt{df2}, and generally use \texttt{time} as \texttt{x} and use \texttt{score} as \texttt{y}, then we add a line to the plot, next we add points to the plots, for those points, we want to map color to \texttt{value} variable and use arbitrary value to set size for points”. See, it is exactly what we described compared to the actual code! That’s what \texttt{ggplot2} bring to us, the implementation of grammar of graphics in R. Notice, function \texttt{aes} used for mapping \textit{aesthetics} to variables in the data.

\begin{framed}
\textbf{Tips}: If you don’t know how many existing components you could use in pure \texttt{ggplot2} package, please check Hadley’s online documentation. Websites is here \url{http://had.co.nz/ggplot2/} For \texttt{ggbio} based components, please read relevant part in this vignettes and visit \url{http://tengfei.github.com/ggbio/docs} to check documentation. There are plenty of examples with graphics there.
\end{framed}

\begin{Verbatim}
print(p1)
\end{Verbatim}
time
score

p2
As shown in Figure ??, we can see these two plots have different scale on x-axis, but we want to compare those two plots and hope to align them on exactly the same x-axis scale, then we could make vertical comparison easily. Now we introduce the `tracks` function, we can pass the multiple plots we want to align into it, and it will do some obvious modification including:

- squeeze the plots together
- remove x-axis and make a shared scale.
- do the alignments automatically.
- construct and return a `tracks` object.
As shown in Figure ??, those two plots are aligned well on the x-axis, so here it is, our first track. You could also assign the tracks to an object, this will avoid printing on the screen immediately.

\[ \text{tks} <- \text{tracks}(p1, p2) \]

\[ \text{tks} \]

3.3.2 Labeling and naming a track

Y labels are kept for each track plot, but in general, you may want to annotate the plot for title or x label, just specify arguments in \texttt{tracks} function.
tracks(p1, p2, xlab = "xlab", main = "main")
To add label for each track, simply naming the plots, there are several ways to label it.

- pass names together with graphics.
- for complicated name, use quotes.
- use named list of graphics

As shown below in following examples.

```r
labeling: default labeling a named graphic simply pass a name with
it
tracks(time1 = p1, time2 = p2)
```
## or pass a named list with it

lst <- list(time1 = p1, time2 = p2)

tracks(lst)
## more complicated case please use quotes

```
tracks(time1 = p1, `second time` = p2)
```
Sometimes, even though you passed a named or no-name graphics, but you still don’t the gracks to show the label background for that plot, you can simply set the labeled attribute of plot to be `FALSE`.

```r
labeled(p2)
[1] TRUE
labeled(p2) <- FALSE
set labeled to FALSE, remove label even the plot has a name
tracks(time1 = p1, time2 = p2)
```
### 3.3.3 Arith method +

Before we move on to more modificatino method for Tracks object. We are going to introduce the flexible + method first. Arith + method is very powerful and heavily used in ggplot2 and ggbio, for constructing a plot layer by layer, + is used to connect and add components one by one, and could also be used for updating and editing an existing plot. Many people hates this, this maybe raise the learning curve, but mean wile, more people love it, at least, I am one of those people. This is a good way to learn grammar of graphics, after you master it, you will definitely benefit from it.

I have to mention the improvements in ggbio, + is extended to work on not only the single plot but also the
Tracks object.

- For single plot, apply or add the change on the right hand side to the left hand side object.
- For Tracks object, apply or add the change on the right hand side to every plot stored in the tracks, it's like a 'batch' mode, so you don’t have to edit plots before passing into the tracks, unless you want to edit them respectively.

Remember, you can always get the plot you passed from a Tracks object, by accessing grobs slot, such as tks@grobs[[i]]. grobs is a list of plots.

Please read following section for more examples.

3.3.4 Modification

We provide some attributes associated with plot, they won’t affect the single plot, those attributes will take effect when they are embeded into tracks. Those attributes include

- **height**: default height for this plot.
- **bgColor**: background color for this plot.
- **labeled**: if you want to show label(and backgrond) for the plot or not, even through the plot is named.
- **fixed**: control if scale of plot is fixed or not.
- **mutable**: control if plot is affected by + method on tracks or not.

To modify the heights for each track, simply pass the heights argument with ratio.

```r
set heights
tracks(time1 = p1, time2 = p2, heights = c(1, 3))
```
To change background for each plot, you could set **bgColor** attribute or use argument `track.plot.color`.

```r
bgColor
bgColor(p1)
```

```r
[1] "white"
```

```r
tracks(time1 = p1, time2 = p2)
```
bgColor(p1) <- "brown"
# mutable for '+' method
tracks(time1 = p1, time2 = p2)
# set it back
bgColor(p1) <- "white"

## track color
tracks(time1 = p1, time2 = p2, track.bg.color = "yellow")
tracks(time1 = p1, time2 = p2, track.plot.color = c("yellow", "brown"))
To control axis, you could set attribute `hasAxis`.

```r
hasAxis(p1)
[1] FALSE

hasAxis(p1) <- TRUE
ready for weird looking
tracks(time1 = p1, time2 = p2)
```
hasAxis(p1) <- FALSE

## fix a plot, not synchronize with other plots
p3 <- p1
## default is always FALSE
fixed(p3)

## [1] FALSE

## set to TRUE
fixed(p3) <- TRUE
tracks(time1 = p1, time2 = p2, `time3(fixed)` = p3)
fixed(p3) <- FALSE
tracks(time1 = p1, time2 = p2, `time3(fixed)` = p3)
## otherwise you could run 
```
tracks(time1 = p1, time2 = p2, 'time3(fixed)' = p3, fixed = c(FALSE, FALSE, TRUE))
```

mutable only control whether ‘mutable’ to themes or not, **NOT** control x,y limits changing, the fixed control it’s response to x limits change.

```r
mutable
mutable(p1)
```

```r
[1] TRUE
```

```
tracks(time1 = p1, time2 = p2) + theme_bw()
```
mutable(p1) <- FALSE
# mutable for '+' method
tracks(time1 = p1, time2 = p2) + theme_bw()
3.3.5 Customized themes for plots and tracks

`ggplot2` has a theme system, please run `?theme` to find out how to merge, update theme for your own usage. For example, we simply change the theme for a single plot.

```r
try theme_bw() defined in ggplot2
p1 + theme_bw()
```
## try theme_clear() define in ggbio

```r
p1 + theme_clear()
```
`ggbio` has a way to define a theme to even affect the Tracks object, the strategy is to store attributes with single plots and parsing and apply those attributes to tracks in the construction time of tracks. Below we show an example how to define a 'sunset' theme for tracks, please make sure you name your theme in different way, to indicate if it affect tracks or not.

- theme_* for theme apply to any graphics.
- theme_tracks_* for theme apply to also tracks.

```r
tHEME_TRACKS_SUNSET <- function(bg = "#ffeddb", alpha = 1, ...) {
 res <- theme_clear(grid.x.major = FALSE, ...)
 attr(res, "track.plot.color") <- sapply(bg, scales::alpha, alpha)
 attr(res, "track.bg.color") <- bg
}
```
This theme is defined in `ggbio`, you can use it directly after loading `ggbio`.

```r
apply a pre-defined theme for tracks!
tracks(time1 = p1, time2 = p2) + theme_tracks_sunset()
```

```r
tracks(p1, p2) + theme_tracks_sunset()
```
```r
apply a theme to each track
tks <- tracks(time1 = p1, time2 = p2) + theme_bw()
tks
```
## will introduce

```r
reset(tks)
```
## store it with tracks

tks <- tracks(time1 = p1, time2 = p2, theme = theme_bw())
tks
tks <- tks + theme_gray()
tks
## reset will be introduced later

```r
reset(tks)
```
3.3.6 Zoom in/out

\[\text{tracks(time1 = p1, time2 = p2) + xlim(1, 40)}\]
tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10)

## Warning: Removed 38 rows containing missing values (geom_path).
## Warning: Removed 58 rows containing missing values (geom_path).
## Warning: Removed 58 rows containing missing values (geom_point).
## Warning: Removed 38 rows containing missing values (geom_path).
tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10)

## Warning: Removed 38 rows containing missing values (geom_path).
## Warning: Removed 58 rows containing missing values (geom_path).
## Warning: Removed 58 rows containing missing values (geom_point).
## Warning: Removed 38 rows containing missing values (geom_path).
library(GenomicRanges)

gr <- GRanges("chr", IRanges(1, 40))

# GRanges

tracks(time1 = p1, time2 = p2) + xlim(gr)
# IRanges

```r
tacks(time1 = p1, time2 = p2) + xlim(ranges(gr))
```
tks <- tracks(time1 = p1, time2 = p2)
xlim(tks)

## [1] -10.9 131.9

xlim(tks) <- c(1, 35)
xlim(tks) <- gr
xlim(tks) <- ranges(gr)
3.3.7 Backup/restore utilities

3.3.8 Reset and backup

- reset: restore a backup tracks.
- backup: clear previous backup and save and backup current tracks.

```r
tks <- tracks(time1 = p1, time2 = p2)
tks
```
tks <- tks + xlim(1, 40)
tks

reset(tks)
```r
tks <- tks + xlim(1, 40)
tks
```
tks <- backup(tks)
tks <- tks + theme_bw()
tks
reset(tks)
3.4 Discussion
Chapter 4

**mold method**

We already know *ggbio* depends heavily on *ggplot2*, and *data.frame* is the data format *ggplot2* support, everything happens from this point. Since biological data is much more complicated and more specific format are introduced in Bioconductor, to utilize existing components and to make a smooth working pipeline, the first step we do is almost always to convert an object into a *data.frame*. *mold* is added into *ggbio* after Bioconductor 2.11, used for this purpose, before that we use *fortify* generic method, this usually take original data as second argument, and take model as first argument, so we developed our own new generic function here which accept original data as its first argument for dispatching.

**Tips:** alternatively, *GRanges* is a core data structure we supported in *ggbio*, most components knows how to work for it directly, so coercion from other object to a *GRanges* object is also doable. Actually internally, it is exactly what we did most time.

You may be aware of that most object already support coercion to a *data.frame* object by using function *as.data.frame* or *as* method. So what’s the deal here?

- More information will be coerced into *data.frame*, for example, column names and row names of the matrix, or phenotype data for eSet-like object.
- Create more variable statistics, for example, 'midpoint' is added when 'start' and 'end' provided.
- Some object may doesn’t have one coercion defined, here is the working point.

*eSet, GRanges, IRanges, GRangesList, Seqinfo, matrix, Views, ExpressionSet, SummarizedExperiment, Rle, RleList* are currently supported. Please check manual for more information about which column created.
Chapter 5

ggplot generic method and low level utilities

5.1 Objective

- Learn how to construct the graphics by using low level utilities.

To start this chapter, it’s recommended to take look at current supported components in ggplot2’s website http://docs.ggplot2.org/current/. Just walk around, you will see basic components you could utilize already with pure ggplot2.

5.2 ggplot

In ggbio, ggplot support many core data object in Bioconductor, it take in the original data, and save the original data in .data element of the object, you can use obj$.data to get the original data, and a data.frame is stored as any other ggplot in ggplot2. The data frame is coerced by running mold method in ggbio.

Running ggplot is just creating the data layer only, no plot will be generated at all. You have to specify statistics and geometry by adding components later.

Keep in mind, all varaibles in your molded data.frame could be used to map to graphics.

Let’s see a ggplot2 style construction first.

```r
library(ggbio)
p <- ggplot(mtcars, aes(x = mpg, y = wt))p + geom_point()
```
p + geom_point(aes(color = cyl)) + geom_line(color = "red")
## adding a new data layer

```r
p + geom_point(aes(color = cyl)) + geom_line(data = data.frame(x = 10:35,
 y = rnorm(26)), aes(x = x, y = y), color = "red")
```
If you don’t pass any new data in later additive component, the default data would be used, otherwise if you want to show a different data on another layer, just pass it with the components.

Then let’s take a look at ggbio’s API, following the same style.

```r
library(GenomicRanges)
set.seed(1)
N <- 100
gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),
 IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,
 size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,
 replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
 sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,
 size = N, replace = TRUE))
```
class(gr)

# [1] "GRanges"
# attr(,"package")
# [1] "GenomicRanges"

str(gr)

## Formal class 'GRanges' [package "GenomicRanges"] with 6 slots
## ..@ seqnames :Formal class 'Rle' [package "IRanges"] with 4 slots
## .......@ values : Factor w/ 3 levels "chr1","chr2",...: 1 2 3 1 3 2 1 3 2 3 ...
## .......@ lengths : int [1:69] 1 2 1 1 2 2 3 1 1 1 ...
## .......@ elementMetadata: NULL
## .......@ metadata : list()
## ..@ ranges :Formal class 'IRanges' [package "IRanges"] with 6 slots
## .......@ start : int [1:100] 197 106 82 298 191 64 39 144 278 180 ...
## .......@ width : int [1:100] 71 71 73 71 73 73 70 71 74 74 ...
## .......@ NAMES : NULL
## .......@ elementType : chr "integer"
## .......@ elementMetadata: NULL
## .......@ metadata : list()
## ..@ strand :Formal class 'Rle' [package "IRanges"] with 4 slots
## .......@ values : Factor w/ 3 levels "+","-","*": 3 1 2 3 1 3 1 2 1 3 ...
## .......@ lengths : int [1:74] 1 1 3 1 1 1 1 1 2 2 ...
## .......@ elementMetadata: NULL
## .......@ metadata : list()
## ..@ elementMetadata:Formal class 'DataFrame' [package "IRanges"] with 6 slots
## .......@ rownames : NULL
## .......@ nrows : int 100
## .......@ listData :List of 4
## ............$ value : num [1:100] 11.23 15.07 14.76 9.01 3.14 ...
## ............$ score : num [1:100] 126.8 68.6 159.1 88.5 149.6 ...
## ............$ sample: chr [1:100] "Tumor" "Normal" "Tumor" "Tumor" ...
## ............$ pair : chr [1:100] "v" "t" "h" "e" ...
## .......@ elementType : chr "ANY"
## .......@ elementMetadata: NULL
## .......@ metadata : list()
## ..@ seqinfo :Formal class 'Seqinfo' [package "GenomicRanges"] with 4 slots
## .......@ seqnames : chr [1:3] "chr1" "chr2" "chr3"
## .......@ seqlengths : int [1:3] NA NA NA
## .......@ is.circular: logi [1:3] NA NA NA
## .......@ genome : chr [1:3] NA NA NA
## .......@ metadata : list()

head(gr)

# GRanges with 6 ranges and 4 metadata columns:
# seqnames ranges strand | value score sample
## <Rle> <IRanges> <Rle> | <numeric> <numeric> <character>
## [1] chr1 [197, 267] * | 11.228 126.81 Tumor
##
## pair
##
## <character>
## [1] v
## [2] t
## [3] h
## [4] e
## [5] f
## [6] b

## seqlengths:
## chr1 chr2 chr3
## NA NA NA

```r
p <- ggplot(gr)
p + geom_rect()
```

## Object of class "ggbio"
## NULL

p + stat_coverage()

## Object of class "ggbio"
## NULL

```r
p + stat_coverage() + geom_point()
```

## Object of class "ggbio"
## NULL

p + stat_coverage() + geom_area()

## Object of class "ggbio"
## NULL

## new data

```r
p + stat_coverage() + geom_area() + geom_point(data = data.frame(x = 1:300,
 y = rnorm(300, 20)), aes(x = x, y = y))
```

