Package ‘InPAS’

March 22, 2017

Type Package
Title Identification of Novel alternative PolyAdenylation Sites (PAS)
Version 1.7.4
Date 2017-03-21
Author Jianhong Ou, Sung Mi Park, Michael R. Green and Lihua Julie Zhu
Maintainer Jianhong Ou <jianhong.ou@umassmed.edu>
Description Alternative polyadenylation (APA) is one of the important post-transcriptional regulation mechanisms which occurs in most human genes. InPAS facilitates the discovery of novel APA sites from RNAseq data. It leverages cleanUpdTSeq to fine tune identified APA sites.

biocViews RNASeq, Sequencing, AlternativeSplicing, Coverage, DifferentialSplicing, GeneRegulation, Transcription
License GPL (>= 2)

Lazyload yes
Imports AnnotationDbi, BSgenome, cleanUpdTSeq, Gviz, seqinr, preprocessCore, IRanges, GenomeInfoDb, depmixS4, limma, BiocParallel
Depends R (>= 3.1), methods, Biobase, GenomicRanges, GenomicFeatures, S4Vectors
Suggests RUnit, BiocGenerics, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm10, org.Hs.eg.db, org.Mm.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Musculus.UCSC.mm10.knownGene, rtracklayer, knitr
VignetteBuilder knitr
NeedsCompilation no

R topics documented:

InPAS-package ... 2
coverageFromBedGraph 3
coverageRate ... 4
covThreshold ... 5
CPsites .. 6
CPsite_estimation 8
InPAS-package

alternative polyadenylation and cleavage estimations

Description

predict and estimate the alternative polyadenylation and cleavage site for mRNA-seq data
coveragemFromBedGraph

Details

Package: InPAS
Type: Package
Version: 1.0
Date: 2014-09-12
License: GPL (>= 2)

Author(s)

Jianhong Ou, Sung Mi Park, Michael R. Green and Lihua Julie Zhu
Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>

References

coveragemFromBedGraph read coverage from bedGraph files

Description

read coverage from bedGraph files and save as a list.

Usage

coveragemFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE, BPPARAM=NULL, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bedgraphs</td>
<td>The file names of bedgraphs generated by bedtools. eg: bedtools genomecov -bg -split -ibam $bam -g mm10.size.txt > $bedgraph</td>
</tr>
<tr>
<td>tags</td>
<td>the names for each input bedgraphs</td>
</tr>
<tr>
<td>genome</td>
<td>an object of BSgenome</td>
</tr>
<tr>
<td>hugeData</td>
<td>is this dataset consume too much memory? if it is TRUE, the coverage will be saved into tempfiles.</td>
</tr>
<tr>
<td>BPPARAM</td>
<td>An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.</td>
</tr>
</tbody>
</table>

... parameters can be passed into tempfile. This is useful when you submit huge dataset to cluster.
coverageRate

Value

return a list of coverage for each bedgraph files. For each item in the list, it is a list of coverage for each chromosome. And the chromosome must start from "chr".

Author(s)

Jianhong Ou

Examples

if(interactive()){
 library(BSgenome.Mmusculus.UCSC.mm10)
 path <- file.path(find.package("InPAS"), "extdata")
 bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
 data(utr3.mm10)
 tags <- "Baf3"
 genome <- BSgenome.Mmusculus.UCSC.mm10
 coverage <-
 coverageFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE)
}

coverageRate coverage rate of genes and 3UTRs

Description

calculate coverage rate of gene and 3UTRs. This function is used for quality control of the coverage. The coverage rate can show the complexity of RNA-seq library.

Usage

cov

ragerRate(coverage, txdb, genome,
 cutoff_readsNum=1,
 cutoff_expdGene_cvgRate=0.1,
 cutoff_expdGene_sampleRate=0.5,
 which=NULL, ...)

Arguments

cov

rager coverage for each sample, output of cov

txdb an object of TxDb

genome an object of BSgenome

cutoff_readsNum
cutoff reads number. If the coverage in the location is greater than cutoff_readsNum, the location will be treated as coverage by signal.

cutoff_expdGene_cvgRate, cutoff_expdGene_sampleRate
cutoff_expdGene_cvgRate and cutoff_expdGene_sampleRate are the parameters used to calculate which gene is expressed in all input dataset. cutoff_expdGene_cvgRate set the cutoff value for the coverage rate of each gene; cutoff_expdGene_sampleRate set the cutoff value for ratio of numbers of expressed and all samples for each gene. for example, by default, cutoff_expdGene_cvgRate=0.1 and cutoff_expdGene_sampleRate=0.5.
suppose there are 4 samples, for one gene, if the coverage rates by base are: 0.05, 0.12, 0.2, 0.17, this gene will be count as expressed gene because mean(c(0.05, 0.12, 0.2, 0.17) > cutoff_expdGene_cvgRate) > cutoff_expdGene_sampleRate if the coverage rates by base are: 0.05, 0.12, 0.07, 0.17, this gene will be count as un-expressed gene because mean(c(0.05, 0.12, 0.07, 0.17) > cutoff_expdGene_cvgRate) <= cutoff_expdGene_sampleRate

which an object of GRanges or NULL. If it is not NULL, only the exons overlapping the given ranges are used.

Value

return a datafrom with colnames: gene.coverage.rate: coverage per base for all genes, expressed.gene.coverage.rate: coverage per base for expressed genes, UTR3.coverage.rate: coverage per base for all 3' UTRs, UTR3.expressed.gene.subset.coverage.rate: coverage per base for 3' UTRs of expressed genes. and rownames: the names of coverage.

Author(s)

Jianhong Ou

Examples

if(interactive()){
 library(BSgenome.Mmusculus.UCSC.mm10)
 library(TxDb.Mmusculus.UCSC.mm10.knownGene)
 path <- file.path(find.package("InPAS"), "extdata")
 bedgraphs <- c(file.path(path, "Baf3.extract.bedgraph"),
 file.path(path, "UM15.extract.bedgraph"))
 hugeData <- FALSE
 coverage <- coverageFromBedGraph(bedgraphs,
 tags=c("Baf3", "UM15"),
 genome=BSgenome.Mmusculus.UCSC.mm10,
 hugeData=hugeData)
 coverageRate(coverage,
 txdb=TxDB.Mmusculus.UCSC.mm10.knownGene,
 genome=BSgenome.Mmusculus.UCSC.mm10,
 which = GRanges("chr6", ranges=IRanges(98013000, 140678000)))
}

covThreshold

calculate the cutoff threshold of coverage

Description

calculate the cutoff threshold of coverage for long form and short form

Usage

covThreshold(coverage, genome, txdb, utr3,
 chr="chr1", hugeData, groupList)
Arguments

coverage coverage for each sample, output of coverageFromBedGraph
genome an object of BSgenome
txDB an object of TxDb
utr3 output of utr3Annotation
chr chromosome to be used for calculation, default is "chr1"
hugeData is this dataset consume too much memory? if it is TRUE, the coverage will be saved into tempfiles.
groupList group list of tag names

Value

a numeric vector

Author(s)

Jianhong Ou

See Also

CPsite_estimation

Description

predict the alternative cleavage and polyadenylation (CP or APA) site.

