Package ‘DaMiRseq’

March 22, 2017

Type Package
Date 2017-03-03
Title Data Mining for RNA-seq data: normalization, feature selection and classification
Version 0.99.8
Author Mattia Chiesa <mattia.chiesa@hotmail.it>, Luca Piacentini <luca.piacentini@cardiologicomonzino.it>
Maintainer Mattia Chiesa <mattia.chiesa@hotmail.it>
Description The DaMiRseq package offers a tidy pipeline that includes data mining procedures of data handling that lead up to the implementation of prediction learning methods to build classification models. The package accepts any kind of data presented as a table of raw counts and allows including covariates that occur with the experimental setting. A series of functions enable the user to clean up the data by filtering genomic features and samples, to adjust data by identifying and removing the unwanted source of variation (i.e. batches and confounding factors) and to select the best predictors for modeling. Finally, a “Stacking” ensemble learning technique is applied to build a robust classification model. Every step includes a checkpoint that the user may exploit to assess the effects of data management by looking at diagnostic plots, such as clustering and heatmaps, RLE boxplots, MDS or correlation plot.
License GPL (>= 2)
Encoding UTF-8
LazyData true
biocViews Sequencing, RNASeq, Classification
VignetteBuilder knitr
Imports DESeq2, limma, EDASeq, RColorBrewer, sva, Hmisc, pheatmap, FactoMineR, corrplot, randomForest, e1071, caret, MASS, lubridate, plsVarSel, kknn, FSelector, methods, stats, utils, graphics, grDevices, reshape2
Suggests BiocStyle, knitr, testthat
Depends R (>= 3.4), SummarizedExperiment, ggplot2
DaMiR.Allplot

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

- DaMiR.Allplot 2
- DaMiR.Clustplot 3
- DaMiR.corrplot 4
- DaMiR.EnsembleLearning 5
- DaMiR.FBest 6
- DaMiR.FReduct 7
- DaMiR.FSelect 8
- DaMiR.FSort 10
- DaMiR.goldenDice 11
- DaMiR.makeSE 12
- DaMiR.MDSplot 13
- DaMiR.normalization 14
- DaMiR.sampleFilt 15
- DaMiR.SV 16
- DaMiR.SVadjust 17
- DaMiR.transpose 18
- data_min 18
- data_norm 19
- data_reduced 19
- data_relief 20
- df .. 20
- SE ... 21
- selected_features 21
- SEtest_norm 22
- sv .. 22

Index 23

DaMiR.Allplot Quality assessment and visualization of expression data

Description

This is a helper function to easily draw (1) clustering dendrogram and heatmap of a sample-per-sample correlation matrix, (2) multidimensional scaling plots (MDS) and (3) relative log expression (RLE) boxplots of expression data.

Usage

DamiR.Allplot(data, df, type = c("spearman", "pearson"))
Arguments

- **data**: A SummarizedExperiment object or an expression data frame
- **df**: A data frame with class and known variables (or a subset of them); at least one column with 'class' label must be included
- **type**: A character string specifying the metric to be applied to correlation analysis. Either "spearman" or "pearson" is allowed; default is "spearman"

Details

Please be sure that NAs are not present in df’s columns. Plots will not be drawn in the presence of NAs.

Value

A dendrogram and heatmap, MDS plot(s) and a RLE boxplot

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

```r
# use example data:
data(data_norm)
data(df)
# Draw clustering dendrogram and heatmap, MDS, RLE boxplot:
DaMiR.Allplot(data=data_norm, df=df)
```

Description

The function helps to draw a clustering dendrogram and a heatmap of expression data.

Usage

```
DaMiR.Clustplot(data, df, type_row = c("euclidean", "correlation"),
                type_col = c("euclidean", "correlation"))
```

Arguments

- **data**: A SummarizedExpression object, or an expression data frame where rows and cols should be, respectively, observations and features
- **df**: A data frame with class and (optionally) known variables; at least one column with 'class' label must be included
- **type_row**: The metric to be used to cluster rows. Either "euclidean" or "correlation" is allowed; default is "euclidean"
- **type_col**: The metric to be used to cluster cols. Either "euclidean" or "correlation" is allowed; default is "euclidean"
Value
A clustering dendrogram and heatmap.

Author(s)
Mattia Chiesa, Luca Piacentini

Examples
```r
# use example data:
data(data_norm)
data(df)
# use the first 100 genes:
data_norm_red=data_norm[1:100,]
# Draw heatmap: samples (cols) per genes (rows)
# and use variable annotation:
DaMiR.Clustplot(data=data_norm_red,
df=df, type_row="correlation", type_col="correlation")
```

Description
This function easily draws the correlation plot of surrogate variables (sv) and variables.