## Object of class "ggbio"
In next section, we introduce more extended components.

### Components

Let’s first take a look at a general table about stat/geom/layout/coord/scale, Please notice the difference between *ggplot2* and *ggbio*, in *ggbio*, those components are also generic method. So many of them works for not only *GRanges* object, but some other objects too. But don’t be suprized when you autoplot on objects other than *GRanges, GRangesList, IRanges*, and some components or transformation doesn’t work. Support will be fullfiled gradually.
<table>
<thead>
<tr>
<th>Comp</th>
<th>name</th>
<th>usage</th>
<th>icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>geom</td>
<td>geom_rect</td>
<td>rectangle</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_segment</td>
<td>segment</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_chevron</td>
<td>chevron</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_arrow</td>
<td>arrow</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_arch</td>
<td>arches</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_bar</td>
<td>bar</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>geom_alignment</td>
<td>alignment (gene)</td>
<td>🗻️</td>
</tr>
<tr>
<td>stat</td>
<td>stat_coverage</td>
<td>coverage (of reads)</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_mismatch</td>
<td>mismatch pileup for alignments</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_aggregate</td>
<td>aggregate in sliding window</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_stepping</td>
<td>avoid overplotting</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_gene</td>
<td>consider gene structure</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_table</td>
<td>tabulate ranges</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>stat_identity</td>
<td>no change</td>
<td>🗻️</td>
</tr>
<tr>
<td>coord</td>
<td>linear</td>
<td>ggplot2 linear but facet by chromosome</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>genome</td>
<td>put everything on genomic coordinates</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>truncate gaps</td>
<td>compact view by shrinking gaps</td>
<td>🗻️</td>
</tr>
<tr>
<td>layout</td>
<td>track</td>
<td>stacked tracks</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>karyogram</td>
<td>karyogram display</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>circle</td>
<td>circular</td>
<td>🗻️</td>
</tr>
<tr>
<td>faceting</td>
<td>formula</td>
<td>facet by formula</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>ranges</td>
<td>facet by ranges</td>
<td>🗻️</td>
</tr>
<tr>
<td>scale</td>
<td>scale_x_sequnit</td>
<td>change x unit: Mb, kb, bp</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>scale_fill_giemsa</td>
<td>ideogram color</td>
<td>🗻️</td>
</tr>
<tr>
<td></td>
<td>scale_fill_fold_change</td>
<td>around 0 scaling, for heatmap.</td>
<td>🗻️</td>
</tr>
</tbody>
</table>

Table 5.1: Components of the basic grammar of graphics, with the extensions available in `ggbio`. 
If you want to get some instance about using those components, please check the on-line manual (http://tengfei.github.com/ggbio/docs/man/index.html), it is provided with graphics help you to understand.
Chapter 6

Autoplot method

6.1 API

API about is autoplot is kind of like a wrapper around the grammar. If you are familiar with API of ggplot2, it’s very similar.

\[ \text{autoplot}(\text{object} = , \text{geom} = , \text{stat} = , \text{coord} = , \text{facets} = , \text{scale} = , \ldots) \]

Most time only object parameters are required, and we have default for all other components, ggbio have default for each object trying to make smart guess for user’s purpose for particular data. ... means for particular data we accept or sometimes require extra arguments to control the graphics. For example, in some cases, like for a TranscriptDb object, user has to pass a which argument to tell ggbio which region you want to visualize, not the entire genome which make no sense here.

6.2 Usage

6.2.1 autoplot,GRanges

autoplot for GRanges object is designed to be most general plot API in ggbio package. GRanges is most suitable data structure for storing interval data with medata data, which could be used for representing a set of short reads or genomic features.

Supported geom designed specifically for GRanges, including "rect", "chevron", "alignment", "arrowrect", "arrow", "segment", "arch", and special statistical transformation contains "identity", "coverage", "stepping", "aggregate", "table", "gene", "mismatch". And they are implemented in lower API, such as geom_alignment and stat_coverage. If you pass other 'geom' and 'stat' other than those ones, it first use 'mold' method in ggbio to coerce a GRanges into a 'data.frame' object. And a new variable 'midpoint' is created and added to final 'data.frame' to be used to mapped as 'x'. So you can use it as other ggplot2 API. For a full table supported, please check.

Inside, autoplot will choose the best choice for your combination of 'geom' and 'stat'.

92
autoplot(data, color = score)
## this won't work, you have to use aes() around variable mapping.
autoplot(data, aes(color = score))

For arbitrary setting like you just want to use “red” for your fill color, don’t wrap it in your code.

autoplot(data, aes(color = score), fill = "red")

**Tips.** This is very different from design of qplot API in *ggplot2* package, I force users to pass the mapping in `aes`. This allow you to wrap the function into your own customized function and make sure the evaluation accurate.

Let’s generate some simulated interval data and store it as GRanges object.

```r
set.seed(1)
N <- 1000
library(GenomicRanges)
gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),
 IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,
 size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,
 replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
 sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,
 size = N, replace = TRUE))
idx <- sample(1:length(gr), size = 50)
```
Default is to use geom "rect" to represent those 'short reads', show overlaped intervals on different levels to help visualize the data, by default, the plot will be faceted automatically by chromosomes.

```r
autoplot(gr[idx])
```

## Object of class "ggbio"

![Figure 6.1: gr-default](image)

```r
NULL
```

## NULL

Figure 6.1: gr-default
Geom 'bar': just show intervals' region as they are and use a specified y in aes() to show as the height of bars, default is to use 'score' in the data if exists, because in most genomic data format, such as BED format, the score are reserved column.

```r
set.seed(123)
gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10),
width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10,
3), value = runif(10, 1, 100))
gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10),
width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10,
3), value = runif(10, 1, 100))
gr.b <- c(gr.b, gr.b2)

Warning: Each of the 2 combined objects has sequence levels not in the other:
- in 'x': chr1
- in 'y': chr2
Make sure to always combine/compare objects based on the same reference
genome (use suppressWarnings() to suppress this warning).
head(gr.b)
```

```
GRanges with 6 ranges and 2 metadata columns:
seqnames ranges strand | score value
<Rle> <IRanges> <Rle> | <numeric> <numeric>
[1] chr1 [1, 5] * | 15.1451949606498 96.3393990211189
[3] chr1 [21, 26]* | 6.2048162961804 69.3798225638457
[4] chr1 [31, 49]* | 7.93944144431942 79.751274510306

seqlengths:
chr1 chr2
NA NA
```

Facetting, some combination of geom/stat

```r
autplot(gr[idx], geom = "arch", aes(color = value), facets = sample ~ seqnames)
```

```
Object of class "ggbio"
```
p1 <- autoplot(gr.b, geom = "bar")

## use score as y by default

## use value to fill the bar
p2 <- autoplot(gr.b, geom = "bar", aes(fill = value))

## use score as y by default

tracks(default = p1, fill = p2)

Figure 6.2: Bar geom for GRanges.
Faceted by strand help you understand coverage from different sequencing direction.

New coordinate transformation 'genome' will transform a `GRanges` object into a genome space, align them up based on 'seqlevel' orders. This transformation allows you to add 'seqlengths' to your `GRanges` object to produce a fixed width, and add buffer in between by specifying `space.skip`. This transformation is useful for grand linear view as Manhattan plot or circular view.

Please read another two vignette about how to plot Manhattan plot and generate circular view for detail.

A little more

You will find a more general tutorial for circular view in chapter 9.
autoplot(gr, stat = "coverage", geom = "area", facets = strand ~ seqnames, 
aes(fill = strand))

## Object of class "ggbio"

Figure 6.3: Facet by strand to show coverage.
Figure 6.4: minimal example for circular transformation.
seqlengths(gr) <- c(400, 500, 700)
values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))]
idx <- sample(1:length(gr), size = 50)
gr <- gr[idx]
ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7,
trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4,
aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red",
radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr,
geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1)

Figure 6.5: Circular layout minimal example.
6.2.2 autoplot, Seqinfo

When a GRanges has seqlengths information which defined chromosome lengths, we have a way to quickly give a karyogram overview for adding data on later. Please read another vignette about karyogram overview.

You can easily subset/re-order the visualized the chromosomes by using '[ ]' method.

```r
data(hg19Ideogram, package = "biovizBase")
sq <- seqinfo(hg19Ideogram)
sq
```

```
Seqinfo of length 93
seqlengths isCircular genome
chr1 249250621 <NA> hg19
chr1_gl000191_random 106433 <NA> hg19
chr1_gl000192_random 547496 <NA> hg19
chr2 243199373 <NA> hg19
chr3 198022430 <NA> hg19
chr4 191154276 <NA> hg19
chr4_gl000193_random 189789 <NA> hg19
chr4_gl000194_random 191469 <NA> hg19
... ...
chrUn_gl000242 43523 <NA> hg19
chrUn_gl000243 43341 <NA> hg19
chrUn_gl000244 39929 <NA> hg19
chrUn_gl000245 36651 <NA> hg19
chrUn_gl000246 38154 <NA> hg19
chrUn_gl000247 36422 <NA> hg19
chrUn_gl000248 39786 <NA> hg19
chrUn_gl000249 38502 <NA> hg19
chrM 16571 <NA> hg19
```

6.2.3 autoplot, IRanges

autoplot for IRanges is used to visualize simple interval data with element data together, it's almost identical to API for GRanges, actually, everything works for GRanges should work for IRanges, we simply turn it to a fake GRanges inside.

Let's generate some simulated interval data and store it as *IRanges* object. and add some element meta data.

```r
set.seed(1)
N <- 100
ir <- IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N, replace = TRUE))
add meta data
df <- DataFrame(value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE))
```
Figure 6.6: Seqinfo visualization for chromosomes 1 to 22 and X.
autoplot will coerce IRanges together with its element meta data, so aesthetics mapping works for those extra information too.

### 6.2.4 autoplot,GRangesList

GRangesList is most suitable data structure for storing a set of genomic features, for example, exons/utrs in a gene. ‘autoplot’ is designed to consider the native grouping information in this structure and automatically showing gaps within group in ‘geom’ *alignment* and make sure grouped items are shown together on the same level with nothing falling in between.

Argument range.geom and gap.geom control geometry for entities and gaps computed for them. group.selfish help you put grouped items in unique y levels and show the y labels for group names.

Let’s create a GRangesList object by splitting a GRanges object.

```r
set.seed(1)
N <- 100
##
==
simmulated GRanges
==
gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),
 IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(30:40,
p1 <- autoplot(ir)
p2 <- autoplot(ir, aes(fill = pair)) + opts(legend.position = "none")

'opts' is deprecated. Use 'theme' instead. (Deprecated; last used in version 0.9.1)
p3 <- autoplot(ir, stat = "coverage", geom = "line", facets = sample ~ .)
p4 <- autoplot(ir, stat = "reduce")
tracks(p1, p2, p3, p4)

Figure 6.7: IRanges visualization.
```r
size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE))

grl <- split(gr, values(gr)$pair)
```

For GRangesList object, default is coerce it to GRanges and adding extra column to preserve the grouping information. main geoms and gaps geom are separately controlled.

Internal variable `grl_name` added to keep a track for grouping information, you could use it for faceting or other aesthetic mapping, the variables could be renamed by `indName` argument in `autoplot`, you could pass either `.gri_name` or `gri_name` in the mapping, I prefer the first one, it tells that it's interval variables.

6.2.5 autoplot,Rle

Rle is a general container for storing atomic vector which is defined in package IRanges, data is stored in a run-length encoding format.

For Rle, we bring following method, three stat, two geom and four types.

Two geom

- **bar**: default, controlled by 'nbin'.
- **heatmap**: show Rle as heatmap, use color to indicate values, controlled by 'nbin'.

Three default statistical transformation

- **bin**: bin the object, default is 30 bins in the view, controlled by argument `nbin`. Then in each bin make summary against specified types.
- **identity**: transform data to raw vector, then you can use many other geom such as line or point. Default x and y is internally set to position and value.
- **slice**: use `lower` to slice the object to islands, then use bar or heatmap to represent the island.

Four types for compute the statistical summary.

- **viewSums**: sums in the sliced view or bins.
- **viewMins**: min values in the sliced view or bins.
- **viewMaxs**: max values in the sliced view or bins.
- **viewMeans**: mean values in the sliced view or bins.

Let’s simulate some data first.
default gap.geom is 'chevron'

p1 <- autoplot(grl, group.selfish = TRUE)
p2 <- autoplot(grl, group.selfish = TRUE, main.geom = "arrowrect", gap.geom = "segment")
tracks(p1, p2)

Figure 6.8: Some examples showing GRangesList
autoplot(gr1, aes(fill = gr1_name))

Object of class "ggbio"

```r
## NULL

## equal to autoplot(gr1, aes(fill = gr1_name))
```

Figure 6.9: Tweak with name.
library(IRanges)
library(ggbio)
set.seed(1)
lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500))

@knitr create
xVector <- rpois(10000, lambda)
xRle <- Rle(xVector)
xRle

numeric-Rle of length 10000 with 823 runs
Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507
Values : 0 1 0 1 0 1 ... 0 1 0 1 0

6.2.6 autoplot,RleList

All methods are the same for RleList as for Rle, it's just faceted by listed group automatically. Please read the autoplot,Rle section first.

Let's simulate some data first.

xRleList <- RleList(xRle, 2L * xRle)
xRleList

SimpleRleList of length 2
[[1]]
numeric-Rle of length 10000 with 823 runs
Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507
Values : 0 1 0 1 0 1 ... 0 1 0 1 0
[[2]]
numeric-Rle of length 10000 with 823 runs
Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507
Values : 0 2 0 2 0 2 ... 0 2 0 2 0

6.2.7 autoplot,TranscriptDb

Some simple demonstration:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
data(genesymbol, package = "biovizBase")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
p1 <- autoplot(xRle)

Default use binwidth: range/30

p2 <- autoplot(xRle, nbin = 80)

Default use binwidth: range/80

p3 <- autoplot(xRle, geom = "heatmap", nbin = 200)

Default use binwidth: range/200

tracks\(\text{nbin} = 30\) = p1, \(\text{nbin} = 80\) = p2, \(\text{nbin} = 200\) (heatmap) = p3

Figure 6.10: Compare different geom and nbin by using default bin stat.
p1 <- autoplot(xRle, stat = "identity")
p2 <- autoplot(xRle, stat = "identity", geom = "point", color = "red")
tracks(line = p1, point = p2)

Figure 6.11: Compare different geom and nbin by using stat identity.
p1 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5)
p2 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap")
tracks(bar = p1, heatmap = p2)

Figure 6.12: Compare different geom and nbin by using stat slice.
p1 <- autoplot(xRleList)

Default use binwidth: range/30

p2 <- autoplot(xRleList, nbin = 80)

Default use binwidth: range/80

p3 <- autoplot(xRleList, geom = "heatmap", nbin = 200)

Default use binwidth: range/200

tracks(`nbin = 30` = p1, `nbin = 80` = p2, `nbin = 200(heatmap)` = p3)

Figure 6.13: Compare different geom and nbin by using default bin stat.
p1 <- autoplot(xRleList, stat = "identity")
p2 <- autoplot(xRleList, stat = "identity", geom = "point", color = "red")
tracks(line = p1, point = p2)

Figure 6.14: Compare different geom and nbin by using stat identity.
Figure 6.15: Compare different geom and nbin by using stat slice.
which argument accept a GRanges, list which is required to subset the data. names.expr accept string pattern or expression to parse the y tick labels. Otherwise it’s not going to show all of them. We are trying to show the ALDOA gene in the following example.

6.2.8 autoplot,GappedAlignment

The GappedAlignments class is a container to store a set of alignments, which is defined in package GenomicRanges.

Let’s load some data.

