Package ‘MetaboSignal’

February 1, 2017

Type Package
Title MetaboSignal: a network-based approach to overlay and explore metabolic and signaling KEGG pathways
Version 1.5.5
Date 2016-06-27
Author Andrea Rodriguez-Martinez
<andrea.rodriguez-martinez13@imperial.ac.uk>, Rafael Ayala
<r.ayala14@imperial.ac.uk>, Joram M. Posma
<j.posma11@imperial.ac.uk>, Ana L. Neves
<ana.luisa.neves14@imperial.ac.uk>, Marc-Emmanuel Dumas
<m.dumas@imperial.ac.uk>
Maintainer Andrea Rodriguez-Martinez
<andrea.rodriguez-martinez13@imperial.ac.uk>, Rafael Ayala
<r.ayala14@imperial.ac.uk>
Description MetaboSignal is an R package that allows merging, analyzing and customizing metabolic and signaling KEGG pathways. It is a network-based approach designed to explore the topological relationship between genes (signaling- or enzymatic-genes) and metabolites, representing a powerful tool to investigate the genetic landscape and regulatory networks of metabolic phenotypes.
License GPL-3
Depends R(>= 3.3)
Suggests RUnit, BiocGenerics, knitr, BiocStyle, rmarkdown
VignetteBuilder knitr
Imports KEGGgraph, mygene, hpar, org.Hs.eg.db, igraph, RCurl, biomaRt,
KEGGREST, AnnotationDbi,MWASTools, stats, graphics, utils
biocViews GraphAndNetwork, GeneSignaling, GeneTarget, Network,
Pathways, KEGG, Reactome, Software
NeedsCompilation no
LazyData true
Encoding UTF-8
directionality_reactions

List of KEGG reactions with incorrect/inconsistent directionality

Description

This matrix contains a list of KEGG reactions with incorrect/inconsistent directionality. The directionality of these reactions has been corrected based on published literature. This matrix can be updated or edited by the user if required.

Usage

directionality_reactions

Format

Matrix

Value

Matrix
hpaNormalTissue

Expression profiles for proteins in human tissues

Description

This data frame contains tissue expression data of human proteins, based on the Human Protein Atlas project. This data frame was obtained from the hpar package, and it is used in MetaboSignal to filter signaling genes based on tissue expression.

Usage

```r
data(hpaNormalTissue)
```

Format

Data.frame

Value

Data.frame

MetaboSignal_distances

Calculate gene-metabolite distance matrix

Description

This function generates a distance matrix containing the length of all shortest paths from a set of genes (or reactions) to a set of metabolites. The shortest path length between two nodes is defined as the minimum number of edges between these two nodes.

Usage

```r
MetaboSignal_distances(network_table, organism_code, organism_name, mode = "SP", 
source_genes = "all", target_metabolites = "all", names = FALSE)
```

Arguments

- `network_table`: two-column matrix where each row represents an edge between two nodes. See function "MetaboSignal_matrix ()".
- `organism_code`: character vector containing the KEGG code for the organism of interest. For example, the KEGG code for the rat is "rno". See the function "MS_FindKEGG()".
- `organism_name`: character vector containing the common name of the organism of interest (e.g. "rat", "mouse", "human", "zebrafish") or taxonomy id. For more details, check: http://docs.mygene.info/en/latest/doc/data.html#species. This argument is only required when `source_genes` are gene symbols.
MetaboSignal_distances

mode
character constant indicating whether a directed or an undirected network will be considered. "all" indicates that all the edges of the network will be considered as undirected. "out" indicates that all the edges of the network will be considered as directed. "SP" indicates that all network will be considered as directed except the edges linked to target metabolite, which will be considered as undirected. The difference between the "out" and the "SP" options, is that the latter aids reaching target metabolites that are substrates of irreversible reactions. By default, mode = "SP".

source_genes
character vector containing the genes from which the shortest paths will be calculated. All input genes need to have the same ID format. Possible ID formats are: entrez IDs, official gene symbols, or gene nodes of the network (i.e. KEGG orthology IDs or KEGG gene IDs). The latter option allows reducing the time required to compute this function. Entrez IDs or gene symbols can be transformed into KEGG IDs using the function "MS_GetKEGG_GeneID()". By default, genes = "all" indicating that all genes or reactions of the network will be used.

target_metabolites
character vector containing the KEGG IDs of the metabolites to which the shortest paths will be calculated. Compound KEGG IDs can be obtained using the function "MS_FindKEGG()". By default, metabolites = "all", indicating that all metabolites of the network will be used.

names
logical scalar indicating whether the metabolite IDs or gene KEGG IDs will be transformed into common metabolite names or gene symbols. Reaction IDs remain unchanged. By default, names = FALSE.