Usage

CPsites(coverage, groupList=NULL, genome, utr3,
window_size=100, search_point_START=50, search_point_END=NA,
cutStart=window_size, cutEnd=0, adjust_distal_polyA_end=TRUE,
coverage_threshold=5, long_coverage_threshold=2,
background=c("same_as_long_coverage_threshold",
"1K", "5K", "10K", "50K"),
txdb=NA,
PolyA_PWM=NA, classifier=NA, classifier_cutoff=.8, step=1,
two_way=FALSE,
shift_range=window_size,
BPPARAM=NULL, tmpfolder=NULL, silence=TRUE)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coverage</td>
<td>coverage for each sample, output of coverageFromBedGraph</td>
</tr>
<tr>
<td>groupList</td>
<td>group list of tag names</td>
</tr>
<tr>
<td>genome</td>
<td>an object of BSgenome</td>
</tr>
<tr>
<td>utr3</td>
<td>output of utr3Annotation</td>
</tr>
<tr>
<td>window_size</td>
<td>window size for noval distal position searching and adjusted polyA searching, default: 100</td>
</tr>
<tr>
<td>search_point_START</td>
<td>start point for searching</td>
</tr>
<tr>
<td>search_point_END</td>
<td>end point for searching</td>
</tr>
<tr>
<td>cutStart</td>
<td>how many nucleotides should be removed from the start before search. 0.1 means 10 percent, 25 means cut first 25.</td>
</tr>
<tr>
<td>cutEnd</td>
<td>how many nucleotides should be removed from the end before search. 0.1 means 10 percent.</td>
</tr>
<tr>
<td>adjust_distal_polyA_end</td>
<td>If true, adjust distal polyA end by cleanUpdTSeq</td>
</tr>
<tr>
<td>coverage_threshold</td>
<td>cutoff coverage threshold for first 100 nucleotides. If the coverage of first 100 nucleotides is lower than coverage_threshold, that transcript will be dropped.</td>
</tr>
<tr>
<td>long_coverage_threshold</td>
<td>cutoff threshold for coverage in the region of long form. If the coverage in the region of long form is less than long_coverage_threshold, that transcript will be dropped.</td>
</tr>
<tr>
<td>background</td>
<td>the range for calculating cutoff threshold of local background</td>
</tr>
<tr>
<td>txdb</td>
<td>an object of TxDb</td>
</tr>
<tr>
<td>PolyA_PWM</td>
<td>Position Weight Matrix of polyA</td>
</tr>
<tr>
<td>classifier</td>
<td>An object of class PASclassifier</td>
</tr>
<tr>
<td>classifier_cutoff</td>
<td>This is the cutoff used to assign whether a putative pA is true or false. This can be any floating point number between 0 and 1. For example, classifier_cutoff = 0.5 will assign an putative pA site with prob.1 > 0.5 to the True class (1), and any putative pA site with prob.1 <= 0.5 as False (0).</td>
</tr>
<tr>
<td>step</td>
<td>adjust step, default 1, means adjust by each base by cleanUpdTSeq</td>
</tr>
<tr>
<td>two_way</td>
<td>Search the proximal site from both direction or not.</td>
</tr>
<tr>
<td>shift_range</td>
<td>the shift range for polyA site searching</td>
</tr>
<tr>
<td>BPPARAM</td>
<td>An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.</td>
</tr>
<tr>
<td>tmpfolder</td>
<td>temp folder could save and reload the analysis data for resume analysis.</td>
</tr>
<tr>
<td>silence</td>
<td>report progress or not. default not report.</td>
</tr>
</tbody>
</table>

Value

return an object of GRanges contain the estimated CP sites.
Author(s)
Jianhong Ou

References
mappability could be calculated by [GEM](http://algorithms.cnag.cat/wiki/Mon:gem-mappability)

Examples
if(interactive()){
 library(BSgenome.Musculus.UCSC.mm10)
 path <- file.path(find.package("InPAS"), "extdata")
 bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
 data(utr3.mm10)
 tags <- "Baf3"
 genome <- BSgenome.Musculus.UCSC.mm10
 coverage <- coverageFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE)
 CP <- CPsites(coverage=coverage, gp1=tags, gp2=NULL, genome=genome,
 utr3=utr3.mm10, coverage_threshold=5, long_coverage_threshold=5)
}

CPsite_estimation
estimate the cpsites

Description
estimate the cpsites for a giving chromosome

Usage
CPsite_estimation(chr.cov, utr3, MINSIZE, window_size, search_point_START,
 search_point_END, cutStart, cutEnd, adjust_distal_polyA_end,
 background, z2s, coverage_threshold, long_coverage_threshold,
 PolyA_PWM, classifier, classifier_cutoff, shift_range,
 depth.weight, genome, step=1, two_way=FALSE,
 tmpfolder=NULL, silence=TRUE)

Arguments
chr.cov coverage list for one chromosome
utr3 output of utr3Annotatio
MINSIZE min size of short form
window_size window size
search_point search start point
search_point_END search end point
cutStart cut from start
cutEnd cut from end
adjust_distal_polyA_end
 adjust distal site or not
background how to get the local background
z2s output of zScoreThrethold
coverage_threshold cutoff value for coverage
long_coverage_threshold cutoff value for long form
PolyA_PWM polyA PWM
classifier classifier
classifier_cutoff classifier cutoff
shift_range shift range
depth.weight output of depthWeight
genome a BSgenome object
step adjust step, default 1, means adjust by each base by cleanUpdTSeq.
two_way Search the proximal site from both direction or not.
tmpfolder temp folder could save and reload the analysis data for resume analysis.
silence report progress or not. default not report.