Usage
```r
DaMiR.corrplot(sv, df, type = c("pearson", "spearman"), sig.level = 1e-04)
```

Arguments
- `sv` The matrix of sv identified by `DaMiR.SV` function
- `df` A data frame with class and known variables; at least one column with 'class' label must be included
- `type` Type of correlation metric to be applied; default is "pearson"
- `sig.level` The significance level of the correlation; default is 0.0001

Details
Factorial variables are allowed. They will be tranformed as numeric before applying the `rcorr` function of Hmisc. The `corrplot` function, which draws the plot, marks with a cross all the correlations that do not reach the significance threshold defined in the `sig.level` argument. This plot allows the user to identify those sv that present significant correlations with either technical and biological known variables. Notably, none of the sv should present significant correlation with "class" variable.

Value
A correlation plot between sv and known variables.
DaMiR.EnsembleLearning

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

DaMiR.SV

Examples

use example data:
data(df)
data(sv)
Draw correlation plot:
DaMiR.corrplot(sv=sv, df=df, type = "pearson", sig.level=0.01)

DaMiR.EnsembleLearning

Build Classifier using 'Staking' Ensemble Learning strategy.

Description

This function implements a 'Stacking' ensemble learning strategy. Users can provide heterogeneous features (other than genomic features) which will be taken into account during classification model building. A 'two-classes' classification task is addressed.

Usage

DaMiR.EnsembleLearning(data, classes, variables, fSample.tr = 0.7, fSample.tr.w = 0.7, iter = 100)

Arguments

data A transposed data frame of normalized expression data. Rows and Cols should be, respectively, observations and features

classes A class vector with nrow(data) elements. Each element represents the class label for each observation. Only two different class labels are allowed

variables An optional data frame containing other variables (but without 'class' column). Each column represents a different covariate to be considered in the model

fSample.tr Fraction of samples to be used as training set; default is 0.7

fSample.tr.w Fraction of samples of training set to be used during weight estimation; default is 0.7

iter Number of iterations to assess classification accuracy; default is 100
Details
To assess the robustness of a set of predictors, a specific 'Stacking' strategy has been implemented. First, a training set (TR1) and a test set (TS1) are generated by 'bootstrap' sampling. Then, sampling again from TR1 subset, another pair of training (TR2) and test set (TS2) are obtained. TR2 is used to train Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA) and Logistic Regression (LR) classifiers, whereas TS2 is used to test their accuracy and to calculate weights. The decision rule of 'Stacking' classifier is made by a linear combination of the product between weights (w) and predictions (Pr) of each classifier; for each sample k, the prediction is computed by:

\[
Pr_{k,\text{Ensemble}} = w_{RF} \cdot Pr_{k,RF} + w_{NB} \cdot Pr_{k,NB} + w_{SVM} \cdot Pr_{k,SVM} + w_{kNN} \cdot Pr_{k,kNN} + w_{LDA} \cdot Pr_{k,LDA} + w_{LR} \cdot Pr_{k,LR}
\]

Performance of 'Stacking' classifier is evaluated by using TS1. This process is repeated several times (default 100 times).

Value
A list containing:

- A matrix of accuracies of each classifier in each iteration.
- A matrix of weights used for each classifier in each iteration.
- A list of all models generated in each iteration.
- A violin plot of model accuracy obtained for each iteration.

Author(s)
Mattia Chiesa, Luca Piacentini

Examples
```r
# use example data:
data(selected_features)
data(df)
set.seed(1)
# only for the example:
# speed up the process setting a low 'iter' argument value;
# for real data set use default 'iter' value (i.e. 100) or higher:
Classification_res <- DaMiR.EnsembleLearning(selected_features, classes=df$class, fSample.tr=0.6, fSample.tr.w=0.6, iter=5)
```

DaMiR.FBest

Select best predictors to build Classification Model

Description
This function allows the user to select a subset of predictors; the number of predictors can be defined by user or selected automatically.

Usage
DaMiR.FBest(data, ranking, autoselect = c("no", "yes"), n.pred = 10, th.zscore = 2)
DaMiR.FReduct

Remove highly correlated features, based on feature-per-feature correlation.

Description

This function allows the user to remove highly correlated features.