Value

A matrix containing the shortest path length from the genes or reactions (in the rows) to the metabolites (in the columns). For unreacheable metabolites Inf is included.

References

Examples

data(MetaboSignal_table)

Distances from Ship2 (65038) and Ppp2r5b (309179) to D-glucose ("cpd:C00031")

distances_targets <- MetaboSignal_distances(MetaboSignal_table, organism_code = "rno",
source_genes = c("65038", "309179"),
target_metabolites = "cpd:C00031",
names = TRUE)

Distances from all genes to all metabolites of the network

distances_all <- MetaboSignal_distances(MetaboSignal_table, organism_code = "rno")
MetaboSignal_matrix

Build MetaboSignal network-table

Description

This function generates a directed network-table (i.e., two-column matrix), where each row represents an edge connecting two nodes (from node in column 1 to node in column 2). Nodes represent four different molecular entities: metabolic-genes (i.e., genes encoding enzymes that catalyze metabolic reactions), signaling-genes (e.g., kinases), reactions or metabolites. It is possible to build a tissue-specific network-table that excludes signaling genes that are not expressed in a given tissue. Tissue expression data is obtained using the hpar package, which is based on the The Human Protein Atlas database. The genes "non detected" in the target tissue (reliability = supportive) are neglected.

The network-table generated with this function can be customized based on several criteria. For instance, undesired nodes can be removed or replaced using the functions "MS_RemoveNode()" or "MS_ReplaceNode()" respectively. Also, the network can be filtered according to different topological parameters (e.g., node betweenness) using the function "MS_FilterNetwork()".

Usage

```r
MetaboSignal_matrix(metabo_paths, signaling_paths, organism_name, tissue = "all", expand_genes = FALSE)
```

Arguments

- `metabo_paths`: character vector containing the KEGG IDs of the metabolic pathways of interest (organism-specific). For example, the KEGG ID for the pathway "glycolysis/gluconeogenesis" in the rat is "rno00010". See the function "MS_FindKEGG()".
- `signaling_paths`: character vector containing the KEGG IDs for the signaling pathways of interest (organism-specific). For example, the KEGG ID for the pathway "insulin signaling pathway" in the rat is "rno04910".
- `organism_name`: character vector containing the common name of the organism of interest (e.g., "rat", "mouse", "human", "zebrafish") or taxonomy id. For more details, check: http://docs.mygene.info/en/latest/doc/data.html#species. This argument is only required when filtering genes by tissue expression.
- `tissue`: character vector containing the name(s) of the target tissue(s). By default, tissue = "all" indicating that signaling gene nodes will not be filtered by tissue expression. Otherwise, possible tissues are those included in the dataset hpaNormalTissue (see levels(hpaNormalTissue[,2])).
- `expand_genes`: logical scalar indicating whether the gene nodes will represent orthology IDs (FALSE) or organism-specific gene IDs (TRUE). By default, expand_genes = FALSE.

Value

A two-column matrix where each row represents an edge between two nodes.
Note

Reaction directionality reported in KEGG has been cross-validated with published literature (Duarte et al., 2007). For examples of metabolic and signaling KEGG pathway check the dataset rno_pathways.

References

Carlson, M. org.Hs.eg.db: Genome wide annotation for Human. R package version 3.2.3.

http://www.kegg.jp/kegg/docs/keggapi.html

Examples

MetaboSignal network-table with organism-specific gene nodes

MetaboSignal_tableIsoforms <- MetaboSignal_matrix(metabo_paths = c("rno00010", "rno00562"),
signaling_paths = c("rno04910", "rno04151"),
expand_genes = TRUE)

MetaboSignal network-table with orthology gene nodes

MetaboSignal_table <- MetaboSignal_matrix(metabo_paths = c("rno00010", "rno00562"),
signaling_paths = c("rno04910", "rno04151"))

MetaboSignal network-table orthology gene nodes filtered by liver

MetaboSignal_tableLiver <- MetaboSignal_matrix(metabo_paths = "hsa00010",
signaling_paths = "hsa04151",
organism_name = "human",
tissue = "liver")
Description

This function allows calculating the shortest paths from a set of genes to a set of metabolites, and representing them as a network-table (i.e. two-column matrix). By default, the function exports a network file ("CytoscapeNetwork.txt") and two attribute files ("CytoscapeAttributesType.txt", "CytoscapeAttributesTarget.txt"), which can be imported into cytoscape to visualize the network. The first attribute file allows customizing the nodes of the network based on the molecular entity they represent: metabolic-genes, signaling-genes, or metabolites. The second attribute file allows discriminating the source_genes and the target_metabolites ("target") from any other node ("untarget") of the network.