Value

a data.frame

Author(s)

Jianhong Ou

See Also

CPsites, searchProximalCPs, proximalAdj, proximalAdjByPWM, proximalAdjByCleanUpdTSeq, PAScore, PAScore2
depthWeight

calculate the depth weight for each example

Description

calculate the depth weight for each example

Usage

depthWeight(coverage, hugeData, groupList=NULL)

Arguments

- `coverage`: a list. output of `coverageFromBedGraph`
- `hugeData`: is it a huge dataset?
- `groupList`: group list for huge dataset

Value

a numeric vector with depth weight

Author(s)
Jianhong Ou

distalAdj

adjust distal CP sites by cleanUpdTSeq

Description

adjust distal CP sites by cleanUpdTSeq

Usage

distalAdj(distalCPs, classifier, classifier_cutoff, shift_range, genome, step=1)

Arguments

- `distalCPs`: the output of `searchDistalCPs`
- `classifier`: cleanUpdTSeq classifier
- `classifier_cutoff`: cutoff value of the classifier
- `shift_range`: the searching range for the better CP sites
- `genome`: a `BSgenome` object
- `step`: adjust step, default 1, means adjust by each base by cleanUpdTSeq.

Value

a list could be input of `searchProximalCPs`
filterRes

Author(s)
Jianhong Ou

See Also
searchDistalCPs, PAscore2

filterRes

filter results of testUsage

Usage

filterRes(res, gp1, gp2, background_coverage_threshold=2, P.Value_cutoff=0.05, adj.P.Val_cutoff=0.05, dPDUI_cutoff=0.3, PDUI_logFC_cutoff)

Arguments

res
output of testUsage
gp1
tag names involved in group 1
gp2
tag names involved in group 2

background_coverage_threshold
background coverage cut off value. for each group, more than half of the long form should greater than background_coverage_threshold. for both group, at least in one group, more than half of the short form should greater than background_coverage_threshold.
P.Value_cutoff
cutoff of P value
adj.P.Val_cutoff
cutoff of adjust P value
dPDUI_cutoff
cutoff of dPDUI
PDUI_logFC_cutoff
cutoff of PDUI log2 transformed fold change

Value

a data.frame

Author(s)
Jianhong Ou
fisher.exact.test

See Also
testUsage

Examples

```r
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "CPs.MAQC.rda"))
load(file.path(path, "coverage.MAQC.rda"))
library(BSgenome.Hsapiens.UCSC.hg19)
data(utr3.hg19)
res <- testUsage(CPsites=CPs,
     coverage=coverage,
     genome=BSgenome.Hsapiens.UCSC.hg19,
     utr3=utr3.hg19,
     method="fisher.exact",
     gp1=c("Brain.auto", "Brain.phiX"),
     gp2=c("UHR.auto", "UHR.phiX"))
filterRes(res,
     gp1=c("Brain.auto", "Brain.phiX"),
     gp2=c("UHR.auto", "UHR.phiX"),
     background_coverage_threshold=2,
     P.Value_cutoff=0.05,
     adj.P.Val_cutoff=0.05,
     dPDUI_cutoff=0.3,
     PDUI_logFC_cutoff=.59)
```

fisher.exact.test do fisher exact test for two group datasets

Description

do fisher exact test for two group datasets

Usage

```
fisher.exact.test(UTR3eset, gp1, gp2)
```

Arguments

- **UTR3eset**: output of `getUTR3eSet`
- **gp1**: tag names of group 1
- **gp2**: tag names of group 2

Value

a matrix of test results

Author(s)

Jianhong Ou
get.regions.coverage

See Also

singleSampleAnalyze, singleGroupAnalyze, limmaAnalyze

Examples

```r
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "eset.MAQC.rda"))
tags <- colnames(eset$PDUI.log2)
res <- fisher.exact.test(eset, gp1=tags[1:2], gp2=tags[3:4])
```

Description

calculate coverage for giving region

Usage

```r
get.regions.coverage(chr, utr3.regions.chr,
                      hugeData, coverage, phmm=FALSE)
```

Arguments

- `chr` chromosome
- `utr3.regions.chr` the GRanges of region to be extracted
- `hugeData` is it a huge dataset?
- `coverage` output of coverageFromBedGraph
- `phmm` prepare data for singleSample analysis?

Value

GRanges with coverage data

Author(s)

Jianhong Ou
getCov

Description
extract coverage from bedgraph file

Usage
getCov(bedgraph, genome, seqLen)

Arguments
- bedgraph: bedGraph file names
- genome: an object BSgenome
- seqLen: lengths of each chromosome

Value
a Rle object for a sample coverage

Author(s)
Jianhong Ou

See Also
coverageFromBedGraph

getUTR3eSet

Description
Generate a UTR3eSet object with PDUI information for statistic test

Usage
getUTR3eSet(CPsites, coverage, genome, utr3,
 normalize=c("none", "quantiles", "quantiles.robust",
 "mean", "median"),
 ...)
 BPPARAM=NULL, singleSample=FALSE)
getUTR3region

Arguments

CPsites outputs of CPsites
coverage coverage for each sample, outputs of coverageFromBedGraph
genome an object of BSgenome
utr3 output of utr3Annotation
normalize normalization method
... parameter can be passed into normalize.quantiles.robust
BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.
singleSample prepare data for singleSample analysis? default is FALSE

Value

An object of UTR3eSet which contains following elements:

usage: an GRanges object with CP sites info.
PDUI: a matrix of PDUI
PDUI.log2: log2 transformed PDUI matrix
short: a matrix of usage of short form
long: a matrix of usage of long form

if singleSample is TRUE, one more element, signals, will be included.

Author(s)

Jianhong Ou

Examples

path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "CPs.MAQC.rda"))
load(file.path(path, "coverage.MAQC.rda"))
library(BSgenome.Hsapiens.UCSC.hg19)
data(utr3.hg19)
getUTR3eSet(CPsites=CPs,
coverage=coverage,
genome=BSgenome.Hsapiens.UCSC.hg19,
utr3=utr3.hg19)

getUTR3region extract long and short 3UTR region

Description

extract long and short 3UTR region

Usage

getUTR3region(.grs)
Arguments

.grs output of CPsites

Value

GRanges with short form and long form

Author(s)

Jianhong Ou

Description

do estimation of alternative polyadenylation and cleavage site in one step

Usage

inPAS(bedgraphs, genome, utr3, txdb=NA,
tags, hugeData=FALSE, ...,
gp1, gp2,
window_size=100,
search_point_START=50, search_point_END=NA,
cutStart=window_size, cutEnd=0,
coverage_threshold=5, long_coverage_threshold=2,
background=c(“same_as_long_coverage_threshold”,
1K, "5K", "10K", "50K"),
adjust_distal_polyA_end=TRUE,
PolyA_PWM=NA, classifier=NA, classifier_cutoff=.8,
shift_range=window_size,
method=c("limma", "fisher.exact",
"singleSample", "singleGroup"),
normalize=c("none", "quantiles", "quantiles.robust",
"mean", "median"),
design, contrast.matrix, coef=1,
P.Value_cutoff=0.05,
adj.P.Val_cutoff=0.05,
dPDUI_cutoff=0.3,
PDUUI_logFC_cutoff=0.59,
BPPARAM=NULL)
Arguments