Usage

DaMiR.FReduct(data, th.corr = 0.85, type = c("spearman", "pearson"))
DaMiR.FSelect

Feature selection for classification

Description

This function identifies the class-correlated principal components (PCs) which are then used to implement a backward variable elimination procedure for the removal of non informative features.

Usage

```r
DaMiR.FSelect(data, df, th.corr = 0.6, type = c("spearman", "pearson"), th.VIP = 3)
```

Arguments

- `data`: A transposed data frame or matrix of normalized expression data. Rows and Cols should be, respectively, observations and features.
- `th.corr`: Feature-per-feature correlation threshold; default is 0.85.
- `type`: Type of correlation metric to be applied; default is "spearman".

Details

This function produces an absolute correlation matrix that it is then used to reduce pair-wise correlations. When two features present a correlation higher than that defined by the user in `th.corr` argument, the function, first, calculates the mean absolute correlation of each feature and, then, removes the feature with the largest mean absolute correlation.

Value

An expression matrix without highly correlated features.

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

`rcorr`, `findCorrelation`
Arguments

- **data**: A transposed data frame or a matrix of normalized expression data. Rows and Cols should be, respectively, observations and features.

- **df**: A data frame with known variables; at least one column with 'class' label must be included.

- **th.corr**: Minimum threshold of correlation between class and PCs; default is 0.6.

- **type**: Type of correlation metric; default is "spearman".

- **th.VIP**: Threshold for bve_pls function, to remove non-important variables; default is 3.

Details

The function aims to reduce the number of features to obtain the most informative variables for classification purpose. First, PCs obtained by principal component analysis (PCA) are correlated with "class". The correlation is defined by the user in th.corr argument. The higher the correlation, the lower is the number of PCs returned. Users should pay attention to appropriately set the th.corr argument because it will also affect the total number of selected features that ultimately depend on the number of PCs. The bve_pls function of plsVarSel package is, then, applied. This function exploits a backward variable elimination procedure coupled to a partial least squares approach to remove those variable which are less informative with respect to class. The returned vector of variables is further reduced by the following DaMiR.FReduct function in order to obtain a subset of non correlated putative predictors.

Value

A list containing:

- An expression matrix with only informative features.
- A data frame with class and optional variables information.

Author(s)

Mattia Chiesa, Luca Piacentini

References

See Also

- bve_pls
- DaMiR.FReduct

Examples

```r
# use example data:
data(data_norm)
data(df)
# extract expression data from SummarizedExperiment object
# and transpose the matrix:
```
t_data<-t(assay(data_norm))
select class-related features
data_reduced <- DaMiR.FSelect(t_data, df,
 th.corr = 0.7, type = "spearman", th.VIP = 2.5)

DaMiR.FSort Order features by importance, using RReliefF filter

Description

This function implements a procedure in order to rank features by their importance evaluated by RReliefF score.

Usage

DaMiR.FSort(data, df, fSample = 1)

Arguments

- **data**: A transposed data frame of expression data, i.e. transformed counts by vst or rlog. A log2 transformed expression matrix is also accepted. Rows and Cols should be, respectively, observations and features.
- **df**: A data frame with class and known variables; at least one column with 'class' label must be included.
- **fSample**: Fraction of sample to be used for the implementation of RReliefF algorithm; default is 1.

Details

This function is very time-consuming when the number of features is high. We observed there is a quadratic relationship between execution time and the number of features. Thus, we have also implemented a formula which allows the users to estimate the time to perform this step, given the number of features. The formula is:

\[T = 0.0011 \times N^2 - 0.1822 \times N + 27.092 \]

where \(T \) = Time and \(N \) = Number of genes. We strongly suggest to filter out non informative features before performing this step.

Value

A data frame with two culmuns, where features are sorted by importance scores:

- RReliefF score - Calculated by relief function, implemented in FSelector package;
- scaled.RReliefF score - Z-score value, computed for each RReliefF score.

A plot with the first 50 features ordered by their importance.

Author(s)

Mattia Chiesa, Luca Piacentini
References

See Also

relief, DaMiR.FSelect, DaMiR.FReduct

Examples

use example data:
data(data_reduced)
data(df)
rank features by importance:
df.importance <- DaMiR.FSort(data_reduced, df, fSample = 0.75)

DaMiR.goldenDice

Generate a Number to Set Seed

Description

This function implements a formula based on current date and time.