The network-table generated with this function can be further customized based on different criteria. For instance, undesired nodes can be removed or replaced using the functions "MS_RemoveNode()" or "MS_ReplaceNode()" respectively. The final version of the network-table can be used to generate new cytoscape files using the function "MS_ToCytoscape()".

Usage

```r
MetaboSignal_NetworkCytoscape(network_table, organism_code, organism_name, source_genes, target_metabolites, mode = "SP", type = "first", interaction_type = NULL, distance_th = Inf, collapse_genes = FALSE, names = TRUE, export_cytoscape = TRUE, file_name = "Cytoscape")
```

Arguments

- `network_table`: two-column matrix where each row represents an edge between two nodes. See function "MetaboSignal_matrix ()".
- `organism_code`: character vector containing the KEGG code for the organism of interest. For example the KEGG code for the rat is "rno". See the function "MS_FindKEGG()".
- `organism_name`: character vector containing the common name of the organism of interest (e.g. "rat", "mouse", "human", "zebrafish") or taxonomy id. For more details, check: http://docs.mygene.info/en/latest/doc/data.html#species. This argument is only required when source_genes are gene symbols.
- `source_genes`: character vector containing the genes from which the shortest paths will be calculated. All input genes need to have the same ID format. Possible ID formats are: entrez IDs, official gene symbols, or gene nodes of the network (i.e. KEGG orthology IDs or KEGG gene IDs). The latter option allows reducing the time required to compute this function. Entrez IDs or gene symbols can be transformed into KEGG IDs using the function "MS_GetKEGG_GeneID()".
- `target_metabolites`: character vector containing the KEGG IDs of the metabolites to which the shortest paths will be calculated. Compound KEGG IDs can be obtained using the function "MS_FindKEGG()".
MetaboSignal_NetworkCytoscape

mode character constant indicating whether a directed or an undirected network will be considered. "all" indicates that all the edges of the network will be considered as undirected. "out" indicates that all the edges of the network will be considered as directed. "SP" indicates that all network will be considered as directed except the edges linked to target metabolite, which will be considered as undirected. The difference between the "out" and the "SP" options, is that the latter aids reaching target metabolites that are substrates of irreversible reactions. By default, mode = "SP".

type character constant indicating whether all shortest paths or a single shortest path will be considered when there are several shortest paths between a source_gene and a target_metabolite. If type = "all", all shortest paths will be considered. If type = "first" a single path will be considered. If type = "bw" the path with the highest betweenness score will be considered. The betweenness score is calculated as the average betweenness of the gene nodes of the path. Note that using type = "bw" increases the time required to compute this function. By default, type = "first".

interaction_type optional three-column matrix generated using the function "MS_interactionType()".

distance_th establishes a shortest path length threshold. Only shortest paths with length below this threshold will be included in the network. By default, distance_th = Inf.

collapse_genes logical scalar indicating whether KEGG gene IDs will be transformed into orthology IDs. Since several gene isoforms are associated with the same orthology ID, this option leads to a dramatic decrease in the dimensionality of the network. This argument is ignored if the gene nodes of the network_table already represent orthology IDs. By default, collapse_genes = FALSE.

names logical scalar indicating whether the metabolite or gene KEGG IDs will be transformed into common metabolite names or gene symbols. Reaction IDs remain unchanged. By default, names = TRUE.

export_cytoscape logical scalar indicating whether network and attribute cytoscape files will be generated and exported. By default, export_cytoscape = TRUE.

file_name character vector that allows customizing the name of the exported files. By default, file_name = "Cytoscape".

Value

A matrix where each row represents an edge between two nodes. By default, the function also generates a network file ("CytoscapeNetwork.txt") and two attribute files ("CytoscapeAttributesType.txt", "CytoscapeAttributesTarget.txt"), which can be imported into cytoscape to visualize the network.

Note

The network-table generated with this function can be also visualized in R using the igraph package. The network-table can be transformed into an igraph object using the function "graph.data.frame()" from igraph.