```r
library(Rsamtools)
## Loading required package: Biostrings
data("genesymbol", package = "biovizBase")
bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package = "biovizBase")
## need to set use.names = TRUE
ga <- readBamGappedAlignments(bamfile, param = ScanBamParam(which = genesymbol["RBM17"]),
use.names = TRUE)
```

Default is to show gapped line, we also could show them as simple short reads and coverage.

6.2.9 autoplot,BamFile

For BamFile, we bring a fast estimated method (implemented by Michael Lawrence), which is suitable for overview for particular chromosome and a much slower raw data view which could be used in visualizing a small region.

Load some raw data first, we didn’t provide an attached data here, you can try to download a whole genome NGS seq file from ENCODE or somewhere else.

```r
library(Rsamtools)
bamfile <- "/wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam"
bf <- BamFile(bamfile)
```

A very efficient method called ‘estimate’, which argument accepted a chromosome names, will give you an overview about coverage. If multiple chromosome names are provided, it will be faceted by seqnames. If which is missing, it’s going to use the first chromosomes appeared in the header.

```r
autoplot(bamfile)
autoplot(bamfile, which = c("chr1", "chr2"))
autoplot(bf)
autoplot(bf, which = c("chr1", "chr2"))
data(genesymbol, package = "biovizBase")
autoplot(bamfile, method = "raw", which = genesymbol["ALDOA"])
```
p1 <- autoplot(txdb, which = genesymbol["ALDOA"], names.expr = "tx_name:::gene_id")

Aggregating TranscriptDb...
Parsing exons...
Parsing cds...
Parsing transcripts...
Aggregating...
Done
Constructing graphics...

p2 <- autoplot(txdb, which = genesymbol["ALDOA"], stat = "reduce", color = "brown",
 fill = "brown")

Aggregating TranscriptDb...
Parsing exons...
Parsing cds...
Parsing transcripts...
Aggregating...
Done
Constructing graphics...

tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("")

Figure 6.16: TranscriptDb visualization. Top track shows all the transcripts while bottom track reduce them and show a single track.
p1 <- autoplot(ga)
p2 <- autoplot(ga, geom = "rect")

extracting information...

p3 <- autoplot(ga, geom = "line", stat = "coverage")

extracting information...

tracks(default = p1, rect = p2, coverage = p3)

Figure 6.17: Visualization of GappedAlignment object
library(BSgenome.Hsapiens.UCSC.hg19)
autoplot(bf, stat = "mismatch", which = genesymbol["ALDOA"], bsgenome = Hsapiens)

6.2.10 autoplot, character

When the object is character it accept a file with extensions .bam or any other extension names package rtracklayer supported, such as .bed, .gif. If the object could be imported by rtracklayer, it will be turned into a GRanges object, and ‘score’ column will be potentially used. So please read Section 6.2.1 Section 6.2.8 Section 6.2.9 for related topics.

For example, if you have a bam file

bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam"
autoplot(bamfile)

Or for an example bed file, remember you can pass an argument which to subset the data.

6.2.11 autoplot, matrix

For object matrix, the default graphic would be heatmap, here we bring more controls over it.

- Function scale_fill_fold_change(not default) will scale the heatmap due to a classic blue-white-red color scheme, where 0 is set to white color, negative value set to blue and positive value set to red.

This underlies fundamental heatmap for other object such as ExpressionSet, SummarizedExperiment, VCF, which we will introduce later.

We use volcano default data as an example, it’s not a real microarray data, just demonstrate how to visualize a matrix.

autoplot(volcano)
library(rtracklayer)

test_path <- system.file("tests", package = "rtracklayer")
test_bed <- file.path(test_path, "test.bed")
autoplot(test_bed, aes(fill = name))

reading in
use score as y by default

Object of class "ggbio"

NULL

Figure 6.18: autoplot for bed files
In biological papers, a blue-white-scale is commonly used for making heatmap.

\texttt{autoplot(volcano - 150) + scale_fill_fold_change()}
When column name or row name is associated with matrix, they will be labeled, but you can still force disable the label by using logical arguments `colnames.label`, `rownames.label`.

`autoplot` for `matrix` also support a matrix storing categorical data, even with `NA`, missing value will be shown as gray color by default, by your can explicitly set it to other colors. Default geom for this is ‘tile’ more flexible, you can specify the height and width for the unit.

```r
x <- sample(c(letters[1:3], NA), size = 100, replace = TRUE)
mx <- matrix(x, nrow = 5)
mx[1:5, 1:5]

[1,] "c" NA "a" "c" "c"
[2,] "a" NA "c" "b" NA
```
```r
# [3,] "a"  "a"  "c"  "a"  "b"
# [4,] "a"  "a" NA  "a"  "c"
# [5,] NA  "c"  "c"  "b"  "c"

autoplot(mx)
```

```r
## tile gives you a white margin
rownames(mx) <- LETTERS[1:5]
autoplot(mx, color = "white")
```

```r
## Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
```
default 'tile' is flexible

```r
autoplot(mx, aes(width = 0.6, height = 0.6))
```

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
```r
## change missing value color
autoplot(mx, aes(width = 0.6, height = 0.6), na.value = "white")

## Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
```
autoplot(mx, aes(width = 0.6, height = 0.6)) + theme_clear()

Scale for ‘y’ is already present. Adding another scale for ‘y’, which will replace the existing scale.
6.2.12 autoplot, Views

autoplot for Views object, first convert it to a matrix, and align it from left, so you can compare multiple region on the genome with scores all together, this is useful, when you are trying to compare multiple binding region around tss and make a summary plot.

Here is a simulated data.

```r
lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500))
xVector <- dnorm(1:5000, mean = 1000, sd = 200)
xRle <- Rle(xVector)
v1 <- Views(xRle, start = sample(400:600, size = 50, replace = FALSE), width = 1000)
```
```r
autoplot(v1)

## Object of class "ggbio"

names(v1) <- letters[sample(1:24, size = length(v1), replace = TRUE)]
autoplot(v1)

## Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
```
NULL

```r
autoplot(v1, geom = "line", aes(color = row)) + theme(legend.position = "none")
## Object of class "ggbio"
```

```r
## Object of class "ggbio"
```
NULL

make a 1000 fake gene region,
gr <- GRanges("chr0", IRanges(start = c(500, 600, 800), width = c(80, 100, 100)))
p.model <- autoplot(gr, geom = "alignment")
p.v <- autoplot(v1)

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
p.v2 <- autoplot(v1, geom = "line", facets = NULL, alpha = 0.1)
tracks(model = p.model, v = p.v, v2 = p.v2, heights = c(1, 5, 2))
tracks(model = p.model, v = p.v, v2 = p.v2, heights = c(1, 5, 2)) + theme_tracks_sunset()
6.2.13 autoplot, ExpressionSet

ExpressionSet object is commonly used container for storing high-throughput assays and experimental metadata. It's defined in Biobase.

Graphics we bring for this type of data includes:

- 'heatmap': default.
- 'pcp': parallel coordinate plots, level change for particular gene(row) can be easily observed across samples.
- 'boxplot': boxplot, summary over samples.
- 'scatterplot.matrix' pairwised comparison across samples, a quick way to observe correlation.
Let's have some examples.

```r
library(Biobase)
data(sample.ExpressionSet)
sample.ExpressionSet

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 26 samples
##   element names: exprs, se.exprs
## protocolData: none
## phenoData
## sampleNames: A B ... Z (26 total)
## varLabels: sex type score
## varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation: hgu95av2

set.seed(1)
idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50)
eset <- sample.ExpressionSet[idx, ]
```

6.2.14 autoplot, SummarizedExperiment

SummarizedExperiment is a eSet-like container, where column represents samples and rows represent ranges of interest, for example, a GRanges object, and it could contain one or more assays. It's defined in package GenomicRanges.

- 'heatmap': default.
- 'pcp': parallel coordinate plots, level change for particular gene(row) can be easily observed across samples.
- 'boxplot': boxplot, summary over samples.
- 'scatterplot.matrix' pairwised comparison across samples, a quick way to observe correlation.

```r
nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 10000), nrows)
rowData <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200, 1e+05, 1e+06)), width = 100), strand = sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment = rep(c("ChIP", "Input"), 3), row.names = LETTERS[1:6])
sset <- SummarizedExperiment(assays = SimpleList(counts = counts), rowData = rowData, colData = colData)
```
p1 <- autoplot(eset)

Scale for 'y' is already present. Adding another scale for 'y', which will replace
the existing scale.
Scale for 'x' is already present. Adding another scale for 'x', which will replace
the existing scale.

p1

Figure 6.19: Heatmap default
```r
p2 <- p1 + scale_fill_fold_change()
p2
```

Figure 6.20: Heatmap default with blue-white-red scale
autplot(eset, type = "pcp")

Figure 6.21: Parallel coordinate plot.
\texttt{autoplot(eset, type = "boxplot")}

Figure 6.22: Boxplot.
```r
autoplot(eset[, 1:7], type = "scatterplot.matrix")

## This function is deprecated. For a replacement, see the ggpairs function in the
GGally package. (Deprecated; last used in version 0.9.2)
```

Figure 6.23: Scatterplot matrix.
```r
autoclot(eset, type = "mean-sd")
```

```
## Loading required package: vsn
```

Figure 6.24: Scatterplot matrix.
autoplot(eset, type = "volcano", fac = pData(sample.ExpressionSet)$type)

Loading required package: genefilter
genefilter::rowttests used

Figure 6.25: Scatterplot matrix.
autoplot(sset) + scale_fill_fold_change()

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.

Figure 6.26: heatmap
Figure 6.27: Parallel coordiantae plot.
```r
autoplot(sset, type = "boxplot")
```

Figure 6.28: Boxplot.
autoplot(sset, type = "scatterplot.matrix")

This function is deprecated. For a replacement, see the ggpairs function in the GGally package. (Deprecated; last used in version 0.9.2)

Figure 6.29: Scatterplot matrix
6.2.15 autoplot,VCF

VCF (Variant Call Format) class extends a class we have introduced SummarizedExperiment, and with additional slots, 'fixed' and 'info'. It’s defined in package VariantAnnotation.

We have done some experimental visualization, and features are going to be extended or changed later.

- For type 'geno': we get an assay, and test if 'GT' is in. Then we make a heatmap to show geno types.
- For type 'info': Please specify one variable as y to show as bars.
- For type 'fixed': You can plot ref/alt strings on the plot, default plot both reference and variants, and if one string is over 1, we will use a black 'I' to indicate that’s an indel, then if at each position there are multiple data, we will show them in different y levels. Argument full.string control if you want to show full strings of indels or not, even they are shown as full string, they will still be in balck color, to indicate it’s on the single position. ref.show controls if you want to show REF column in the data or not, sometimes people may want to just plot BSgenome object as reference track.

```r
library(VariantAnnotation)

##
## Attaching package: 'VariantAnnotation'
##
## The following object(s) are masked from 'package:Biobase':
##
## samples

cffile <- system.file("extdata", "chr22.vcf.gz", package = "VariantAnnotation")
vcf <- readVcf(vcffile, "hg19")

hdr <- exptData(vcf)[["header"]]
```

6.2.16 autoplot,BSgenome

The BSgenome class is a container for the complete genome sequence of a given organism, it’s defined in package BSgenome. We use it to plot reference genome, along with other tracks.
autoplot(vcf)

GT,DS,GL could be used for 'geno' type
use GT for type geno as default
Index: 744,3604,4738,7096,7287,10037,10198 snp with duplicated start position may be
masked by each other
Scale for 'y' is already present. Adding another scale for 'y', which will replace
the existing scale.

Figure 6.30: default heatmap to show GT for type 'geno'.

```r
autoplot(vcf, genomic.pos = TRUE)
```

GT,DS,GL could be used for 'geno' type
use GT for type geno as default
Index: 744,3604,4738,7096,7287,10037,10198 snp with duplicated start position may be
masked by each other
Scale for 'y' is already present. Adding another scale for 'y', which will replace
the existing scale.
```r
autoplot(vcf, type = "info", aes(y = THETA))

## Other options for potential mapping (only keep numeric/integer/character/factor variable):
```

Figure 6.31: default bar chart for type info, use THETA as y.
Figure 6.32: default heatmap to show GT as heatmap for type 'fixed'.
p1 <- autoplot(vcf, type = "fixed") + xlim(50310860, 50310890)
p2 <- autoplot(vcf, type = "fixed", full.string = TRUE) + xlim(50310860, 50310890)
tracks(`full.string = FALSE` = p1, `full.string = TRUE` = p2) + scale_y_continuous(breaks = NULL, limits = c(0, 3))

Warning: Removed 1 rows containing missing values (geom_text).

Figure 6.33: Demonstration of full.string.
p3 <- autoplot(vcf, type = "fixed", ref.show = FALSE) + xlim(50310860, 50310890) +
scale_y_continuous(breaks = NULL, limits = c(0, 2))
p3

Figure 6.34: Demonstration of ref.show.
library(BSgenome.Hsapiens.UCSC.hg19)

Loading required package: BSgenome
Attaching package: 'BSgenome'
The following object(s) are masked from 'package:AnnotationDbi':
species

data(genesymbol, package = "biovizBase")
p1 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50))
p2 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50), geom = "rect")

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

tracks(text = p1, rect = p2)

Figure 6.35: plot BSgenome
Chapter 7

Ideogram

7.1 Introduction

Ideograms are a schematic representation of chromosomes showing the relative size and banding patterns of the chromosomes. Single chromosome ideogram overview is widely used in most track-based genome browsers, usually on top of all tracks, and use an indicator such as a highlighted window to indicate current region being viewed for tracks below, in this case, users won’t lose too much context when zoomed into certain region.

7.2 Usage

7.2.1 Visualization of ideogram for single chromosome

For single chromosome ideogram, we require they have been arranged into a GRanges object in order to be visualized in ggbio. We will introduce how to get those ideogram on-line and manually later. Let’s first take a look at what the data looks like.

We have two types of ideogram, which have different requirements for data, let’s first introduce the most commonly used one: Ideogram with cytoband. It could be visualized with banding information, and require extra columns such as

- name: start with p or q. to tell the different arms of chromosomes. such as p36.22 and q12.
- gieStain: dye color of cytoband. such as gneg.

Keep in mind, now, the data need to be transformed into a GRanges object. In the following example, we use a default data set in ggbio called hg19IdeogramCyto to show human ideogram. And a function called isIdeogram in package biovizBase could be used to check on your data, to see if it contain sufficient information about cytoband and arms or not.

Tips: after ggbio 1.5.14, if you doesn’t provide any data, you can just provide genome to get it on the fly, or provide nothing, it will give you a list to choose from.
library(ggbio)

require connection

p <- plotIdeogram(genome = "hg19", aspect.ratio = 1/20)

Loading...

Done

use chr1 automatically

p
Object of class "ideogram"

```r
chr1
```

NULL

the data stored with p, won't download again for zooming

```r
attr(p, "ideogram.data")
```

GRanges with 862 ranges and 2 metadata columns:

```r
## seqnames ranges strand | name gieStain
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 [ 0, 2300000] * | p36.33 gneg
```
We will introduce a method to download the data manually and use it through the vignette by a function called `getIdeogram`. The data `hg19IdeogramCyto` is a default data with `ggbio` for convenient use. The argument `aspect.ratio` controls the height/width ratio if you want a fixed plot no matter how you resize the window.