- **bedgraphs**: The file names of bedgraphs generated by bedtools. eg: bedtools genomecov -bg -split -ibam $bam -g mm10.size.txt > $bedgraph
- **genome**: an object of BSgenome
- **utr3**: output of utr3Annotation
- **txdb**: an object of TxDb
- **tags**: the names for each input bedgraphs
- **hugeData**: is this dataset consume too much memory? if it is TRUE, the coverage will be saved into tempfiles.
- **...**: parameters can be passed into tempfile. This is useful when you submit huge dataset to cluster.
- **gp1**: tag names involved in group 1
- **gp2**: tag names involved in group 2
- **window_size**: window size for noval distal position searching and adjusted polyA searching, default: 100
- **search_point_START**: start point for searching
- **search_point_END**: end point for searching
- **cutStart**: how many nucleotides should be removed from the start before search, 0.1 means 10 percent.
- **cutEnd**: how many nucleotides should be removed from the end before search, 0.1 means 10 percent.
- **coverage_threshold**: cutoff threshold for coverage in the region of short form
- **long_coverage_threshold**: cutoff threshold for coverage in the region of long form
- **background**: the range for calculating cutoff threshold of local background
- **adjust_distal_polyA_end**: If true, adjust distal polyA end by cleanUpdTSeq
- **PolyA_PWM**: Position Weight Matrix of polyA
- **classifier**: An object of class "PASclassifier"
- **classifier_cutoff**: This is the cutoff used to assign whether a putative pA is true or false. This can be any floating point number between 0 and 1. For example, classifier_cutoff = 0.5 will assign an putative pA site with prob.1 > 0.5 to the True class (1), and any putative pA site with prob.1 <= 0.5 as False (0).
- **shift_range**: the shift range for polyA site searching
- **method**: test method. see singleSampleAnalyze, singleGroupAnalyze, fisher.exact.test, limmaAnalyze
- **normalize**: normalization method
- **design**: the design matrix of the experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates. see model.matrix
contrast.matrix
numeric matrix with rows corresponding to coefficients in fit and columns containing contrasts. May be a vector if there is only one contrast. see makeContrasts
c

coef
column number or column name specifying which coefficient or contrast of the linear model is of interest. see more topTable. default value: 1

P.Value_cutoff
cutoff of P value
adj.P.Val_cutoff
cutoff value for adjusted p.value
dPDUI_cutoff
cutoff value for differential PAS(polyadenylation signal) usage index
PDUI_logFC_cutoff
cutoff value for log2 fold change of PAS(polyadenylation signal) usage index

BPPARAM
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.

Value
return an object of GRanges

Author(s)
Jianhong Ou

Examples

if(interactive()){
 library(BSgenome.Mmuseculus.UCSC.mm10)
 library(TxDb.Mmuseculus.UCSC.mm10.knownGene)

 path <- file.path(find.package("InPAS"), "extdata")
 bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
 data(utr3.mm10)
 res <- inPAS(bedgraphs=bedgraphs, tags=c("Baf3"),
 genome=BSgenome.Mmuseculus.UCSC.mm10,
 utr3=utr3.mm10, gp1="Baf3", gp2=NULL,
 txdb=TxDB.MMuseculus.UCSC.mm10.knownGene,
 search_point_START=200,
 short_coverage_threshold=15,
 long_coverage_threshold=3,
 cutStart=0, cutEnd=.2,
 hugeData=FALSE)

 res
}

lastCDSusage
extract coverage of last CDS exon region

Description
extract coverage of last CDS exon region
Usage

```r
lastCDSusage(CDS, coverage, hugeData, BPPARAM=NULL, phmm=FALSE)
```

Arguments

- **CDS**: GRanges object of CDS
- **coverage**: output of coverageFromBedGraph
- **hugeData**: is it a huge dataset?
- **BPPARAM**: An optional `BiocParallelParam` instance determining the parallel back-end to be used during evaluation, or a list of `BiocParallelParam` instances, to be applied in sequence for nested calls to `bplapply`.
- **phmm**: prepare data for singleSample analysis?

Value

the average coverage of last CDS for each transcript

Author(s)

Jianhong Ou

limmaAnalyze

use limma to analyze the PDUI

Description

use limma to analyze the PDUI

Usage

```r
limmaAnalyze(UTR3eset, design, contrast.matrix, coef=1, robust=FALSE, ...)
```

Arguments

- **UTR3eset**: an `UTR3eset` object
- **design**: the design matrix of the experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates. see `model.matrix`
- **contrast.matrix**: numeric matrix with rows corresponding to coefficients in fit and columns containing contrasts. May be a vector if there is only one contrast. see `makeContrasts`
- **coef**: column number or column name specifying which coefficient or contrast of the linear model is of interest. see more `topTable`. default value: 1
- **robust**: logical, should the estimation of the empirical Bayes prior parameters be robustified against outlier sample variances?
- **...**: other arguments are passed to `lmFit`.
Value

fit results of eBayes by limma. It is an object of class MArrayLM containing everything found in fit. see eBayes

Author(s)

Jianhong Ou

See Also

singleSampleAnalyze, singleGroupAnalyze, fisher.exact.test

Examples

library(limma)
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "eset.MAQC.rda"))
tags <- colnames(eset$PDUI.log2)
g <- factor(gsub("\..*$", "", tags))
design <- model.matrix(~-1+g)
colnames(design) <- c("Brain", "UHR")
contrast.matrix <- c("Brain", "UHR")
res <- limmaAnalyze(eset, design, contrast.matrix)
head(res)

optimalSegmentation calculate SSE

Description

calculate SSE values

Usage

optimalSegmentation(.ele, search_point_START, search_point_END, n = 1, savedID = NA)

Arguments

.ele	3UTR coverage
search_point_START	start position to calculate
search_point_END	end position to calculate
n	the length of output
savedID	the proximal CPsites for noval distal events

Value

a list of SSE and idx

Author(s)

Jianhong Ou
PAscore

calculate the CP score

Description

calculate the CP score by PWM

Usage

\[\text{PAscore(seqname, pos, str, idx, PWM, genome, ups = 50, dws = 50)} \]

Arguments

- `seqname`: sequence names
- `pos`: genomic positions
- `str`: strands
- `idx`: offset position
- `PWM`: polyA position weight matrix
- `genome`: an object of BSgenome
- `ups`: upstream base
- `dws`: downstream base

Value

idx list after filter

Author(s)

Jianhong Ou

See Also

PAscore2

PAscore2

calculate the CP score

Description

calculate CP score by cleanUpdTSeq

Usage

\[\text{PAscore2(seqname, pos, str, idx, idx.gp, genome, classifier, classifier_cutoff)} \]
polishCPs

Arguments

seqname sequence names
pos genomic positions
str strands
idx offset position
idx.gp group number of the offset position
genome an object of BSgenome
classifier a cleanUpdTSeq classifier
classifier_cutoff classifier cutoff value

Value

a data.frame

Author(s)

Jianhong Ou

See Also

PAscore

Description

remove the multiple positions of CP sites for same 3UTRs and only keep the best CP sites for
proximal and distal.