Usage

DaMiR.goldenDice()

Details

The number is generated by combining current seconds (S), minutes (Mi), hours (H), days (D), months (Mo), years (Y) and golden ratio (ϕ), in the form:

\[
Num = (S \times Mi + H \times D \times Mo/D)^ϕ
\]

Value

An integer number.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

gen_numb <- DaMiR.goldenDice()
set.seed(gen_numb)
DaMiR.makeSE

Import RNA-Seq count data and variables

Description

This is an helper function that allows the user to simultaneously import counts, class (mandatory) and variables (optional) data, and creates a SummarizedExperiment object.

Usage

DaMiR.makeSE(x, y)

Arguments

x
A tab-delimited file which contains RNA-Seq count data. Each row is a feature (i.e. gene, transcript, exon etc.) and each column is a sample

y
A tab-delimited file which contains experiment information. Each row is a sample and each column is a variable. This file must contain at least one column which represent 'class' information for data adjustment and classification; the class column must be labeled as 'class'

Details

Before creating a SummarizedExperiment object, the function performs some checks on input data to ensure that only a matrix of raw counts is accordingly loaded. Other checks allows the identification of missing data (NA) in the data frame of the variables of interest.

Value

A SummarizedExperiment object containing raw counts, class and (optionally) variables of interest.

Author(s)

Mattia Chiesa, Luca Piacentini

References

See Also

SummarizedExperiment
Examples

rawdata.path <- system.file(package = "DaMiRseq","extdata")
setwd(rawdata.path)
import tab-delimited files:
sample data are a small subset of Genotype-Tissue Expression (GTEx)
RNA-Seq database (dbGap Study Accession: phs000424.v6.p1):
count_data <- read.delim("counts_import.txt")
variables_data <- read.delim("annotation_import.txt")
create a SummarizedExperiment object:
SE<-DaMiR.makeSE(count_data, variables_data)
print(SE)

DaMiR.MDSplot

Plot multidimensional scaling (MDS)

Description

A MDS plot is drawn in order to visualize class clustering.

Usage

DaMiR.MDSplot(data, df, type = c("spearman", "pearson"))

Arguments

data: A SummarizedExperiment object or an expression data.frame
df: A data frame with class; it can be directly subset from data
type: A character string specifying the metric to be applied to correlation analysis. Either "spearman" or "pearson" is allowed; default is "spearman"

Details

The MDS plot is drawn taking as input a dissimilarity matrix produced by either a sample-per-sample Pearson’s or Spearman’s correlation of normalized expression data.

Value

A MDS plot, using only 'class' information

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(data_reduced)
data(df)
Draw MDS:
DaMiR.MDSplot(data=data_reduced, df=df, type="pearson")
DaMiR.normalization

Filter non Expressed and 'Hypervariant' features and Data Normalization

Description
Features will be firstly filtered based on their expression value and/or by their variability across samples; features will be then normalized.

Usage
DaMiR.normalization(data, minCounts = 10, fSample = 0.5, hyper = c("yes", "no"), th.cv = 3, type = c("vst", "rlog"))

Arguments
- data: A SummarizedExperiment object
- minCounts: Minimum reads counts; default is 10
- fSample: Fraction of samples with minCounts counts; default is 0.5
- hyper: Flag to enable gene filtering by Coefficient of Variation (CV); default is "yes"
- th.cv: Threshold of minimum CV to consider a feature 'Hypervariant' across samples; default is 3
- type: Type of normalization to be applied: varianceStabilizingTransformation (vst) or rlog are allowed; default is "vst"

Details
Before normalization step, this function allows the user to filter features by:

- Expression - Features will be filtered out whether their reads count do not reach a minCounts in at least fSample of samples;
- CV - The CV of each feature is individually calculated for each sample class. Featurees with both class CV greater than th.cv will be discarded. Computing a class restricted CV may prevent the removal of hypervariant features that may be specifically associated with a certain class. This could be important, for example, for immune genes whose expression under definite conditions may unveil peculiar class-gene association.

Finally, expressed features will be normalized by varianceStabilizingTransformation (default) or rlog, both implemented in DESeq2 package. We suggest to use varianceStabilizingTransformation to speed up the normalization process because rlog is very time-consuming despite the two methods produce quite similar results.

Value
A SummarizedExperiment object which contains a normalized expression matrix (log2 scale) and the data frame with 'class' and (optionally) variables.