```
library(biovizBase)
data(hg19IdeogramCyto)
```

```
# data structure
hg19IdeogramCyto
```

```
# GRanges with 862 ranges and 2 metadata columns:
# seqlengths
# seqnames ranges strand | name gieStain
# <Rle> <IRanges> <Rle> | <factor> <factor>
# [1] chr1 [ 0, 2300000] * | p36.33 gneg
# [3] chr1 [ 5400000, 7200000] * | p36.31 gneg
# [5] chr1 [ 9200000, 12700000] * | p36.31 gneg
# [9] chr1 [23900000, 28000000] * | p36.11 gneg
# ... ... ... ... ... ... ...
# [854] chrY [ 3000000, 11600000] * | p11.2 gneg
# [855] chrY [11600000, 12500000] * | p11.1 acen
# [856] chrY [12500000, 13400000] * | q11.1 acen
# [857] chrY [13400000, 15100000] * | q11.21 gneg
# [858] chrY [15100000, 19800000] * | q11.221 gpos50
# [859] chrY [19800000, 22100000] * | q11.222 gneg
# [860] chrY [22100000, 26200000] * | q11.223 gpos50
# [861] chrY [26200000, 28800000] * | q11.23 gneg
# [862] chrY [28800000, 59373566] * | q12 gvar
# ... ---
```
When the data is ready to be plotted, as you can tell, most time you only want to visualize a single chromosome, so you need to specify it. To visualize it, in `ggbio`, there are two functions to do it, `plotIdeogram`, `plotSingleChrom`, they are just synonyms. If the graphic device is big, resize it to proper size or bind it in tracks use specified height. The plot is shown in Figure 7.1

```r
plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20)
```

```r
# Object of class "ideogram"
```
NULL

```r
plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20, zoom.region = c(1e+07, 5e+07))
```

Object of class "ideogram"
```r
## NULL

plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20, zoom.region = c(1e+07, 5e+07), fill = NA, color = "blue")

## Object of class "ideogram"
```
NULL

```r
p <- plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20)
p + xlim(1e+07, 5e+07)
```

Object of class "ideogram"
library(GenomicRanges)

p + xlim(IRanges(5e+07, 7e+07))

Object of class "ideogram"
NULL

change seqnames

p + xlim(GRanges("chr2", IRanges(1e+07, 5e+07)))

Object of class "ideogram"
Default ideogram has no X-scale label, to add axis text, you have to specify argument x1label to TRUE.

Some time, you don’t want to visualize a chromosome with cytobands, or you cannot find any information about cytobands, in this case, you can simply visualize a blank chromosome just to indicate the position. ggbio has several ways to do it.

- Use argument cytoband. Set it to FALSE.
- Pass a GRanges with no extra column such as name, gieStain. it will automatically parse and estimate the chromosome lengths. It is IMPORTANT that to create an accurate lengths for chromosomes, you need to either make sure the ranges you passed covers all chromosomes or you need to specify the seqlengths for our GRanges object.
p <- plotIdeogram(hg19IdeogramCyto, "chr1")
df <- data.frame(x = seq(from = 5e+07, to = 9e+07, length = 100), y = rnorm(100))
p2 <- qplot(data = df, x = x, y = y, geom = "line") + ylab("")
tracks(p, p2 = p2, heights = c(1.2, 5))
plotIdeogram(hg19IdeogramCyto, "chr1", xlabel = TRUE)

Object of class "ideogram"

Figure 7.2: Ideogram for human chromosome 1 with x scale labeled.
So please make sure the GRanges object you passed has an accurate seglengths information, or you are confident the ranges(for example, cytoband) will cover all the chromosome space, otherwise, you will end up with some very inaccurate chromosome lengths and you may NEVER notice from the plot. A example of this is shown in Figure 7.3.

There is another data set called hg19Ideogram, with no cytoband information, but with accurate seqlengths information.

```
data(hg19Ideogram)
head(hg19Ideogram)
```

```
# GRanges with 6 ranges and 0 metadata columns:
# seqnames  ranges  strand
# <Rle> <IRanges> <Rle>
# [1] chr1  [1, 249250621] *
# [2] chr1_gl000191_random [1, 106433] *
# [3] chr1_gl000192_random [1, 547496] *
# [4] chr2  [1, 243199373] *
# [5] chr3  [1, 198022430] *
# [6] chr4  [1, 191154276] *
# seqlengths:
# chr1  chr1_gl000191_random ... chrM
# 249250621  106433 ... 16571
```

7.2.2 Get ideogram or customize the colors

We only provide default cytoband ideogram information for human, but what if you want to create your ideogram yourself? There is a high possibility that it’s already in UCSC data base, and we can use package rtracklayer to download the data from the server.

- `ucscGenomes` function in package rtracklayer will list all available UCSC genomes.
- You can also use `biovizBase`’s `getIdeogram` function without any arguments, that will give you some items names you can choose from. This function is a convenient wrapper over some functionality in rtracklayer.
- Keep in mind, not all available genomes have cytoband information and not all of them have the same default dye names as humans.

Let’s first see how to get available genomes in following examples, we need the db column to use them in function `getIdeogram`.

```
library(rtracklayer)
## need UCSC connection
head(ucscGenomes())
```

```
> head(ucscGenomes())
```
library(GenomicRanges)
there are no seqlengths
seqlengths(hg19IdeogramCyto)
chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2
NA NA
chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY
NA NA
so directly plot will try to aggregate and estimate lengths of
chromosomes, this is not accurate
data(hg19IdeogramCyto)
p1 <- plotIdeogram(hg19IdeogramCyto, "chr1", cytoband = FALSE, xlabel = TRUE)

Warning: geom(ideogram) need valid seqlengths information for accurate mapping,
now use reduced information as ideogram...

let’s assign a short length to this object
hg19_fake_chr1 <- hg19IdeogramCyto
seqlengths(hg19_fake_chr1)[1] <- 1e+08

Warning: ‘ranges’ contains values outside of sequence bounds
Warning: ‘ranges’ contains values outside of sequence bounds

this will use it’s ‘seqlengths’ information to visualize the
chromosome.
p2 <- plotIdeogram(hg19_fake_chr1, "chr1", cytoband = FALSE, xlabel = TRUE)

Warning: ‘ranges’ contains values outside of sequence bounds

see the difference
alignPlots(p1, p2)
db species date name
1 hg19 Human Feb. 2009 Genome Reference Consortium GRCh37
2 hg18 Human Mar. 2006 NCBI Build 36.1
3 hg17 Human May 2004 NCBI Build 35
4 hg16 Human Jul. 2003 NCBI Build 34
5 felCat4 Cat Dec. 2008 NHGRI catChrV17e
6 felCat3 Cat Mar. 2006 Broad Institute Release 3

getIdeogram without arguments will give you choice to choose from too.

```r
library(biovizBase)
obj <- getIdeogram()
```

Please specify genome:

```
1: hg19  2: hg18  3: hg17  4: hg16  5: felCat4
6: felCat3  7: galGal4  8: galGa13  9: galGal2  10: panTro3
11: panTro2  12: panTro1  13: bosTau7  14: bosTau6  15: bosTau4
16: bosTau3  17: bosTau2  18: canFam3  19: canFam2  20: canFam1
26: gorGor3  27: cavPor3  28: equCab2  29: equCab1  30: petMar1
31: anoCar2  32: anoCar1  33: calJac3  34: calJac1  35: oryLat2
36: myoLuc2  37: mm10  38: mm9  39: mm8  40: mm7
41: hetGla1  42: monDom5  43: monDom4  44: monDom1  45: ponAbe2
51: rn5  52: rn4  53: rn3  54: rheMac2  55: oviAri1
56: gasAcu1  57: echTel1  58: tetNig2  59: tetNig1  60: melGal1
61: macEug2  62: xenTro3  63: xenTro2  64: xenTro1  65: taeGut1
66: danRer7  67: danRer6  68: danRer5  69: danRer4  70: danRer3
71: ci12  72: ci11  73: braFlo1  74: strPur2  75: strPur1
76: apiMel2  77: apiMe11  78: anoGam1  79: droAna2  80: droAna1
81: droEre1  82: droGri1  83: dm3  84: dm2  85: dm1
86: droMoi2  87: droMoj1  88: droPer1  89: dp3  90: dp2
91: droSec1  92: droSim1  93: droVir2  94: droVir1  95: droYak2
96: droYak1  97: caePb2  98: caePb1  99: cb3  100: cb1
101: ce10  102: ce6  103: ce4  104: ce2  105: caeJap1
111: sacCer2  112: sacCer1
```

Selection:

Function getIdeogram have some control over it.

- **subchr argument**: to parse a subset of chromosomes information from genome.
- **cytoband argument**: default is TRUE, try to parse cytoband information, but sometimes you may came across errors when there is no data about cytoband available for certain genomes. We need to get that information manually somewhere else.
Let's try to get a mouse genome from the data base, we know the data base name is mm9 from above listed choices.

```
library(biovizBase)
## just need information about chromosome lengths
mm9 <- getIdeogram("mm9", cytoband = FALSE)

## Loading...
## Done

## have
head(mm9)

## GRanges with 6 ranges and 0 metadata columns:
##  seqnames ranges strand
##  <Rle> <IRanges> <Rle>
## [1] chr1 [1, 197195432] *
## [2] chr1_random [1, 1231697] *
## [3] chr2 [1, 181748087] *
## [4] chr3 [1, 159599783] *
## [5] chr3_random [1, 41899] *
## [6] chr4 [1, 155630120] *
## ---
## seqlengths:
##  chr1 chr1_random chr2 ... chrUn_random chrM
##  197195432 1231697 181748087 ... 5900358 16299

## need information about cytoband
mm9 <- getIdeogram("mm9")

## Loading...
## Done

head(mm9)

## GRanges with 6 ranges and 2 metadata columns:
##  seqnames ranges strand | name gieStain
##  <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 [ 0, 8918386] * | qA1 gpos100
## [2] chr1 [ 8918386, 12386647] * | qA2 gneg
## [3] chr1 [12386647, 20314102] * | qA3 gpos33
## [4] chr1 [20314102, 22295965] * | qA4 gneg
## [5] chr1 [22295965, 31214352] * | qA5 gpos100
## [6] chr1 [31214352, 43601000] * | qB gneg
## ---
## seqlengths:
##  chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY
##  NA NA NA NA NA NA ... NA NA NA NA NA
```
Now we have to explain where define our default cytoband color, it's in an option list of package `biovizBase`. Later you will notice some of the staining color for 'mm9' is not defined in our color list.

```r
cyto.def <- getOption("biovizBase")$cytobandColor
cyto.def
```

```
## gneg stalk acen gpos gvar gpos1 gpos2
## "grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"
## "#F9F9F9" ".#F7F7F7" ".#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"
## gpos3 gpos4 gpos5 gpos6 gpos7 gpos8 gpos9
## "#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DDDDDD" "#DADADA" "#D8D8D8"
## gpos10 gpos11 gpos12 gpos13 gpos14 gpos15 gpos16
## "#D6D6D6" "#D3D3D3" "#D0D0D0" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"
## gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23
## "#C3C3C3" "#C1C1C1" "#BEBEBE" "#BCCBCB" "#B9B9B9" "#B6B6B6" "#B4B4B4"
## gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30
## "#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"
## gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37
## "#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"
## gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44
## "#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"
## gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51
## "#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"
## gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58
## "#696969" "#666666" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"
## gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65
## "#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"
## gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72
## "#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"
## gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79
## "#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"
## gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86
## "#212121" "#1E1E1E" "#1C1C1C" "#191919" "#171717" "#141414" "#121212"
## gpos87 gpos88 gpos89 gpos90 gpos91 gpos92 gpos93
## "#0F0F0F" "#0C0C0C" "#0A0A0A" "#070707" "#050505" "#020202" "#000000"
```

```r
setdiff(unique(values(mm9)$gieStain), names(cyto.def))
```

```
## character(0)
```

We notice gieStain `gpos33`, `gpos66` is not defined in default, if we directly plot them, those region will be blank. Otherwise, we could

- either edited the default color option list
- or use `ggplot2` lower level utilities.

168
In the following code, we compare a incomplete color default with customized color.

```r
p1 <- plotIdeogram(mm9, "chr1")
cyto.def

# gneg stalk acen gpos gvar gpos1 gpos2
# "grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"
# "#F9F9F9" "#F7F7F7" "#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"
# "gpos10" gpos11 gpos12 gpos13 gpos14 gpos15 gpos16
# "#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DADADA" "#D8D8D8"
# "gpos17" gpos18 gpos19 gpos20 gpos21 gpos22 gpos23
# "#D5D5D5" "#D3D3D3" "#D0D0D0" "#CECECE" "#C8C8C8" "#C6C6C6"
# "gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30"
# "#C3C3C3" "#C1C1C1" "#BEBEBE" "#B9B9B9" "#B6B6B6" "#B4B4B4"
# "gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37"
# "#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"
# "gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44"
# "#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"
# "gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51"
# "#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"
# "gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58"
# "#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"
# "gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65"
# "#696969" "#676767" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"
# "gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72"
# "#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"
# "gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79"
# "#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"
# "gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86"
# "#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"
# "gpos87 gpos88 gpos89 gpos90 gpos91 gpos92 gpos93"
# "#212121" "#1E1E1E" "#1C1C1C" "#191919" "#171717" "#141414" "#121212"
# "gpos94 gpos95 gpos96 gpos97 gpos98 gpos99 gpos100"
# "#0F0F0F" "#0C0C0C" "#0A0A0A" "#070707" "#050505" "#020202" "#000000"

cyto.new <- c(cyto.def, c(gpos33 = "grey80", gpos66 = "grey60"))

# method 1:
optlist <- getOption("biovizBase")
optlist$cytobandColor <- cyto.new
options(biovizBase = optlist)
p2 <- plotIdeogram(m9, "chr1")
p3 <- plotIdeogram(m9, "chr1") + scale_fill_manual(values = cyto.new)
alignPlots(p1, p2, p3)
```
7.2.3 Plot ideogram directly from Seqinfo

More information could be found in autoplot tutorial.
```r
data(hg19Ideogram)
seqs <- seqinfo(hg19Ideogram)
class(seqs)
## [1] "Seqinfo"
## attr(,"package")
## [1] "GenomicRanges"
p1 <- autoplot(seqs[["chr1"]])
p2 <- autoplot(seqs[["chr1"], FALSE])
tracks(type1 = p1, type2 = p2)
```

Figure 7.4: Plot Seqinfo object.
Chapter 8

Visualize genomic features

8.1 Introduction

Transcript-centric annotation is one of the most useful tracks that frequently aligned with other data in many genome browsers. In Bioconductor, you can either request data on the fly from UCSC or BioMart, which require internet connection, or you can save frequently used annotation data of particular organism, for example human genome, as a local database. Package `GenomicFeatures` provides very convenient API for making and manipulating such database. Bioconductor also pre-built some frequently used genome annotation as packages for easy installation, for instance, for human genome(hg19), there is a meta data package called `TxDb.Hsapiens.UCSC.hg19.knownGene`, after you load this package, a `TranscriptDb` object called `TxDb.Hsapiens.UCSC.hg19.knownGene` will be visible from your workspace. This object contains information like coding regions, exons, introns, utrs, transcripts for this genome. If you cannot find the organism you want in Bioconductor meta packages, please refer to the vignette of package `GenomicFeatures` to check how to build your own database manually.

`ggbio` providing visualization utilities based on this specific object, in the following tutorial we cover some usage:

- How to plot genomic features for certain region, including coding region, introns, utrs.
- How to change geom of introns, how to revise arrow size and density.
- How to change aesthetics such as colors.
- How to plot single genomic features by make statistical transformation of “reduce”.
- How to revise y label using expression and pattern.
- How to change x-scale unit to arbitrary `kb`, `bp`.
- How to use lower level API.
8.2 Usage

8.2.1 autoplot

autoplot API is higher level API in ggbio which tries to make smart decision for object-oriented graphics. Another vignette have more detailed introduction to this function.

In this tutorial, we solely focus on visualization of TranscriptDb object.