Usage

polishCPs(CPs)

Arguments

CPs output of searchProximalCPs or proximalAdj

Value

a matrix with columns: "fit_value", "Predicted_Proximal_APA", "Predicted_Distal_APA", "utr3start",
"utr3end", "type"

Author(s)

Jianhong Ou

See Also

CPsite_estimation, searchProximalCPs, proximalAdj, proximalAdjByPWM, proximalAdjByCleanUpdTSeq,
PAscore, PAscore2
prepare4GSEA

prepare the files for GSEA analysis

Description
output the log2 transformed delta PDUI txt file and chip file for GSEA analysis

Usage

prepare4GSEA(eset, groupList, Preranked=TRUE,
folder=".",
rnkFilename="InPAS.rnk",
chipFilename="InPAS.chip",
dataFilename="dPDUI.txt",
PhenFilename="group.cls")

Arguments

eset a UTR3eSet object

groupList group list of tag names

Preranked logical value, out preranked or not

folder output folder

rnkFilename filename of preranked file

chipFilename filename of chip

dataFilename filename of dataset

PhenFilename filename of Phenotype labels

Value
None

Author(s)
Jianhong Ou

Examples

file <- system.file("extdata", "eset.MAQC.rda", package="InPAS")
load(file)
gp1=c("Brain.auto", "Brain.phiX")
gp2=c("UHR.auto", "UHR.phiX")

groupList <- list(Brain=gp1, UHR=gp2)
prepare4GSEA(eset, groupList=groupList, Preranked=FALSE)
proximalAdj

Description

adjust the proximal CP sites by PolyA PWM and cleanUpdTSeq

Usage

```r
proximalAdj(CPs, MINSIZE, PolyA_PWM, genome, classifier, classifier_cutoff, shift_range, search_point_START, step=1)
```

Arguments

- **CPs**: the outputs of `searchProximalCPs`
- **MINSIZE**: min size for short from
- **PolyA_PWM**: PolyA position weight metrix
- **genome**: a `BSgenome` object
- **classifier**: cleanUpdTSeq classifier
- **classifier_cutoff**: cutoff value of the classifier
- **shift_range**: the searching range for the better CP sites
- **search_point_START**: just in case there is no better CP sites
- **step**: adjust step, default 1, means adjust by each base by cleanUpdTSeq.

Value

keep same as `searchProximalCPs`, which can be handled by `polishCPs`.

Author(s)

Jianhong Ou

See Also

`searchProximalCPs`, `polishCPs`, `proximalAdjByPWM`, `proximalAdjByCleanUpdTSeq`, `PAscore`, `PAscore2`
proximalAdjByCleanUpdTSeq

adjust the proximal CP sites by cleanUpdTseq

Description

adjust the proximal CP sites by cleanUpdTseq

Usage

proximalAdjByCleanUpdTSeq(idx.list, cov_diff.list, seqnames, starts, strands, genome, classifier, classifier_cutoff, shift_range, search_point_START, step=1)

Arguments

- **idx.list**: the offset of positions of CP sites
- **cov_diff.list**: the SSE values
- **seqnames**: sequence names
- **starts**: starts
- **strands**: strands
- **genome**: a BSgenome object
- **classifier**: cleanUpdTSeq classifier
- **classifier_cutoff**: cutoff value of the classifier
- **shift_range**: the searching range for the better CP sites
- **search_point_START**: just in case there is no better CP sites
- **step**: adjust step, default 1, means adjust by each base by cleanUpdTSeq.

Details

the step for calculating is 10, can not do every base base it is really very slow.

Value

the offset of positions of CP sites after filter

Author(s)

Jianhong Ou

See Also

proximalAdjByPWM, proximalAdj.PAscore2
proximalAdjByPWM

Description

adjust the proximal CP sites by polyA Position Weight Metrix. It only need the PWM get match in upstream or downstream shift_range nr.

Usage

```r
proximalAdjByPWM(idx, PolyA_PWM, seqnames, starts, strands, genome, 
shift_range, search_point_START)
```

Arguments

- `idx` the offset of positions of CP sites
- `PolyA_PWM` polyA PWM
- `seqnames` sequence names
- `starts` start position in the genome
- `strands` strands
- `genome` an BSgenome object
- `shift_range` the shift range of PWM hits
- `search_point_START` Not use

Details

the hits is searched by `matchPWM` and the cutoff is 70%

Value

the offset of positions of CP sites after filter

Author(s)

Jianhong Ou

See Also

`proximalAdjByCleanUpdTSeq`, `proximalAdj.PAscore`
removeUTR3__UTR3 remove the candidates LIKE UTR3__UTR3

Description

some of the results is from connected two UTR3. We want to remove them. However, the algorithm need to be improved.

Usage

removeUTR3__UTR3(x)

Arguments

x the distal 3UTR coverage

Value

the 3UTR coverage after removing the next 3UTR

Author(s)

Jianhong Ou

searchDistalCPs search distal CP sites

Description

search distal CP sites

Usage

searchDistalCPs(chr.cov.merge, conn_next_utr3, curr_UTR, window_size, depth.weight, long_coverage_threshold, background, z2s)

Arguments

chr.cov.merge coverage of current chromosome
conn_next_utr3 joint to next 3UTR or not (used for removeUTR3__UTR3)
curr_UTR GRanges of current 3UTR
window_size window size
depth.weight output of depthWeight
long_coverage_threshold cutoff value for coverage of long form 3UTR
background local background range
z2s cut off background scores. see zScoreThreshold
searchProximalCPs

Value

a list

Author(s)

Jianhong Ou

See Also

distalAdj, PAscore2

searchProximalCPs

search proximal CPsites

Description

search proximal CPsites

Usage

```r
searchProximalCPs(CPs, curr_UTR, window_size, MINSIZE, cutEnd, search_point_START, search_point_END, two_way=FALSE)
```

Arguments

- `CPs` output of `searchDistalCPs` or `distalAdj`
- `curr_UTR` GRanges of current 3UTR
- `window_size` window size
- `MINSIZE` MINSIZE for short form
- `cutEnd` how many nucleotides should be removed from the end before search, 0.1 means 10 percent.
- `search_point_START` start point for searching
- `search_point_END` end point for searching
- `two_way` Search the proximal site from both direction or not.