Author(s)
Mattia Chiesa, Luca Piacentini
References

See Also
varianceStabilizingTransformation, rlog

Examples
use example data:
data(SE)
perform normalization on a subset of data:
SE_sub<-SE[1:10000, c(1:3, 21:23)]
data_norm <- DaMiR.normalization(SE_sub, minCounts=10, fSample=0.8, hyper="yes", th.cv = 2.5)

DaMiR.sampleFilt
Filter Samples by Mean Correlation Distance Metric

Description
This function implements a sample-per-sample correlation. Samples with a mean correlation lower than a user's defined threshold will be filtered out.

Usage
DaMiR.sampleFilt(data, th.corr = 0.9, type = c("spearman", "pearson"))

Arguments
 data A SummarizedExpression object
 th.corr Threshold of mean correlation; default is 0.9
 type Type of correlation metric; default is "spearman"

Details
This step introduces a sample quality checkpoint. Global gene expression should, in fact, exhibit a high correlation among biological replicates; conversely, low correlated samples may be suspected to bear some technical artifact (e.g. poor RNA or library preparation quality), despite they may have passed sequencing quality checks. If not assessed, these samples may, thus, negatively affect all the downstream analysis. This function looks at the mean absolute correlation of each sample and removes those samples with a mean correlation lower than the value set in th.corr argument. This threshold may be specific for different experimental setting but should be as high as possible. For sequencing data we suggest to set th.corr greater than 0.85.

Value
A SummarizedExperiment object which contains a normalized and filtered expression matrix (log2 scale) and a filtered data frame with 'class' and (optionally) variables.
DAMI.SV

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(data_norm)

filter out samples with Pearson's correlation <0.92:
data_filt<- DaMiR.sampleFilt(data_norm, th.corr=0.92, type="pearson")

Description

This function returns a matrix of surrogate variables (sv) using the implementation by Chiesa-Piacentini or the sva method by Leek et al.

Usage

DaMiR.SV(data, method = c("fve", "leek", "be"), th.fve = 0.95)

Arguments

- **data**: A SummarizedExpression object
- **method**: The method used to identify sv. If missing, the "fve" method will be selected. Otherwise the method "leek" or "be" should be chosen
- **th.fve**: This argument sets the threshold of maximum fraction of variance explained (fve) to be used in conjunction with "fve" method; default is 0.95

Details

This function helps the user to identify the appropriate number of sv: it is possible to select a different strategy to be used by changing the option in method argument. Three methods are available:

- "be" - this option uses the num.sv function of sva package with default parameters;
- "leek" - The same of before but with asymptotic approach proposed by Leek;
- "fve" - This method is introduced in DaMiRseq package, and integrates part of sva function with custom code. Briefly, we computed eigenvalues of data using code already implemented in sva function and then, we calculated the squared of each eigenvalues. Thus, the ratio between each "squared eigenvalue" and the sum of them were calculated. These values represent a surrogate measure of the "Percentage of Explained Variance" (pve) obtained by principal component analysis (PCA), and their cumulative sum can be used to select sv.

Value

A matrix of sv. A plot with the sv identified by "fve" method is also returned. A red dot shows the maximum number of variables to be included for a specific "fve".
DaMiR.SVadjust

Author(s)
Mattia Chiesa, Luca Piacentini

References

See Also
sva

Examples
```r
# use example data:
data(data_norm)
sv <- DaMiR.SV(data_norm, method = "fve", th.fve=0.95)
```

DaMiR.SVadjust

Remove variable effects from expression data

Description
This function removes surrogate or other confounding variable effects from normalized expression data by the usage of `removeBatchEffect` function of limma package.

Usage
```r
DaMiR.SVadjust(data, sv, n.sv)
```

Arguments
- **data** A SummarizedExpression object
- **sv** The matrix of surrogate variables identified by DaMiR.SV function
- **n.sv** The number of surrogate variables to be used to adjust the data

Value
A SummarizedExpression object containing a matrix of log-expression values with sv effects removed and the data frame of the variables.

Author(s)
Mattia Chiesa, Luca Piacentini

See Also
`removeBatchEffect`, DaMiR.SV
Examples

```r
# use example data:
data(data_norm)
data(sv)
data_adjust <- DaMiR.SVadjust(data_norm, sv = sv, n.sv = 3)
```

DaMiR.transpose

Matrix transposition and replacement of `. ' and `-' special characters

Description

This function transposes matrix and replaces `. ' and `-' special characters.

Usage

```r
DaMiR.transpose(data)
```

Arguments

- **data**: Matrix of normalized expression data, i.e. transformed counts by vst or rlog. A log2 transformed expression matrix is also accepted.