```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
# suppose you already know the region you want to visualize or for
# human genome, you can try following commented code
data(genesymbol, package = 'biovizBase')
genesymbol["ALDOA"]
aldoa.gr <- GRanges("chr16", IRanges(30064491, 30081734))
aldoa.gr

# GRanges with 1 range and 0 metadata columns:
#   seqnames  ranges strand
#   <Rle>     <IRanges> <Rle>
# [1] chr16 [30064491, 30081734] *
# ---
# seqlengths:
#   chr16
#   NA

library(ggbio)
p1 <- autoplot(txdb, which = aldoa.gr)

## Aggregating TranscriptDb...
## Parsing exons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...
```

p1
You can changing some aesthetics like colors in autoplot, since rectangle is defined by 'color' which is border color and 'fill' for filled color.

```r
library(ggbio)
p1 <- autoplot(txdb, which = aldoa.gr, fill = "brown", color = "brown")

## Aggregating TranscriptDb...
## Parsing ezons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...
```

p1
autoplot function for object TranscriptDb has two supported statistical transformation.

- **identity**: full model, show each transcript, parsing coding region, introns and utrs automatically from the database. introns are shown as small arrows to indicate the direction, exons are represented as wider rectangles and utrs are represented as narrow rectangles. This transformation is shown in Figure ??
- **reduce**: reduced model, show single reduced model, which take union of CDS, utrs and re-compute introns, as shown in Figure ??.

```r
p2 <- autoplot(txdb, which = aldoa.gr, stat = "reduce")
```

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...
To better understand the behavior of “reduce” transformation, we layout these two graphics by tracks as shown in Figure ??· Function Tracks has been introduced in detail in another vignette.

```
tracks(full = p1, reduced = p2, heights = c(4, 1)) + theme_alignment(grid = FALSE, border = FALSE)
```

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
We allow users to change the way to visualization introns here, it’s controlled by parameter "gap.geom", supported three geoms:

- **arrow**: with small arrow to indicate the strand direction, extra parameter existing to control the appearance of the arrow, as shown in Figure ??, **arrow.rate** control how dense the arrows shows in between.

- **chevron**: chevron to show as introns, no strand indication. please check geom_chevron.

- **segment**: segments to show as introns, no strand indication.

The geometric object for ranges, introns and uts are controled by parameters range.geom, gap.geom, utr.geom. For example if you want to change the geom for gap, just change the gap.geom.

```r
autoplot(txdb, which = aldoa.gr, gap.geom = "chevron")
```

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...
library(grid)
autoplot(txdb, which = aldoa.gr, arrow.rate = 0.001, length = unit(0.35, "cm"))

Aggregating TranscriptDb...
Parsing exons...
Parsing cds...
Parsing transcripts...
Aggregating...
Done
Constructing graphics...
We also allow users to parse y labels from existing column in TranscriptDb object.

```r
p <- autoplot(txdb, which = aldoa.gr, names.expr = "gene_id::tx_name")
```

```r
## Aggregating TranscriptDb...
## Parsing exons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...
```

p
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Domain</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>226:uc010bzo.2</td>
<td></td>
<td>30.065 Mb</td>
</tr>
<tr>
<td>226:uc002dvx.3</td>
<td></td>
<td>30.07 Mb</td>
</tr>
<tr>
<td>226:uc002dvw.3</td>
<td></td>
<td>30.075 Mb</td>
</tr>
<tr>
<td>226:uc002dvz.3</td>
<td></td>
<td>30.075 Mb</td>
</tr>
<tr>
<td>226:uc002dwa.4</td>
<td></td>
<td>30.08 Mb</td>
</tr>
<tr>
<td>226:uc002dwc.3</td>
<td></td>
<td>30.08 Mb</td>
</tr>
<tr>
<td>226:uc002dve.2</td>
<td></td>
<td>30.08 Mb</td>
</tr>
<tr>
<td>552900:uc010bzb.1</td>
<td></td>
<td>30.08 Mb</td>
</tr>
</tbody>
</table>

Note: The table represents the positions of various gene domains within a genomic region.
scale_x_sequnit is a add-on utility to revise the x-scale, it provides three unit

- mb: 1e6bp unit. default for autoplot, TranscriptDb.
- kb: 1e3bp unit.
- bp: 1bp unit

It’s just post-graphic modification, won’t re-load the parsing process. Figure

```r
p + scale_x_sequnit("kb")
```

Scale for ‘x’ is already present. Adding another scale for ‘x’, which will replace the existing scale.

Figure 8.1: change the unit to kb.

8.2.2 geom_alignment

stat_gene is deprecated, and geom_alignment is the lower level API which facilitate construction layer by layer.
p1 <- `ggplot()` + geom_alignment(txdb, which = aldoa.gr)
Chapter 9

Circular View

9.1 Introduction

Layout "circle" is inspired by Circos graphics and make it a general layout. Layout is generally more complex than a coordinate transformation, it's a combination of different components like coordinate transformation (genome and polar), and tracks-based layout, etc. Especially, circular view is very useful to show links between different locations. Since we are following the grammar of graphics, aesthetics mapping are fairly easy in ggbioc.

In this tutorial, we will start from the raw data, if you are already familiar with how to process your data into the right format, which here I mean GRanges, you can jump to 9.2.3 directly.

9.2 Tutorial

9.2.1 Step 1: understand the layout circle

We have discussed about the new coordinate "genome" in vignette about Manhattan plot before, now this time, it's one step further compared to genome coordinate transformation. We specify ring radius radius and track width trackWidth to help transform a linear genome coordinate system to a circular coordinate system. By using layout_circle function which we will introduce later.

Before we visualize our data, we need to have something in mind

- How many tracks we want?
- Can they be combined into the same data?
- Do I have chromosomes lengths information?
- Do I have interesting variables attached as one column?
9.2.2 Step 2: get your data ready to plot

Ok, let’s start to process some raw data to the format we want. The data used in this study is from this paper.

In this example, We are going to

1. Visualize somatic mutation as segment.
2. Visualize inter, intro-chromosome rearrangement as links.
3. Visualize mutation score as point tracks with grid-background.
4. Add scale and ticks and labels.
5. To arrange multiple plots and legend. create multiple sample comparison.

Notes: don’t put too much tracks on it.

I simply put script here to get mutation data as ‘GRanges’ object.

```r
 crc1 <- system.file("extdata", "crc1-missense.csv", package = "biovizBase")
crc1 <- read.csv(crc1)
library(GenomicRanges)
mut.gr <- with(crc1, GRanges(Chromosome, IRanges(Start_position, End_position),
                               strand = Strand))
values(mut.gr) <- subset(crc1, select = -c(Start_position, End_position, Chromosome))
data("hg19Ideogram", package = "biovizBase")
seqs <- seqlengths(hg19Ideogram)
## subset_chr
chr.sub <- paste("chr", 1:22, sep = "")
## levels tweak
seqlevels(mut.gr) <- c(chr.sub, "chrX")
mut.gr <- keepSeqlevels(mut.gr, chr.sub)
seqs.sub <- seqs[chr.sub]
## remove wrong position
bidx <- end(mut.gr) <= seqs.sub[match(as.character(seqnames(mut.gr)), names(seqs.sub))]
mut.gr <- mut.gr[which(bidx)]
## assign_seqlengths
seqlengths(mut.gr) <- seqs.sub
## reanne to shorter names
new.names <- as.character(1:22)
names(new.names) <- paste("chr", new.names, sep = "")
new.names
```

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html
```r
mut.gr.new <- renameSeqlevels(mut.gr, new.names)
head(mut.gr.new)

## GRanges with 6 ranges and 10 metadata columns:
## seqnames ranges strand | Hugo_Symbol
## <Rle> <IRanges> <Rle> | <factor>
## [1] 1 [11003085, 11003085] + | TARDBP
## [4] 2 [10116508, 10116508] - | CYS1
## Entrez_Gene_Id Center NCBI_Build Strand
## <integer> <factor> <integer> <factor>
## [1] 23435 Broad 36 +
## [2] 10207 Broad 36 +
## [3] 3075 Broad 36 +
## [4] 192668 Broad 36 -
## [5] 25780 Broad 36 +
## [6] 388960 Broad 36 +
## Variant_Classification Variant_Type Reference_Allele
## <factor> <factor> <factor>
## [1] Missense SNP G
## Tumor_Seq_Allele1 Tumor_Seq_Allele2
## <factor> <factor>
## [1] G A
## [2] T G
## [3] G A
## [4] C T
## [5] C T
## [6] T C
## ---
## seqlengths:
## [1] 249250621 243199373 198022430 ... 63025520 48129895 51304566

To get ideogram track, we need to load human hg19 ideogram data, for details please check another vignette about getting ideogram.

hg19Ideo <- hg19Ideogram
hg19Ideo <- keepSeqlevels(hg19Ideogram, chr.sub)
hg19Ideo <- renameSeqlevels(hg19Ideo, new.names)
head(hg19Ideo)

## GRanges with 6 ranges and 0 metadata columns:
```

185
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] 1 [1, 249250621] *
[2] 2 [1, 243199373] *
[3] 3 [1, 198022430] *
[4] 4 [1, 191154276] *
[5] 5 [1, 180915260] *
[6] 6 [1, 171115067] *

seqlengths:
1 2 3 ... 20 21 22
249250621 243199373 198022430 ... 63025520 48129895 51304566

9.2.3 Step 3: low level API: layout_circle

layout_circle is a lower level API for creating circular plot, it accepts Granges object, and users need to specify radius, track width, and other aesthetics, it’s very flexible. But keep in mind, you have to pay attention rules when you make circular plots.

- For now, seqlengths, seqlevels and chromosomes names should be exactly the same, so you have to make sure data on all tracks have this uniform information to make a comparison.
- Set arguments space.skip to the same value for all tracks, that matters for transformation, default is the same, so you don’t have to change it, unless you want to add/remove space in between.
- direction argument should be exactly the same, either “clockwise” or “counterclockwise”.
- Tweak with your radius and tracks width to get best results.

Since low level API leave you as much flexibility as possible, this may looks hard to adjust, but it can produce various types of graphics which higher levels API like autoplot hardly can, for instance, if you want to overlap multiple tracks or fine-tune your layout.

Ok, let’s start to add tracks one by one.

First to add a ”ideo” track

Then a ”scale” track with ticks

Then a ”text” track to label chromosomes. *NOTICE*, after genome coordinate transformation, original data will be stored in column ”.ori”, and for mapping, just use ”.ori” prefix to it. Here we use ‘.ori.seqnames’, if you use ‘seqnames’, that is going to be just ”genome” character.

Then a ”rectangle” track to show somatic mutation, this will looks like vertical segments.

Next, we need to add some ”links” to show the rearrangement, of course, links can be used to map any kind of association between two or more different locations to indicate relationships like copies or fusions.

rearr <- read.csv(system.file("extdata", "crc-rearrangement.csv", package = "biovizBase"))
start position
library(ggbio)
p <- ggplot() + layout_circle(hg19Ideo, geom = "ideo", fill = "gray70", radius = 30, trackWidth = 4)
p

Figure 9.1: Adding 'ideogram' track.
p <- p + layout_circle(hg19Ideo, geom = "scale", size = 2, radius = 35, trackWidth = 2)
p
Figure 9.2: Adding a 'scale' track.
p <- p + layout_circle(hg19Ideo, geom = "text", aes(label = seqnames), vjust = 0, radius = 38, trackWidth = 7)
p

Figure 9.3: Adding a 'text' track.
Figure 9.4: Adding a segment track to show mutation.
gr1 <- with(rearr, GRanges(chr1, IRanges(pos1, width = 1)))
end position
g2 <- with(rearr, GRanges(chr2, IRanges(pos2, width = 1)))
add extra column
nms <- colnames(rearr)
.extra.nms <- setdiff(nms, c("chr1", "chr2", "pos1", "pos2"))
values(gr1) <- rearr[, .extra.nms]
remove out-of-limits data
seqs <- as.character(seqnames(gr1))
.mx <- seqlengths(hg19Ideo)[seqs]
idx1 <- start(gr1) > .mx
seqs <- as.character(seqnames(gr2))
.mx <- seqlengths(hg19Ideo)[seqs]
idx2 <- start(gr2) > .mx
idx <- !idx1 & !idx2
gr1 <- gr1[idx]
seqlengths(gr1) <- seqlengths(hg19Ideo)
gr2 <- gr2[idx]
seqlengths(gr2) <- seqlengths(hg19Ideo)

To create a suitable structure to plot, please use another 'GRanges' to represent the end of the links, and stored as elementMetadata for the "start point" 'GRanges'. Here we named it as "to.gr" and will be used later.

values(gr1)$to.gr <- gr2
rename to gr
gr <- gr1

Here we show the flexibility of *ggbio*, for example, if you want to use color to indicate your links, make sure you add extra information in the data, used for mapping later. Here in this example, we use "intrachromosomal" to label rearrangement within the same chromosomes and use "interchromosomal" to label rearrangement in different chromosomes.

values(gr)$rearrangements <- ifelse(as.character(seqnames(gr)) == as.character(seqnames((values(gr)$to.gr)), "intrachromosomal", "interchromosomal")

Get subset of links data for only one sample "CRC1"

gr.crc1 <- gr[values(gr)$individual == "CRC-1"]

Ok, add a "point" track with grid background for rearrangement data and map 'y' to variable "score", map 'size' to variable "tumreads", rescale the size to a proper size range.

p <- p + layout_circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),
 color = "red", radius = 12, trackWidth = 10, grid = TRUE) + scale_size(range = c(1, 2.5))
p
Finally, let's add links and map color to rearrangement types. Remember you need to specify `linked.to` to the column that contain end point of the data.

9.2.4 Step 4: Complex arrangement of plots

In this step, we are going to make multiple sample comparison, this may require some knowledge about package `grid` and `gridExtra`. We will introduce a more easy way to combine your graphics later after this.

We just want 9 single circular plots put together in one page, since we cannot keep too many tracks, we only keep ideogram and links. Here is one sample.