Value

a list

Author(s)

Jianhong Ou

See Also

proximalAdj, polishCPs, proximalAdjByPWM, proximalAdjByCleanUpdTSeq, PAscore, PAscore2
seqLen

Description
get sequence lengths from a BSgenome object

Usage
```r
seqLen(genome)
```

Arguments
- **genome**: an object of `BSgenome`

Value
a numeric vector

Author(s)
Jianhong Ou

See Also
- `seqlengths`

singleGroupAnalyze
do analysis for single group samples

Description
do analysis for single group samples by anova test

Usage
```r
singleGroupAnalyze(UTR3eset)
```

Arguments
- **UTR3eset**: must be the output of `getUTR3eset`

Value
a metrix of test results

Author(s)
Jianhong Ou
singleSampleAnalyze

See Also

`UTR3eSet`, `getUTR3eSet`

Examples

```r
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "eset.MAQC.rda"))
res <- singleGroupAnalyze(eset)
```

singleSampleAnalyze
do analysis for single sample

Description

do analysis for single sample by a hidden Markov model

Usage

```r
singleSampleAnalyze(UTR3eset)
```

Arguments

`UTR3eset` must be the output of `getUTR3eSet`

Details

The test will be performed by a two states hidden Markov model.

Value

A matrix of test results

Author(s)

Jianhong Ou

See Also

`UTR3eSet`, `getUTR3eSet`, `depmix`

Examples

```r
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "eset.MAQC.rda"))
res <- singleSampleAnalyze(eset)
```
sortGR

sort GRanges

Description

sort a GRanges by chromosome and start position

Usage

```
sortGR(.ele)
```

Arguments

- `.ele`: an object of GRanges

Value

an sorted object of GRanges

Author(s)

Jianhong Ou

testUsage

do test for dPDUI

Description

do test for dPDUI

Usage

```
testUsage(CPsites, coverage, genome, utr3, BPPARAM=NULL,
method=c("limma", "fisher.exact",
   "singleSample", "singleGroup"),
normalize=c("none", "quantiles", "quantiles.robust",
   "mean", "median"),
design, contrast.matrix, coef=1, robust=FALSE, ..., 
gp1, gp2)
```

Arguments

- `CPsites`: outputs of `CPsites`
- `coverage`: coverage for each sample, outputs of `coverageFromBedGraph`
- `genome`: an object of `BSgenome`
- `utr3`: output of `utr3Annotation`
- `BPPARAM`: An optional `BiocParallelParam` instance determining the parallel back-end to be used during evaluation, or a list of `BiocParallelParam` instances, to be applied in sequence for nested calls to `bplapply`.
method test method. see singleSampleAnalyze, singleGroupAnalyze, fisher.exact.test, limmaAnalyze
normalize normalization method
design the design matrix of the experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates. see model.matrix
contrast.matrix numeric matrix with rows corresponding to coefficients in fit and columns containing contrasts. May be a vector if there is only one contrast. see makeContrasts
coeff column number or column name specifying which coefficient or contrast of the linear model is of interest. see more topTable. default value: 1
robust logical, should the estimation of the empirical Bayes prior parameters be robustified against outlier sample variances?
... other arguments are passed to lmFit.
gp1 tag names involved in group 1
gp2 tag names involved in group 2

Details

if method is "limma", design matrix and contrast is required. if method is "fisher.exact", gp1 and gp2 is required.

Value

a list with test results. the output of test results is a matrix.

Author(s)

Jianhong Ou

See Also

singleSampleAnalyze, singleGroupAnalyze, fisher.exact.test, limmaAnalyze

Examples

library(limma)
path <- file.path(find.package("InPAS"), "extdata")
load(file.path(path, "CPs.MAQC.rda"))
load(file.path(path, "coverage.MAQC.rda"))
library(BSgenome.Hsapiens.UCSC.hg19)
data(utr3.hg19)
tags <- names(coverage)
g <- factor(gsub("\..*$", "", tags))
design <- model.matrix(~-1+g)
colnames(design) <- c("Brain", "UHR")
contrast.matrix<-makeContrasts(contrasts="Brain-UHR", levels=design)
res <- testUsage(CPsites=CPs,
coverage=coverage,
genome=BSgenome.Hsapiens.UCSC.hg19,
utr3=utr3.hg19,
method="limma",
design=design,
contrast.matrix=contrast.matrix)
totalCoverage

totalCoverag

Description
for huge dataset, it will read in the coverage from tmp files and merge them by groups

Usage
```r
totalCoverage(coverage, genome, hugeData, groupList=NULL)
```

Arguments
- coverage: coverage for each sample, outputs of `coverageFromBedGraph`
- genome: an object of `BSgenome`
- hugeData: hugeData or not
- groupList: tag names involved in each groups

Value
a coverage list

Author(s)
Jianhong Ou

trimSeqnames

trim the sequence names

Description
only `chr[0-9XY]+$` is OK.

Usage
```r
trimSeqnames(genome)
```

Arguments
- genome: an BSgenome object

Value
an character vector with trimmed seqnames

Author(s)
Jianhong Ou
usage4plot

prepare coverage data and fitting data for plot

Description

prepare coverage data and fitting data for plot

Usage

usage4plot(gr, coverage, proximalSites, genome, groupList)

Arguments

- **gr**: an object of GRanges
- **coverage**: coverage for each sample
- **proximalSites**: proximal sites
- **genome**: an object of BSgenome
- **groupList**: the list of sample names

Value

Formal class ‘GRanges’ [package "GenomicRanges"] with metadata:

- **dat**: matrix, first column is the fit data, the other columns are coverage data for each sample
- **offset**: offset from the start of 3UTR

Author(s)