Value

Normalized matrix in which each row is a sample and each column is a feature.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

```r
data(data_norm)
data.transposed <- DaMiR.transpose(assay(data_norm))
```

data_min

Example gene-expression dataset for DaMiRseq package

Description

A dataset with a small dimension of normalized expression data in DaMiRseq package.

Usage

```r
data_min
```

Format

A data frame with 40 samples (rows) and 87 genes (columns).
Value

An example dataset for DaMiRseq package

data_norm

A dataset with a normalized matrix to test several DaMiRseq functions: sample data are a subset of Genotype-Tissue Expression (GTex) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)

Description

A dataset with a normalized matrix to test several DaMiRseq functions: sample data are a subset of Genotype-Tissue Expression (GTex) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)

Usage

data_norm

Format

A SummarizedExperiment object containing an assay of 4897 genes (rows) and 40 samples (columns) and a colData with 5 variables

Value

An example dataset for DaMiRseq package

data_reduced

Example gene-expression dataset for DaMiRseq package

Description

A dataset with a small dimension of normalized expression data in DaMiRseq package

Usage

data_reduced

Format

A list with:

- **data** reduced expression matrix
- **variables** a data frame with variables

Value

An example dataset for DaMiRseq package
data_relief

Example ranking dataset for DaMiRseq package

Description
A data frame with relieF and scaled relieF scores for each gene

Usage
data_relief

Format
A dataframe with 87 genes (rows) and 2 variables (columns):

- reliefF Score: relieF score for each gene
- scaled reliefF Score: scaled relieF score for each gene, by z-score

Value
An example dataset for DaMiRseq package

df

Example gene-expression dataset for DaMiRseq package

Description
A data frame with class and covariates information

Usage
df

Format
A dataframe with 40 samples (rows) and 5 variables (columns):

- center: center where sample has been collected
- sex: sample’s gender
- age: sample’s age
- death: kind of sample’s death, based on Hardy scale
- class: sample’s class

Value
An example dataset for DaMiRseq package
Description

A dataset with count matrix to test several DaMiRseq functions. To show package functionality in a reasonably execution time, sample data are a subset of Genotype-Tissue Expression (GTEx) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1). Samples include 20 Anterior Cingulate Cortex (ACC) tissues and 20 Frontal Cortex (FC) tissues. 21363 genes have been previously selected to have 5 read counts in at least 60.

Usage

SE

Format

A SummarizedExperiment object containing an assay of 21363 randomly selected genes (rows) and 40 samples (columns) and a colData with 5 variables.

Value

An example dataset for DaMiRseq package

selected_features

Description

A dataset with normalized expression data to build classification models in DaMiRseq package.

Usage

selected_features

Format

A dataframe with 40 samples (rows) and 7 variables (genes):

Value

An example dataset for DaMiRseq package
SEtest_norm

A sample dataset with a normalized count matrix for "testthat" functions.

Description

A sample dataset with a normalized count matrix for "testthat" functions.

Usage

SEtest_norm

Format

A SummarizedExperiment object containing an assay of 100 genes (rows) and 11 samples (columns) and a colData with 5 variables

Value

An example dataset for DaMiRseq package

sv

Example Surrogate Variables dataset for DaMiRseq package

Description

A dataset with surrogate variables to test DaMiRseq functions

Usage

sv

Format

A matrix with 40 samples (rows) and 4 surrogate variables (columns):

Value

An example dataset for DaMiRseq package
Index

Topic datasets
 data_min, 18
 data_norm, 19
 data_reduced, 19
 data_relief, 20
 df, 20
 SE, 21
 selected_features, 21
 STest_test_norm, 22
 sv, 22
 varianceStabilizingTransformation, 15

bve_pls, 9

corrplot, 4

DaMiR.Allplot, 2
DaMiR.Clustplot, 3
DaMiR.corrplot, 4
DaMiR.EnsembleLearning, 5
DaMiR.FBest, 6
DaMiR.FReduct, 7, 9, 11
DaMiR.FSelect, 8, 11
DaMiR.FSort, 7, 10
DaMiR.goldenDice, 11
DaMiR.makeSE, 12
DaMiR.MDSplot, 13
DaMiR.normalization, 14
DaMiR.sampleFilt, 15
DaMiR.SV, 4, 5, 16, 17
DaMiR.SVadjust, 17
DaMiR.transpose, 18
 data_min, 18
 data_norm, 19
 data_reduced, 19
 data_relief, 20
 df, 20

findCorrelation, 8

corr, 4, 8
relief, 10, 11
removeBatchEffect, 17
rlog, 15

SE, 21