```r
grl <- split(gr, values(gr)$individual)  # need 'unit', load grid
```

- 5.0
- 7.5
- 10.0
- 12.5
Figure 9.5: A link track is added to the circular plot.
cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]
names(cols) <- c("interchromosomal", "intrachromosomal")

p0 <- ggplot() + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr",
aes(color = rearrangements), radius = 7.1) + layout_circle(hg19Ideo,
geom = "ideo", trackWidth = 1.5, color = "gray70", fill = "gray70") +
scale_color_manual(values = cols)
p0

Figure 9.6: Just to show single individuals crc1.
library(grid)

lst <- lapply(grl, function(gr.cur) {
 print(unique(as.character(values(gr.cur)$individual)))
 cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]
 names(cols) <- c("interchromosomal", "intrachromosomal")
 p <- ggplot() + layout_circle(gr.cur, geom = "link", linked.to = "to.gr",
 aes(color = rearrangements), radius = 7.1) + layout_circle(hg19Ideo,
 geom = "ideo", trackWidth = 1.5, color = "gray70", fill = "gray70") +
 scale_color_manual(values = cols) + labs(title = (unique(values(gr.cur)$individual))) +
 theme(plot.margin = unit(rep(0, 4), "lines"))
})

[1] "CRC-1"
[1] "CRC-2"
[1] "CRC-3"
[1] "CRC-4"
[1] "CRC-5"
[1] "CRC-6"
[1] "CRC-7"
[1] "CRC-8"
[1] "CRC-9"

We wrap the function in grid level to a more user-friendly high level function, called arrangeGrobByParsingLegend. You can pass your ggplot2 graphics to this function, specify the legend you want to keep on the right, you can also specify the column/row numbers. Here we assume all plots we have passed follows the same color scale and have the same legend, so we only have to keep one legend on the right.

arrangeGrobByParsingLegend(lst, widths = c(4, 1), legend.idx = 1, ncol = 2)
rearrangements

interchromosomal
intrachromosomal

NULL
Chapter 10

Manhattan plot

10.1 Introduction

In this tutorial, we introduce a new coordinate system called “genome” for genomic data. This transformation is to put all chromosomes on the same genome coordinates following specified orders and adding buffers in between. One may think about facet ability based on seqnames, it can produce something similar to Manhattan plot\(^1\), but the view will not be compact. What’s more, genome transformation is previous step to form a circular view. In this tutorial, we will simulate some SNP data and use this special coordinate and a specialized function plotGrandLinear to make a Manhattan plot.

Manhattan plot is just a special use design with this coordinate system.

10.2 Understand the new coordinate

Let’s load some packages and data first

```r
library(ggbio)
data(hg19IdeogramCyto, package = "biovizBase")
data(hg19Ideogram, package = "biovizBase")
library(GenomicRanges)
```

Make a minimal example ‘GRanges’, and see what the default coordinate looks like, pay attention that, by default, the graphics are faceted by 'seqnames' as shown in Figure 10.1

What if we specify the coordinate system to be "genome" in autoplot function, there is no faceting anymore, the two plots are merged into one single genome space, and properly labeled as shown in Figure 10.2

The internal transformation are implemented into the function transformToGenome. And there is some simple way to test if a GRanges object is transformed to coordinate "genome" or not

\(^1\)http://en.wikipedia.org/wiki/Manhattan
library(biovizBase)
gr <- GRanges(rep(c("chr1", "chr2"), each = 5), IRanges(start = rep(seq(1, 100, length = 5), times = 2), width = 50))
autoplot(gr, aes(fill = seqnames))

Object of class "ggbio"

Figure 10.1: Default graphics is faceted by seqnames
`autoplot(gr, coord = "genome", aes(fill = seqnames))`

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.2: Coordinate genome
10.3 Step 2: Simulate a SNP data set

Let's use the real human genome space to simulate a SNP data set.

```r
chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))
seqlths <- seqlengths(hg19Ideogram)[chrs]
set.seed(1)
nchr <- length(chrs)
nsnps <- 100
gr.snp <- GRanges(rep(chrs, each = nsnps), IRanges(start = do.call(c, lapply(chrs,
  function(chr) {
    N <- seqlths[chr]
    runif(nsnps, 1, N)
  })), width = 1), SNP = sapply(1:(nchr * nsnps), function(x) paste("rs",
  x, sep = "")), pvalue = -log10(runif(nchr * nsnps)), group = sample(c("Normal",
  "Tumor"), size = nchr * nsnps, replace = TRUE))
genome(gr.snp) <- "hg19"
gr.snp
```

GRanges with 2400 ranges and 3 metadata columns:
<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1</td>
<td>66178199, 66178199</td>
<td>*</td>
<td>rs1</td>
</tr>
<tr>
<td>chr1</td>
<td>92752113, 92752113</td>
<td>*</td>
<td>rs2</td>
</tr>
<tr>
<td>chr1</td>
<td>142784056, 142784056</td>
<td>*</td>
<td>rs3</td>
</tr>
<tr>
<td>chr1</td>
<td>226371355, 226371355</td>
<td>*</td>
<td>rs4</td>
</tr>
<tr>
<td>chr1</td>
<td>50269347, 50269347</td>
<td>*</td>
<td>rs5</td>
</tr>
<tr>
<td>chr1</td>
<td>223924186, 223924186</td>
<td>*</td>
<td>rs6</td>
</tr>
<tr>
<td>chr1</td>
<td>235460897, 235460897</td>
<td>*</td>
<td>rs7</td>
</tr>
<tr>
<td>chr1</td>
<td>164704260, 164704260</td>
<td>*</td>
<td>rs8</td>
</tr>
<tr>
<td>chr1</td>
<td>156807066, 156807066</td>
<td>*</td>
<td>rs9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pvalue</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22380</td>
<td>Normal</td>
</tr>
<tr>
<td>1.27916</td>
<td>Normal</td>
</tr>
<tr>
<td>0.01199</td>
<td>Tumor</td>
</tr>
<tr>
<td>0.09985</td>
<td>Normal</td>
</tr>
<tr>
<td>1.49938</td>
<td>Tumor</td>
</tr>
<tr>
<td>0.26497</td>
<td>Tumor</td>
</tr>
<tr>
<td>1.75456</td>
<td>Tumor</td>
</tr>
<tr>
<td>0.10976</td>
<td>Tumor</td>
</tr>
<tr>
<td>0.12073</td>
<td>Tumor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>seqlengths:</th>
<th>chr1</th>
<th>chr10</th>
<th>chr11</th>
<th>chr12</th>
<th>chr13</th>
<th>chr14</th>
<th>chr7</th>
<th>chr8</th>
<th>chr9</th>
<th>chrX</th>
<th>chrY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

We use the same trick to make a shorter names.
\texttt{seqlengths(gr.snp)}

\begin{verbatim}
chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2
NA NA NA NA NA NA NA NA NA NA NA NA
chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY
NA NA NA NA NA NA NA NA NA NA NA NA
\end{verbatim}

\begin{verbatim}
seqnames(seqinfo(gr.snp))
nms <- seqnames(seqinfo(gr.snp))
nms.new <- gsub("chr", ",", nms)
names(nms.new) <- nms
gr.snp <- renameSeqlevels(gr.snp, nms.new)
seqlengths(gr.snp)

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 X Y
NA NA
\end{verbatim}

10.4 Step 3: Start to make Manhattan plot by using \texttt{autoplot}

wrapped basic functions into \texttt{autoplot}, you can specify the coordinate. Figure 10.3 shows what the unordered object looks like.

That's probably not what you want, if you want to change to specific order, just sort them by hand and use 'keepSeqlevels'. Figure 10.4 shows a sorted plot.

\textbf{NOTICE:} the data now doesn't have information about lengths of each chromosomes, this is allowed to be plotted, but it's misleading sometimes, without chromosomes lengths information, ggbio use data space to make estimated lengths for you, this is not accurate! So let's just assign \texttt{seqlengths} to the object. Then you will find the data space now is distributed proportional to real space as shown in Figure 10.5.

In \texttt{autoplot}, argument coord is just used to transform the data, after that, you can use it as common GRanges, all other geom/stat works for it. Here just show a simple example for another geom "line" as shown in Figure 10.6.

10.5 Convenient \texttt{plotGrandLinear} function

In ggbio, sometimes we develop specialized function for certain types of plots, it's basically a wrapper over lower level API and \texttt{autoplot}, but more convenient to use. Here for \texttt{Manhattan plot}, we have a function called \texttt{plotGrandLinear} used for it. \texttt{aes(y =)} is required to indicate the y value, e.g. p-value. Figure 10.7 shows a default graphic.

Color mapping is automatically figured out by *ggbio* following the rules

- if color present in \texttt{aes()}, like \texttt{aes(color = seqnames)}, it will assume it's mapping to data column called 'seqnames'.
- if color is not wrapped in \texttt{aes()}, then this function will \texttt{recycle} them to all chromosomes.
autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.3: Unordred Manhattan plot
gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))
autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.4: Sorted data for Manhattan plot
names(seqlths) <- gsub("chr", ",", names(seqlths))

seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))]

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.5: Manhattan plot after setting seqlengths to the data, the data space now is distributed proportional to real chromosome space.
Figure 10.6: Use line to represent the data in typical Manhattan plot.
plotGrandLinear(gr.snp, aes(y = pvalue))

using coord_genome to parse x scale

Object of class "ggbiom"

Figure 10.7: Default Manhattan plot by calling plotGrandLinear function
• if color is single character representing color, then just use one arbitrary color.

Let’s test some examples for controlling colors.

```r
plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames))

## using coord genome to parse x scale
## Object of class "ggbio"
```

![Graph showing chromosome names color mapped](image)

```r
## NULL
```

Figure 10.8: Color mapped to chromosome names.

You can also add cutoff line as shown in Figure 10.12.

This is equivalent to `ggplot` ‘s API.

```r
plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue",
size = 4)
```

Sometimes the names of chromosomes maybe very long, you may want to rotate them, let’s make a longer name first
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue"))

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.9: Color follow 'green' and 'deepskyblue' order for all chromosome space.
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue", "red"))

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.10: Color follow three colors pattern: 'green', 'deepskyblue', 'red'
plotGrandLinear(gr.snp, aes(y = pvalue), color = "red")

using coord:genome to parse x scale
Object of class "ggbio"

NULL

Figure 10.11: Unique color for all.
plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue",
cutoff.size = 4)

using coord:genome to parse x scale

Object of class "ggbio"

Figure 10.12: Set cutoff on the Manhattan plot. The 'blue' line shows cutoff at value 3.
let's make a long name

```r
nms <- seqnames(seqinfo(gr.snp))
nms.new <- paste("chr00000", nms, sep = "")
names(nms.new) <- nms
gn.snp <- renameSeqlevels(gr.snp, nms.new)
seqlengths(gr.snp)
```

```
# chr000001  chr000002  chr000003  chr000004  chr000005  chr000006
# 249250621  243199373  198022430  191154276  180915260  171115067
# chr000007  chr000008  chr000009  chr000010  chr000011  chr000012
# 159138663  146364022  141213431  135534747  135006516  133851895
# chr000013  chr000014  chr000015  chr000016  chr000017  chr000018
# 115169878  107349540  102531392  90354753  81195210  78077248
# chr000019  chr000020  chr000021  chr000022  chr0000X  chr0000Y
# 59128983   63025520   48129895   51304566   155270560  59373566
```

Then rotate it!

As you can tell from above examples, all utilities works for `ggplot2` will work for `ggbio` too.
plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x = theme_text(angle = -90, hjust = 0))

using coord:genome to parse x scale
theme_text is deprecated. Use 'element_text' instead. (Deprecated; last used in version 0.9.1)

Object of class "ggbio"

Figure 10.13: Rotate the x label to save space.
Chapter 11

Karyogram overview

11.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell\(^1\). It’s one overview option when we want to show distribution of certain events on the genome, for example, binding sites for one protein. Particular pattern might be easier to observe from graphics, such as

- Clustered events.
- Large missing chunk of data on particular chromosome.

GRanges object is also an ideal container for storing data needed for karyogram plot. Here is the strategy we used for generating ideogram templates.

- seqlengths is not required, but highly recommended for plotting karyogram. If a GRanges object contains seqlengths, we know exactly how long each chromosome is, and will use this information to plot genome space, particularly we plot all levels included in it, not just DATA space.

- If a GRanges has no seqlengths, we will issue a warning and try to estimate the chromosome lengths from data included. This is NOT accurate most time, so please pay attention to what you are going to visualize and make sure set seqlengths before hand.

11.2 Usage

11.2.1 autoplot

Let’s first introduce how to use autoplot to generate karyogram graphic. To understand why we call it kayogram, let’s first visualize some cytoband. We use layout argument to specify this special layout "karyogram". And under this layout, cytoband argument is acceptable, default is FALSE, if set to TRUE, we assume your have additional information associated with the data, stored in column gieStain, it will try to fill colors based on

\(^1\)http://en.wikipedia.org/wiki/Karyotype
this variable according to a pre-set staining colors. You may notice, this data set doesn’t contain seqlengths information, but the data space actually cover the real space, so it’s not going to be a problem.

```r
library(ggbio)
data(hg19IdeogramCyto, package = "biovizBase")
head(hg19IdeogramCyto)
```

```r
## GRanges with 6 ranges and 2 metadata columns:
## <Rle> <IRanges> <Rle> | name gieStain
## [1] chr1 [ 0, 2300000] * | p36.33 gneg
## ---
## seqlengths:
## chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY
## NA NA NA NA NA NA ... NA NA NA NA NA
```

```r
## default pre-set color stored in
getOption("biovizBase")$cytobandColor
```

```r
## gneg stalk acen gpos gvar gpos1 gpos2
## "grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"
## gpos3 gpos4 gpos5 gpos6 gpos7 gpos8 gpos9
## "#F9F9F9" "#F7F7F7" "#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"
## gpos10 gpos11 gpos12 gpos13 gpos14 gpos15 gpos16
## "#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DDDDDD" "#DADADA" "#D8D8D8"
## gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23
## "#D6D6D6" "#D3D3D3" "#D0D0D0" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"
## gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30
## "#C3C3C3" "#C1C1C1" "#BEBEBE" "#BCBCBC" "#B9B9B9" "#B6B6B6" "#B4B4B4"
## gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37
## "#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"
## gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44
## "#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"
## gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51
## "#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"
## gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58
## "#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"
## gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65
## "#696969" "#676767" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"
## gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72
## "#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"
## gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79
## "#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"
## gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86
## "#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"
```

216
autoplot(hg19IdeogramCyto, layout = "karyogram", cytoband = TRUE)

Object of class "ggbio"
You may want to change the order of chromosomes, keepSeqlevels are convenient for this purpose, it’s defined in package GenomicRanges.

This GRanges object is special, it’s a ‘ideogram’ we expected, in this case, cytoband argument could set to TRUE, and we draw special ideogram not just rectangles but show centromere as possible.

If we set it to FALSE, we treat it as a normal GRanges, nothing special as ideogram. So to show the cytoband, we need to specify which color column variable to fill as cytoband, function aes use an unevaluated expression like fill = gieStain, gieStain is column name which store cytoband color, notice that we don’t use quotes around it, this means it’s not something defined globally, but some column name defined in the data. The system will usually automatically assign categorical colors to represent this variable. But instead, cytoband already have some pre-defined colors which mimic the color you observed under microscope. Function scale_fill_giemsa did this trick to correct the color. If it’s first time you observe usage by +, it’s a very popular API in package ggplot2[2] which could add graphics layer by layer or revise a existing graphic.

Let’s try a different data set which is not an ‘ideogram’, but a normal GRanges object that most people will have, extra data such as statistical values or categorical levels are stored in element data columns used for aesthetics mapping.

We use a default data in package biovizBase, which is a subset of RNA editing set in human. The data involved in this GRanges is sparse, so we cannot simply use it to make karyogram, otherwise, the estimated chromosome lengths will be very rough and inaccurate. So what we need to do is:

1. Adding seqlengths to this GRanges object. If you adding seqlengths to object, we have two ways to show chromosome space as karyogram.
 autoplot(object, layout = 'karyogram') or autoplot(seqinfo(object)).
2. Changing the order of chromosomes.
3. Visualize it and map variable to different aesthetics.

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data mapping ability in graphics, make data exploration much more convenient. In the following example, we are trying to map a categorical variable ‘exReg’ to color, this variable is included in the data, and have three levels, ‘3’ indicate 3’ utr, ‘5’ means 5’ utr and ‘C’ means coding region. We have some missing values indicated as NA, in default, it’s going to be shown in gray color, and keep in mind, since the basic geom(geometric object) is rectangle, and genome space is very large, so change both color/fill color of the rectangle to specify both border and filled color is necessary to get the data shown as different color, otherwise if the region is too small, border color is going to override the fill color.

Or you can set the missing value to particular color you want.

A test could be performed to demonstrate why 'seqlengths' of object GRanges is important. Let’s assume we set wrong chromosome lengths by accident, lengths are all equal to chromosome 1. We arbitrarily set it to the same number so that every chromosome are of equal length. From Figure[11.6] it’s clear that this will affect what we see. So please make sure

- You get data space cover exactly the same chromosome space for each chromosome. or