Jianhong Ou

Examples

```r
library(BSgenome.Mmusculus.UCSC.mm10)
pth <- file.path(find.package("InPAS"), "extdata")
bddgraphs <- c(file.path(pth, "Baf3.extract.bedgraph"),
                 file.path(pth, "UM15.extract.bedgraph"))
cvrge <- coverageFromBedGraph(bddgraphs, tags=c("Baf3", "UM15"),
                              genome=Mmusculus, hugeData=FALSE)
gr <- GRanges("chr6", IRanges(128846245, 128850081), strand="-")
dt <- usage4plot(gr, cvrage, proximalSites=128849148, Mmusculus)
dt <- dat$dat[[1]]
op <- par(mfrow=c(3, 1))
plot(data[,1], type="l", xlab="", ylab="The fitted value")
abline(v=dat$offset)
plot(data[,2], type="l", xlab="", ylab="Baf3")
plot(data[,3], type="l", xlab="", ylab="UM15")
par(op)
```
3'UTR annotation for hg19 obtained from utr3Annotation

Description

3'UTR annotation obtained from utr3Annotation by TxDb.Hsapiens.UCSC.hg19.knownGene and org.Hs.eg.db

Usage

data(utr3.hg19)

Format

GRanges with slot start holding the start position of the 3'UTR, slot end holding the end position of the 3'UTR, slot names holding transcripts and gene names of 3'UTR, slot seqnames holding the chromosome location where the 3'UTR is located and slot strand for strand of 3'UTR. In addition, the following variables are included.

- feature should be unknown or proximalCP_XXXXXXXX
- id should be utr3 or next.exon.gap
- exon exon id
- transcript transcript id
- gene entriz gene id
- symbol gene symbol

Details

used in the examples Annotation data obtained by: library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
utr3Annotation(TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.egSYMBOL)

Value

an object of GRanges.

Examples

data(utr3.hg19)
head(utr3.hg19)
utr3.mm10

3'UTR annotation for mm10 obtained from utr3Annotation

Description

3'UTR annotation obtained from utr3Annotation by TxDb.Mmusculus.UCSC.mm10.knownGene and org.Mm.eg.db

Usage

```r
data(utr3.mm10)
```

Format

GRanges with slot start holding the start position of the 3'UTR, slot end holding the end position of the 3'UTR, slot names holding transcripts and gene names of 3'UTR, slot seqnames holding the chromosome location where the 3'UTR is located and slot strand for strand of 3'UTR. In addition, the following variables are included.

- **feature** should be unknown or proximalCP_XXXXXXXX
- **id** should be utr3 or next.exon.gap
- **exon** exon id
- **transcript** transcript id
- **gene** entriz gene id
- **symbol** gene symbol

Details

used in the examples Annotation data obtained by:

```r
library(TxDB.Mmusculus.UCSC.mm10.knownGene)
library(org.Mm.eg.db)
utr3Annotation(TxDB.Mmusculus.UCSC.mm10.knownGene, org.Mm.egSYMBOL)
```

Value

an object of GRanges.

Examples

```r
data(utr3.mm10)
head(utr3.mm10)
```
utr3Annotation

extract 3’UTR from TxDb object

Description

extract 3’UTR from a TxDb object. The 3’UTR is defined as the last 3’UTR fragment for each transcript and it will be cut if there is any overlaps with other exons.

Usage

utr3Annotation(txdb, orgDbSYMBOL, MAX_EXONS_GAP = 10000)

Arguments

txdb an object of TxDb
orgDbSYMBOL a string indicates org SYMBOL to entriz id map
MAX_EXONS_GAP maximul exon gap for distal CP site

Value

return an object of GRanges with 7 metadata columns: feature (utr3, next.exon.gap, CDS), annotatedProximalCP (unknown, proximalCP_<coordinate>), exon (<transcript id>_<index>), transcript, gene (entrez_id), symbol, truncated (logical).

Author(s)

Jianhong Ou

Examples

if(interactive()){
 library(TxDb.Musculus.UCSC.mm10.knownGene)
 library(org.Mm.eg.db)
 utr3Annotation(TxDb.Musculus.UCSC.mm10.knownGene, "org.Mm.egSYMBOL")
}

UTR3eSet-class

Class UTR3eSet

Description

An object of class UTR3eSet represents the results of 3UTR usage

Objects from the Class

Objects can be created by calls of the form new("UTR3eSet", usage, PDUI, PDUI.log2, short, long, signals, testRes)
Slots

- `usage`: an `GRanges` object with CP sites info.
- `PDU1`: a matrix of PDU1
- `PDU1.log2`: log2 transformed PDU1 matrix
- `short`: a matrix of usage of short form
- `long`: a matrix of usage of long form
- `signals`: signals used for single sample
- `testRes`: a matrix of test results of `testUsage`

Methods

- `$, $<-$: Get or set the slot of `UTR3eSet`
- `as("UTR3eSet", "ExpressionSet")`: Convert a UTR3eSet to an `ExpressionSet`
- `as("UTR3eSet", "GRanges")`: Convert a UTR3eSet to an `GRanges`

Author(s)

- Jianhong Ou

Description

extract 3UTR coverage from totalCov according and GRanges object utr3.

Usage

```r
UTR3TotalCoverage(utr3, totalCov, gcCompensation = NA,
                    mappabilityCompensation = NA,
                    FFT = FALSE, fft.sm.power = 20)
```

Arguments

- `utr3`: an GRanges object. must be the output of `utr3Annotation`
- `totalCov`: total coverage of each sample. must be the output of `totalCoverage`
- `FFT`: Use FFT smooth or not.
- `fft.sm.power`: the cut-off frequency of FFT smooth.

Value

- a list. level 1: chromosome; level 2: each transcripts; level3: data matrix

Author(s)

- Jianhong Ou
UTR3usage
calculate the usage of long and short form of UTR3

Description
calculate the usage of long and short form of UTR3 for the results of CPsites

Usage
```r  
UTR3usage(CPsites, coverage, hugeData, BPPARAM = NULL, phmm = FALSE)  
```  
Arguments
- **CPsites**: outputs of CPsites
- **coverage**: coverage for each sample, outputs of coverageFromBedGraph
- **hugeData**: is this dataset consume too much memory? if it is TRUE, the coverage will be saved into tempfiles.
- **BPPARAM**: An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.
- **phmm**: prepare data for singleSample analysis? default is FALSE

Value
GRanges object

Author(s)
Jianhong Ou

See Also
CPsites

utr3UsageEstimation
estimation of 3'UTR usage for each region

Description
estimation of 3'UTR usage for short form and long form

Usage
```r  
utr3UsageEstimation(CPsites, coverage, genome, utr3, gp1, gp2=NULL,  
short_coverage_threshold = 10,  
long_coverage_threshold = 2,  
adjusted.P_val.cutoff = 0.05,  
dPDUICutoff = 0.3,  
PDUI_logFC_cutoff=0.59, BPPARAM=NULL)  
```
utr3UsageEstimation

Arguments

CPsites: outputs of CPsites
coverage: coverage for each sample, outputs of coverageFromBedGraph
genome: an object of BSgenome
utr3: output of utr3Annotation
gp1: tag names involved in group 1
gp2: tag names involved in group 2
short_coverage_threshold: cutoff threshold for coverage in the region of short form
long_coverage_threshold: cutoff threshold for coverage in the region of long form
adjusted_P_val_cutoff: cutoff value for adjusted p.value
dPDUI_cutoff: cutoff value for differential PAS(polyadenylation signal) usage index
PDUI_logFC_cutoff: cutoff value for log2 fold change of PAS(polyadenylation signal) usage index
BPPARAM: An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.

Value

return an object of GRanges

Author(s)

Jianhong Ou

Examples

if(interactive()){
 library(BSgenome.Mmusculus.UCSC.mm10)
 path <- file.path(find.package("InPAS"), "extdata")
 bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
 data(utr3.mm10)
 tags <- "Baf3"
 genome <- BSgenome.Musculus.UCSC.mm10
 coverage <-
 coverageFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE)
 CP <- CPsites(coverage=coverage, gp1=tags, gp2=NULL, genome=genome,
 utr3=utr3.mm10, coverage_threshold=5, long_coverage_threshold=5)
 res <- utr3UsageEstimation(CP, coverage,
 utr3.mm10, genome, gp1=tags, gp2=NULL)
}
valley

get the local minimal square standard error (SSE)

Description
For a giving numeric vectors, calculate the top N local minimal square standard error. It will also include the saved ID if it is in the range of (ss, se)

Usage
valley(x, ss, se, n = 1, savedID = NA, filterByPval = TRUE)

Arguments
- **x**: numeric vector
- **ss**: start searching position
- **se**: end searching position
- **n**: the length of output. If n=-1, output all the local minimal SSE positions.
- **savedID**: saved positions
- **filterByPval**: logical. Filter the positions by p value or not.

Value
a numeric vector, position list.

Author(s)
Jianhong Ou

zScoreThrethold

calculate local background cutoff value

Description
calculate local background cutoff value based on z-score

Usage
zScoreThrethold(background, introns, totalCov, utr3, z = 2)

Arguments
- **background**: background range
- **introns**: GRanges of introns
- **totalCov**: total coverage of output of totalCoverage
- **utr3**: output of utr3Annotation
- **z**: z score cut off value
Value
a numeric vector

Author(s)
Jianhong Ou
Index

*Topic **classes**
 UTR3eSet-class, 37

*Topic **datasets**
 utr3.hg19, 35
 utr3.mm10, 36

*Topic **misc**
 coverageFromBedGraph, 3
 coverageRate, 4
 covThreshold, 5
 CPsite_estimation, 6
 CPsites, 6
 depthWeight, 9
 distalAdj, 10
 filterRes, 11
 fisher.exact.test, 12
 get.regions.coverage, 13
 getCov, 14
 getUTR3eSet, 14
 getUTR3region, 15
 inPAS, 16
 lastCDSusage, 18
 limmaAnalyze, 19
 optimalSegmentation, 20
 PScore, 21
 PScore2, 21
 polishCPs, 22
 prepare4GSEA, 23
 proximalAdj, 24
 proximalAdjByCleanUpdTSeq, 25
 proximalAdjByPWM, 26
 removeUTR3__UTR3, 27
 searchDistalCPs, 27
 searchProximalCPs, 28
 seqLen, 29
 singleGroupAnalyze, 29
 singleSampleAnalyze, 30
 sortGR, 31
 testUsage, 31
 totalCoverage, 33
 trimSeqnames, 33
 usage4plot, 34
 utr3Annotation, 37
 UTR3TotalCoverage, 38
 UTR3usage, 39
 utr3UsageEstimation, 39
 valley, 41
 zScoreThreshold, 41

*Topic **package**
 InPAS-package, 2
 $,UTR3eSet-method (UTR3eSet-class), 37
 $<-,UTR3eSet-method (UTR3eSet-class), 37
 BiocParallelParam, 3, 7, 15, 18, 19, 31, 39, 40
 BSgenome, 6, 7, 9, 10, 14, 15, 17, 21, 22, 24–26, 29, 31, 33, 34, 40
 cleanUpdTSeq, 7, 17
 coverageFromBedGraph, 3, 4, 6, 7, 10, 14, 15, 31, 33, 39, 40
 coverageRate, 4
 covThreshold, 5
 CPsite_estimation, 6, 8, 22
 CPsites, 6, 9, 15, 31, 39, 40
 depmix, 30
 depthWeight, 9, 10, 27
 distalAdj, 10, 28
 eBayes, 20
 ExpressionSet, 38
 filterRes, 11
 fisher.exact.test, 12, 17, 20, 32
 makeContrasts, 18, 19, 32
 limmaAnalyze, 13
 makeContrasts, 18, 19, 32
 testUsage, 31
 totalCoverage, 33
 trimSeqnames, 33
 usage4plot, 34
 utr3Annotation, 37
 UTR3TotalCoverage, 38
matchPWM, 26
model.matrix, 17, 19, 32
normalize.quantiles.robust, 15
optimalSegmentation, 20
PASclassifier, 7, 17
PAscore, 9, 21, 22, 24, 26, 28
PAscore2, 9, 11, 21, 22, 24, 25, 28
polishCPs, 22, 24, 28
prepare4GSEA, 23
proximalAdj, 9, 22, 24, 25, 26, 28
proximalAdjByCleanUpdTSq, 9, 22, 24, 25, 26, 28
proximalAdjByPWM, 9, 22, 24, 25, 26, 28
removeUTR3__UTR3, 27, 27
searchDistalCPs, 10, 11, 27, 28
searchProximalCPs, 9, 10, 22, 24, 28
seqLen, 29
seqlengths, 29
singleGroupAnalyze, 13, 17, 20, 29, 32
singleSampleAnalyze, 13, 17, 20, 30, 32
sortGR, 31
testUsage, 11, 12, 31, 38
topTable, 18, 19, 32
totalCoverage, 33, 38, 41
trimSeqnames, 33
TxDb, 4, 6, 7, 17, 37
usage4plot, 34
utr3.hg19, 35
utr3.mm10, 36
utr3Annotation, 6, 7, 15, 31, 37, 38, 40, 41
UTR3eSet, 15, 19, 23, 30, 38
UTR3eSet (UTR3eSet-class), 37
UTR3eSet-class, 37
UTR3TotalCoverage, 38
UTR3usage, 39
utr3UsageEstimation, 39
valley, 41
zScoreThreshold, 9, 27, 41