```r
library(GenomicRanges)

hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y")))

head(hg19)

## GRanges with 6 ranges and 2 metadata columns:
## seqnames ranges strand | name gieStain
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 [ 0, 2300000] * | p36.33 gneg

## ---
## seqlengths:
## chr1 chr2 chr3 chr4 chr5 chr6 ... chr20 chr21 chr22 chrX chrY
## NA NA NA NA NA NA ... NA NA NA NA NA

autoplot(hg19, layout = "karyogram", cytoband = TRUE)

## Object of class "ggbio"
```

Figure 11.1: Cytoband on karyogram layout after re-ordering the chromosome names.
library(GenomicRanges)
it's a 'ideogram'
biovizBase::isIdeogram(hg19)
[1] TRUE
set to FALSE
autoplot(hg19, layout = "karyogram", cytoband = FALSE, aes(fill = gieStain)) +
 scale_fill_giemsa()
Warning: geom(ideogram) need valid seqlengths information for accurate mapping,
now use reduced information as ideogram...
Warning: geom(ideogram) need valid seqlengths information for accurate mapping,
now use reduced information as ideogram...
Scale for 'a' is already present. Adding another scale for 'a', which will replace
the existing scale.
Object of class "ggbio"

Figure 11.2: Cytoband on karyogram layout. We treat it as normal GRanges data set, so we fill with gieStain
color, and use scale_fill_giemsa to use customized color. Notice the difference if it's not a 'ideogram'
object. we don't draw centromere particularly.
```r
## GRanges with 6 ranges and 10 metadata columns:
## seqnames ranges strand | inchr inrna
## <Rle> <IRanges> <Rle> | <character> <character>
## [1] chr5  [ 86618225, 86618225] - | A I
## snp gene seqReg exReg
## <character> <character> <character> <character>
## [1] <NA> <NA> O   <NA>
## [2] <NA> <NA> O   <NA>
## [3] <NA> <NA> O   <NA>
## [4] <NA> <NA> O   <NA>
## [5] <NA> <NA> O   <NA>
## [6] <NA> MZF1 I   <NA>
## source ests esta author
## <character> <integer> <integer> <character>
## [1] amygdala 0 0 15342557
## [2] <NA> 0 0 15342557
## [3] salivary gland 0 0 15342557
## [4] brain, hippocampus 0 0 15342557
## [5] small intestine 0 0 15342557
## [6] <NA> 0 0 15258596
## ---
## seqlengths:
## chr1 chr10 chr11 chr12 chr13 chr14 ... chr6 chr7 chr8 chr9 chrX
## NA NA NA NA NA NA ... NA NA NA NA NA
```

```r
# add seqlengths we have seqlengths information in another data set
## GRanges with 6 ranges and 10 metadata columns:
## seqnames ranges strand | inchr inrna
## <Rle> <IRanges> <Rle> | <character> <character>
## [1] chr5  [ 86618225, 86618225] - | A I
## snp gene seqReg exReg
## <character> <character> <character> <character>
## [1] <NA> <NA> O   <NA>
## [2] <NA> <NA> O   <NA>
## [3] <NA> <NA> O   <NA>
## [4] <NA> <NA> O   <NA>
## [5] <NA> <NA> O   <NA>
## [6] <NA> MZF1 I   <NA>
## source ests esta author
## <character> <integer> <integer> <character>
## [1] amygdala 0 0 15342557
## [2] <NA> 0 0 15342557
## [3] salivary gland 0 0 15342557
## [4] brain, hippocampus 0 0 15342557
## [5] small intestine 0 0 15342557
## [6] <NA> 0 0 15258596
## ---
## seqlengths:
## chr1 chr10 chr11 chr12 chr13 chr14 ... chr8 chr9 chrX
## 249250621 135534747 135006516 ... 146364022 141213431 155270560
```
since default is geom rectangle, even though it's looks like segment
we still use both fill/color to map colors

```r
autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))
```

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.

Object of class "ggbio"

Figure 11.4: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region. '3' indicate 3' utr, '5' means 5' utr and 'C' means coding region, NA indicate missing value(or not in other three levels) shown as gray color.
since default is geom rectangle, even though it's looks like segment
we still use both fill/color to map colors
autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) + scale_color_discrete(na.value = "brown")

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.
Object of class "ggbio"

Figure 11.5: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region. '3' indicate 3' utr, '5' means 5' utr and 'C' means coding region, we force the missing value(NA) shown as brown color.
• You set the seqlengths to the right number.

Otherwise you will see weird pattern from your results, so actually it’s a good way to test your raw data too, if you raw data have something beyond chromosome space, you need to dig into it to see what happened.

11.2.2 plotKaryogram

plotKaryogram (or plotStackedOverview) are specialized function to draw karyogram graphics. It’s actually what function autoplot calls inside. API is a littler simpler because layout 'karyogram' is default in these two functions. So equivalent usage is like

```
plotKaryogram(dn)
plotKaryogram(dn, aes(color = exReg, fill = exReg))
```

11.2.3 layout_karyogram

In this section, a lower level function layout_karyogram is going to be introduced. This is convenient API for constructing karyogram plot and adding more data layer by layer. Function ggplot is just to create blank object to add layer on.

You need to pay attention to

• when you add plots layer by layer, seqnames of different data must be the same to make sure the data are mapped to the same chromosome. For example, if you name chromosome following schema like chr1 and use just number 1 to name other data, they will be treated as different chromosomes.

• cannot use the same aesthetics mapping multiple time for different data. For example, if you have used aes(color =), for one data, you cannot use aes(color =) anymore for mapping variables from other add-on data, this is currently not allowed in ggplot2, even though you expect multiple color legend shows up, this is going to confuse people which is which. HOWEVER, color or fill without aes() wrap around, is allowed for any track, it’s set single arbitrary color. This is shown in Figure 11.8

• Default rectangle y range is [0, 10], so when you add on more data layer by layer on existing graphics, you can use ylim to control how to normalize your data and plot it relative to chromosome space. For example, with default, chromosome space is plotted between y [0, 10], if you use ylim = c(10 , 20), you will stack data right above each chromosomes and with equal width. For geom like 'point', which you need to specify 'y' value in aes(), we will add 5% margin on top and at bottom of that track.

Then we construct another multiple layer graphics for multiple data using different geom, suppose we want to show RNA-editing sites on chromosome space as rectangle(looks like segment in graphic) and stack a line for another track above.
dn2 <- dn
seqlengths(dn2) <- rep(max(seqlengths(dn2)), length(seqlengths(dn2)))
autoplot(dn2, layout = "karyogram", aes(color = exReg, fill = exReg))

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.
Object of class "ggbio"

Figure 11.6: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region. '3' indicate 3' utr, '5' means 5' utr and 'C' means coding region, we force the missing value(NA) shown as brown color.
plot ideogram

```r
p <- ggplot(hg19) + layout_karyogram(cytoband = TRUE)
p
```

NULL

equivalent autoplot(hg19, layout = 'karyogram', cytoband = TRUE)

Figure 11.7: Ideogram overview by using the function layout_karyogram
p <- p + layout_karyogram(dn, geom = "rect", ylim = c(11, 21), color = "red")

Scale for 'x' is already present. Adding another scale for 'x', which will replace the existing scale.

commented line below won't work the cytoband fill color has been used already. p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = 'rect')

p

Object of class "ggbio"

NULL

Figure 11.8: We layout another track(data) which is RNA-editing sites on top of ideogram. Notice since legend fill and color is used, we cannot specify that in RNA-editing track, we could only set it to arbitrary color.
```r
# plot chromosome space
p <- autoplot(seqinfo(dn))
# make sure you pass rect as geom otherwise you just get background
p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect")

# Scale for 'x' is already present. Adding another scale for 'x', which will replace
# the existing scale.
values(dn)$pvalue <- rnorm(length(dn))
p + layout_karyogram(dn, aes(x = start, y = pvalue), ylim = c(10, 30), geom = "line",
  color = "red")

# Scale for 'x' is already present. Adding another scale for 'x', which will replace
# the existing scale.
```
12.1 Introduction

Ranges linked data is similar to parallel coordinate plots, could be used to transform information from sparse or uneven space to uniformed space, then observe multivariate data change patterns by linking the value within group. This view is inspired by a view in package `DEXseq`. Here we generalize it first to GRanges then later other more convenient object.

Suppose we have a matrix storing expression levels for each exons, each row indicate the interval, each column indicate the sample. we can store these values into elementMetadata of GRanges object.

First we simulated a data like this, suppose we have two samples, named ‘sample1’ and ‘sample2’, then we create a column to indicate they are significant or not, named 'significant' filled with value TRUE/FALSE or 1/0.

```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(ggbio)
data(genesymbol, package = "biovizBase")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
model <- exonsBy(txdb, by = "tx")
model17 <- subsetByOverlaps(model, genesymbol["RBM17"])
exons <- exons(txdb)
exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"])
## reduce to make sure there is no overlap just for example
exon.new <- reduce(exon17)
## suppose
set.seed(1)
values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3)
values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10)
values(exon.new)$significant <- c(TRUE, rep(FALSE, length(exon.new) - 1))
head(exon.new)
```

GRanges with 6 ranges and 3 metadata columns:
seqnames ranges strand | sample1
<Rle> <IRanges> <Rle> | <numeric>
stat.col accept column names or column index in *element meta data*, so 1 doesn’t mean ‘seqnames’.

plotRangesLinkedToData(exon.new, stat.col = 1:2)

Scale for ‘y’ is already present. Adding another scale for ‘y’, which will replace the existing scale.
we can specify line size and type.

```r
plotRangesLinkedToData(exon.new, stat.col = 1:2, size = 3, linetype = 4)
```

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
And use argument `sig` to indicate the column name which stored the significance bool value, and `sig.col` indicate the insignificant color and significant color.

```r
plotRangesLinkedToData(exon.new, stat.col = 1:2, size = 3, linetype = 4,
                        sig = "significant", sig.col = c("gray70", "red"))
```

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.
Chapter 13

Case studies

13.1 Chip-seq

13.1.1 Introduction

In this tutorial, we are going to use chipseq package to analyze some example ChIP-seq data and explore them by visualization of ggbio.

Example data we used in this tutorial, is called cstest, which is a data set in package chipseq. This is a small subset of data downloaded from SRA data base includes two lanes representing CTCF and GFP pull-down in mouse. More information about this data could be found in the manual of package chipseq.

13.1.2 Usage

Processing and fragment estimation

Firstly, we mainly follow workflow described in vignette of package chipseq, except we remove unused seq-names(chromosome names) in the data, from the data we could see that only chromosome 10, 11, 12 involved, the reason we removed too many unused seq levels from the data is that, in ggbio, most time, it will plot every chromosomes in the data even there is no data at all, this will take too much space for visualization.

```r
library(chipseq)
```

```r
## Loading required package: ShortRead
## Loading required package: lattice
## Loading required package: latticeExtra
## Loading required package: RColorBrewer

## Attaching package: 'latticeExtra'
```
To understand why we are extending reads to estimated fragment lengths, we first find two peaks that from negative/positive strands separately which close to each other. Then we simply visualize that region and compare it to what it is after extending.
c.p <- cstest$ctcf[seqnames(cstest$ctcf) == "chr10" & strand(cstest$ctcf) == "+",]
c.n <- cstest$ctcf[seqnames(cstest$ctcf) == "chr10" & strand(cstest$ctcf) == "-",]
cov.p <- coverage(c.p)
cov.n <- coverage(c.n)
v1 <- viewWhichMaxs(slice(cov.p, lower = 8))$chr10
v2 <- viewWhichMaxs(slice(cov.n, lower = 8))$chr10
res <- expand.grid(v1, v2)
wh <- as.numeric(res[order(abs(res[, 1] - res[, 2]))[1],])
gr.wh <- GRanges("chr10", IRanges(wh[1], wh[2]))
gr.wh <- resize(gr.wh, width(gr.wh) + 200, fix = "center")

Then we use `ggbio` to visualize those short reads first, notice they are shorter(width:24) than estimated fragment lengths(200). That may make one single peak looks like two peaks. Here we use autoplot for object GRanges. To tell different reads from different strand, we facet and filled the rectangles by strands. Figure 13.1 shows the effect of resizing.

Keep in mind, you don’t want to visualize all the short reads at once, that’s going to be crazily slow for NGS data, and it’s not useful for exploration. In this example, we subset the reads by small region, that will give you quick response. For genome-wide visualization, you should try from autoplot for Rle or RleList method, which is lots faster and meaningful, we will introduce this method soon in this tutorial.
library(ggbio)
ctcf.sub <- subsetByOverlaps(cstest$ctcf, gr.wh)
p1 <- autoplot(ctcf.sub, aes(fill = strand), facets = strand ~ .)
ctcf.ext.sub <- subsetByOverlaps(ctcf.ext, gr.wh)
p2 <- autoplot(ctcf.ext.sub, aes(fill = strand), facets = strand ~ .)
tracks(original = p1, extending = p2, heights = c(3, 5))

Figure 13.1: A small region on chromosome 10, each track are faceted by strand. Top track shows short reads of around width 24, and bottom track shows the same data with extending width to 200. The order of short reads are randomly assigned at different levels, so hard to match each reads at exactly the same position.
Maybe reads are not quite easy to perceive the effect of resizing, we use statistical transformation “coverage” to make better illustration. In Figure 13.2, you can clearly see why we need to extending reads to get a better estimation of peaks. In this plot, two peaks are about to merge together to one single peak. That means most possible, there are only one binding site.
ctcf.sub <- subsetByOverlaps(cstest$ctcf, gr.wh)
p1 <- autoplot(ctcf.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage", geom = "area")
ctcf.ext.sub <- subsetByOverlaps(ctcf.ext, gr.wh)
p2 <- autoplot(ctcf.ext.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage", geom = "area")
tracks(original = p1, extending = p2)

![Graph image]

Figure 13.2: A small region on chromosome 10, each track are faceted by strand. Top track shows coverage of short reads of around width 24, and bottom track shows the same data with extending width to 200. Clearly two peaks are tend to merge to one single peak after resizing.
Finding islands and genome-wide visualization

As mentioned before, to visualize genome-wide information, short-reads visualization is absolutely not recommended, a summary is way much better. We can compute coverage as Rle (Run Length Encode), so we can perform efficient summary transformation like finding islands over certain cutoff, or bin them and show summary value as heatmap or bar chart.

In the following examples, we tried different visualization method.

There are three statistical transformation for object Rle and Rle:

- **bin**: (default). Bin the object and compute summary based on summary types mentioned below. nbin controls how many bins you want. geom heatmap and bar (default) supported.
- **slice**: slice the object based on certain cutoffs to generate islands, use specified summary method to generate values. geom rect, bar, heatmap to many other geoms such as point, line, area are supported.
- **identity**: raw sequence. Be careful if this object is too long to be visualized!

There are four types of summary method for statistical transformation bin and slice

- **ViewSums**: Sums for each sliced island or bins.
- **ViewMaxs**: Maxs for each sliced island or bins.
- **ViewMeans**: Means for each sliced island or bins.
- **ViewMins**: Mins for each sliced island or bins.

Figure 13.3 shows a default track.
library(ggbio)
p1 <- autoplot(cov.ctcf)

Default use binwidth: range/30

p2 <- autoplot(cov.gfp)

Default use binwidth: range/30

tracks(ctcf = p1, gfp = p2)

Figure 13.3: Use default statistical transformation "bin" and geom "bar" to represent default smumary ViewSums.
We may notice it’s hard to compare the summary if limits on y are different, we have two ways to make them on
the same scale. Because tracks by default keep original plots’ y scale while change and align their x-scale.

- Aggregate all data into one single data and facet by samples.
- use “+” method to change overall y limits as shown in Figure 13.4
library(ggbio)
p1 <- autoplot(cov.ctcf)

Default use binwidth: range/30

p2 <- autoplot(cov.gfp)

Default use binwidth: range/30

doesn't work?
tracks(ctcf = p1, gfp = p2) + coord_cartesian(ylim = c(0, 2e+06))

work with ylim
tracks(ctcf = p1, gfp = p2) + ylim(0, 2e+06)

Warning: Removed 2 rows containing missing values (position_stack).
Warning: Removed 2 rows containing missing values (position_stack).
Let’s view maxs instead of sums as shown in Figure [13.5]
p1 <- autoplot(cov.ctcf, type = "viewMaxs")

Default use binwidth: range/30

p2 <- autoplot(cov.gfp, type = "viewMaxs")

Default use binwidth: range/30

tracks(ctcf = p1, gfp = p2) + ylim(c(0, 2e+06))

Warning: Removed 2 rows containing missing values (position_stack).
Warning: Removed 2 rows containing missing values (position_stack).

Figure 13.5: Use default statistical transformation "bin" and geom "bar" to represent summary ViewMaxs, and keep y limits on the same scale.
We can change bin numbers as shown in Figure 13.6

```r
p1 <- autoplot(cov.ctcf, type = "viewMaxs", nbin = 100)
  ## Default use binwidth: range/100
p2 <- autoplot(cov.gfp, type = "viewMaxs", nbin = 100)
  ## Default use binwidth: range/100
tracks(ctcf = p1, gfp = p2) + ylim(0, 1e+06)
```

Figure 13.6: Use default statistical transformation "bin" and geom "bar" to represent summary ViewMaxs, with bin number changed to 100, and keep y limits on the same scale.
Try heatmap as shown in Figure 13.7. When you use tracks function to bind plots, please pay attention that, the color scale might be different which is critical for your judge. So in the following code, I add some add-on control to make sure it’s on the same scale.
Figure 13.7: Use default statistical transformation "bin" and geom "heatmap" to represent summary View-Maxx, with bin number changed to 100
Try statistical transformation “slice” as shown in Figure 13.8, we use an estimated cutoff 8 to define islands.

```r
p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8)
p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8)
tracks(ctcf = p1, gfp = p2) + ylim(0, 15000)
```

Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).

Figure 13.8: Use default statistical transformation “slice” and geom vertical “segment” to represent summary ViewMaxs, with lower cutoff 8
Notice in Figure 13.8 chromosome with no data are dropped automatically, if you want to keep the chromosomes based on chromosome levels you passed, you can use argument drop to control this as shown in Figure 13.9.

```r
p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8)
p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8, drop = FALSE)
tracks(ctcf = p1, gfp = p2) + ylim(0, 15000)
```

Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).

Figure 13.9: Use default statistical transformation "slice" and geom vertical "segment" to represent summary ViewMaxs, with lower cutoff 8.
We can use geom "rect" to just see the region of island as shown in Figure [13.10]

```r
p1 <- autoplot(cov.ctcf, stat = "slice", lower = 5, geom = "rect")
p2 <- autoplot(cov.gfp, stat = "slice", lower = 5, geom = "rect")
tracks(ctcf = p1, gfp = p2)
```

Figure 13.10: Use default statistical transformation "slice" and geom vertical "rect" to represent island region. Wider rectangle means wider island.
Finally, let’s try geom “heatmap”.

```r
p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8, geom = "heatmap")
p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8, geom = "heatmap",
               drop = FALSE)
tracks(ctcf = p1, gfp = p2) + scale_fill_continuous(limits = c(1000, 6000)) +
       scale_color_continuous(limits = c(1000, 6000))
```

Figure 13.11: Use default statistical transformation "slice" and geom vertical "rect" to represent island region. Wider rectangle means wider island.
Constructing tracks with ideogram and genomic features

Most time, we only want to visualize a small region on the genome with annotation data to help us understand the biological significance or form hypothesis.

In this section, we try to find a region that ...,

```r
peaks.ctcf <- slice(cov.ctcf, lower = 8)
peaks.gfp <- slice(cov.gfp, lower = 8)
## this function is from vignette of chipseq
peakSummary <- diffPeakSummary(peaks.gfp, peaks.ctcf)
peakSummary <- within(peakSummary, {
  diffs <- asinh(sums2) - asinh(sums1)
  resids <- (diffs - median(diffs))/mad(diffs)
  up <- resids > 2
  down <- resids < -2
  change <- ifelse(up, "up", ifelse(down, "down", "flat"))
})
ps.down <- peakSummary[peakSummary$change == "down" & peakSummary$space == "chr11", ]
pk.down <- ps.down[order(ps.down$diffs), ]
pk.down
```

RangedData with 22 rows and 10 value columns across 3 spaces

<table>
<thead>
<tr>
<th>space</th>
<th>ranges</th>
<th>comb.max</th>
<th>sums1</th>
<th>sums2</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr11</td>
<td>[3082329, 3082373]</td>
<td>9</td>
<td>360</td>
<td>11</td>
</tr>
<tr>
<td>chr11</td>
<td>[3096046, 3096092]</td>
<td>9</td>
<td>376</td>
<td>47</td>
</tr>
<tr>
<td>chr11</td>
<td>[3078056, 3078070]</td>
<td>9</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>chr11</td>
<td>[3074248, 3074257]</td>
<td>9</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>chr11</td>
<td>[3060223, 3060234]</td>
<td>10</td>
<td>96</td>
<td>17</td>
</tr>
<tr>
<td>chr11</td>
<td>[3064802, 3064843]</td>
<td>10</td>
<td>336</td>
<td>71</td>
</tr>
<tr>
<td>chr11</td>
<td>[3078072, 3078123]</td>
<td>11</td>
<td>436</td>
<td>98</td>
</tr>
<tr>
<td>chr11</td>
<td>[3053546, 3053565]</td>
<td>10</td>
<td>160</td>
<td>40</td>
</tr>
<tr>
<td>chr11</td>
<td>[3054994, 3054997]</td>
<td>10</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>chr11</td>
<td>[3043396, 3043497]</td>
<td>14</td>
<td>867</td>
<td>299</td>
</tr>
<tr>
<td>chr11</td>
<td>[3053477, 3053510]</td>
<td>12</td>
<td>282</td>
<td>102</td>
</tr>
<tr>
<td>chr11</td>
<td>[3077140, 3077157]</td>
<td>11</td>
<td>144</td>
<td>54</td>
</tr>
<tr>
<td>chr11</td>
<td>[3042270, 3042278]</td>
<td>11</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>chr11</td>
<td>[3077516, 3077671]</td>
<td>14</td>
<td>1422</td>
<td>540</td>
</tr>
<tr>
<td>chr11</td>
<td>[3082415, 3082505]</td>
<td>14</td>
<td>804</td>
<td>326</td>
</tr>
<tr>
<td>chr11</td>
<td>[3092597, 3092611]</td>
<td>12</td>
<td>120</td>
<td>51</td>
</tr>
<tr>
<td>chr11</td>
<td>[3079874, 3079905]</td>
<td>12</td>
<td>256</td>
<td>115</td>
</tr>
<tr>
<td>chr11</td>
<td>[3064758, 3064781]</td>
<td>12</td>
<td>192</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>maxs1</td>
<td>maxs2</td>
<td>change</td>
<td>diffs</td>
<td>down</td>
</tr>
<tr>
<td><integer></td>
<td><integer></td>
<td><character></td>
<td><numeric></td>
<td><logical></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>down</td>
<td>-3.486</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1</td>
<td>down</td>
<td>-2.079</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>down</td>
<td>-2.078</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
<td>down</td>
<td>-2.077</td>
</tr>
</tbody>
</table>
library(TxDb.Musculus.UCSC.mm9.knownGene)
txdb <- TxDb.Musculus.UCSC.mm9.knownGene
tx <- transcripts(txdb)

Since mouse ideogram is not default data in ggbioc, you need to get that information from UCSC, there is another
vignette talking about how to create ideogram.

We create this ideogram with zoomed region.

```r
library(biovizBase)
mm9 <- getIdeogram("mm9")
## Loading...
## Done
cyto.def <- getOption("biovizBase")$cytobandColor
cyto.new <- c(cyto.def, c(gpos33 = "grey80", gpos66 = "grey60"))
p.ideo <- plotIdeogram(mm9, "chr10", zoom = c(start(wh.pw), end(wh.pw))) +
    scale_fill_manual(values = cyto.new)
print(p.ideo)
```

![Ideogram for mouse chromosome 10](image)

Figure 13.12: Ideogram for mouse chromosome 10
13.2 Mismatch summary

13.2.1 Introduction

A mismatch summary is a lower-level API to read in a bam file and show mismatch summary for a certain region. Counts at each position are summarized as statistics of a mismatch summary, those reads which are identical to the reference will either be shown as gray background or removed, it's controlled by argument 'show.coverage', mismatched part will be shown as color-coded bar or segment.

Objects supported:

- Bamfile
- GRanges, this will pass interval checking which makes sure the GRanges has required columns.

13.2.2 Usage

Low level API: stat_mismatch

Load packages

```r
library(ggbio)
library(BSgenome.Hsapiens.UCSC.hg19)
data("genesymbol", package = "biovizBase")
```

Load example bam file

```r
bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package = "biovizBase")
library(Rsamtools)
bf <- BamFile(bamfile)
```
coverage

cstest.s <- stack(cstest)
cstest.s <- resize(cstest.s, width = 200)
cstest.sub <- subsetByOverlaps(cstest.s, wh.pw)
p.cov <- autoplot(cstest.sub, stat = "coverage", facets = sample ~ ., geom = "area")

ideogram

tracks(p.ideo, coverage = p.cov, gene = p.gene, xlim = as(wh.pw, "GRanges"),
 heights = c(1, 5, 5))

Figure 13.13: Tracks showing one strong peak in ccf.
If the object is BamFile, a BSgenome object is required to compute the mismatch summary. In the following code, coord_cartesian function is a ggplot2 function which zoom in/out, function theme_bw is a customized theme in ggplot2 which will give you a grid and white background.

Sometimes bam file and BSgenome object might have a different naming schema for chromosomes, currently, stat_mismatch is not smart enough to deal with complicated cases, in this way, you may want to get mismatch summary as GRanges yourself and correct the names, with keepSeqlevels or renamesSeqlevels functions in package GenomicRanges. Following examples doesn’t show you how to manipulate seqnames, but just show you how to compute mismatch summary.

```r
library(biovizBase)
pgr <- pileupAsGRanges(bamfile, region = genesymbol["RBM17"])
pgr.match <- pileupGRangesAsVariantTable(pgr, genome = Hsapiens)
```

And directly plot the mismatch GRanges object, at the same time hide coverage background.

Then we compare geom 'bar' and 'segment', 'bar' is useful when zoomed in to a small region.

```r
autoplot
```

autoplot for object Bamfile have a statistical transformation called mismatch, this is a wrapper over lower level function stat_mismatch.
Figure 13.14: Mismatch summary for gene RBM17. Background is coverage shown as gray color, and only mismatched reads are shown with different color.
Figure 13.15: Mismatch summary without coverage
p1 <- ggplot() + stat_mismatch(pgr.match, show.coverage = FALSE, geom = "bar") +
 xlim(6132060, 6132120) + ylim(0, 10)
p2 <- ggplot() + stat_mismatch(pgr.match, geom = "segment") + xlim(6132060,
 6132120) + ylim(0, 10)
tracks(segment = p2, bar = p1) + scale_x_sequnit("Mb")

Warning: Removed 1 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 1 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing missing values (geom_segment).

Figure 13.16: Mismatch summary without coverage
Figure 13.17: autoplot API to show the same plot
Chapter 14

Reference
Chapter 15

Appendix

15.1 Session Information

sessionInfo()

R version 2.15.2 (2012-10-26)
Platform: x86_64-unknown-linux-gnu (64-bit)
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
##
attached base packages:
[1] grid stats graphics grDevices utils datasets
[7] methods base
##
other attached packages:
[1] TxDB.Mmuscusl.UCSC.mm9.knownGene_2.8.0
[2] chipseq_1.8.0
[3] ShortRead_1.16.3
[4] latticeExtra_0.6-24
[5] RColorBrewer_1.0-5
[6] lattice_0.20-13
[7] biovizBase_1.6.2
[8] BSgenome.Hsapien.UCSC.hg19_1.3.19
[9] BSgenome_1.26.1
[10] VariantAnnotation_1.4.6
[11] genefilter_1.40.0
[12] vsn_3.26.0
[13] Rsamtools_1.10.2
[14] Biostrings_2.26.2
[16] GenomicFeatures_1.10.1
[17] AnnotationDbi_1.20.3
[18] Biobase_2.18.0
[19] rtracklayer_1.18.2
[20] GenomicRanges_1.10.6
[21] IRanges_1.16.4
[22] BiocGenerics_0.4.0
[23] ggbio_1.6.6
[24] ggplot2_0.9.3
[25] codetools_0.2-8
[26] knitr_1.0
##
loaded via a namespace (and not attached):
[1] BiocInstaller_1.8.3 DBI_0.2-5 Hmisc_3.10-1
[4] MASS_7.3-23 RCurl_1.95-3 RSQLite_0.11.2
[7] XML_3.95-0.1 affy_1.36.0 affyio_1.26.0
[10] annotate_1.36.0 biomaRt_2.14.0 bitops_1.0-5
[13] cluster_1.14.3 colorspace_1.2-0 dichromat_1.2-4
[16] digest_0.6.0 evaluate_0.4.3 formatR_0.7
[19] gridExtra_0.9.1 gtable_0.1.2 hwriter_1.3
[22] labeling_0.1 limma_3.14.4 munsell_0.4
[25] parallel_2.15.2plyr_1.8 preprocessCore_1.20.0
[28] proto_0.3-10 reshape2_1.2.2 scales_0.2.3
[31] splines_2.15.2 stats4_2.15.2 stringr_0.6.2
[34] survival_2.37-2 tools_2.15.2 xtable_1.7-0
[37] zlibbioc_1.4.0