References

Examples

data(MetaboSignal_table)

Shortest-path subnetwork from Foxo1 (84482), Ldha (24533) to alpha D-glucose
#("cpd:C00267") and lactate ("cpd:C00186"). Different source_gene formats are valid:

1) Source_genes as network IDs (in this case orthology IDs): fastest option.
To get gene KEGG IDs use "MS_GetKEGG_GeneID()", as shown below:
MS_GetKEGG_GeneID(c("foxo1", "ldha"), organism_code = "rno", organism_name = "rat")

subnet_KEGG <- MetaboSignal_NetworkCytoscape(MetaboSignal_table, organism_code="rno",
source_genes = c("K07201", "K00016"),
target_metabolites = c("cpd:C00267",
 "cpd:C00186"),
 names = FALSE)

2) Source_genes as entrez IDs

subnet_Entrez <- MetaboSignal_NetworkCytoscape(MetaboSignal_table, organism_code="rno",
source_genes = c("84482", "24533"),
target_metabolites = c("cpd:C00267",
 "cpd:C00186"),
 names = FALSE)

3) Source_genes as symbols

subnet_Symbol <- MetaboSignal_NetworkCytoscape(MetaboSignal_table,
organism_code="rno", organism_name ="rat",
source_genes = c("foxo1", "ldha"),
target_metabolites = c("cpd:C00267",
 "cpd:C00186"),
 names = FALSE)

MetaboSignal_table

Example of MetaboSignal network-table filtered by tissue expression

Description

This network-table was generated using two metabo_paths ("rno00010", "rno00562") and two signaling_paths ("rno04910", "rno04151"). Signaling genes were filtered by adipose tissue.

Usage

data(MetaboSignal_table)

Format

Matrix
MS_ChangeNames

Transform KEGG IDs into common names

Description

This function allows transforming KEGG IDs of genes or metabolites into their corresponding common names (for metabolites) or symbols (for genes).

Usage

```r
MS_ChangeNames(nodes, organism_code)
```

Arguments

- `nodes`: character vector or matrix containing the KEGG IDs of either metabolites, genes (organism-specific or orthology), or reactions.
- `organism_code`: character vector containing the KEGG code for the organism of interest. For example, the KEGG code for the rat is "rno". See the function "MS_FindKEGG()". This argument is ignored when nodes are metabolites.

Value

A character string or a matrix containing the common metabolite names or gene symbols corresponding to the input KEGG IDs. Reaction IDs remain unchanged.

MetaboSignal_tableUnfiltered

Example of MetaboSignal network-table unfiltered by tissue expression

Description

This network-table was generated using two metabo_paths ("rno00010", "rno00562") and two signaling_paths ("rno04910", "rno04151"). Signaling genes were not filtered by tissue expression.

Usage

```r
data(MetaboSignal_tableUnfiltered)
```

Format

Matrix

Value

Matrix
MS_FilterNetwork

References

http://www.kegg.jp/kegg/docs/keggapi.html

Examples

MS_ChangeNames("K01082", organism_code = "rno")

MS_ChangeNames(c("rno:84482", "K01084", "cpd:C00267"), "rno")

MS_FilterNetwork

Filter network based on distances or betweenness

Description

This function allows reducing the dimensionality of a network, by removing nodes that do not meet the established distance and/or node betweenness criteria.

Usage

MS_FilterNetwork(network_table, mode = "all", type, target_node, distance_th, bw_th)

Arguments

network_table two-column matrix where each row represents an edge between two nodes. See function "MetaboSignal_matrix ()".
mode character constant indicating whether a directed ("out") or undirected ("all") network will be considered. By default, mode = "all".
type character constant used to establish the criteria for filtering the network. "bw" indicates that edges (i.e. rows of the network_table) containing at least one node with betweenness below bw_th will be neglected. "distance" indicates edges containing at least one node with shortest path length to the target_node above distance_th will be neglected. "all" indicates that edges containing at least one node with either betweenness below bw_th or distance above distance_th, will be neglected.
target_node character vector containing the ID of the node to which the distances will be calculated.
distance_th numeric value corresponding to the distance threshold. Nodes with shortest path length to the target_node above this threshold will be removed from the network-table.
bw_th numeric value corresponding to the normalized-betweenness threshold. Nodes with betweenness below this threshold will be removed from the network-table. See also "MS_NodeBW()".

Value

A two-column matrix where each row represents an edge between two nodes.
References

Examples

```r
data(MetaboSignal_table)
# Remove edges containing nodes with distance to D-glucose ("cpd:C00031") > 2
network_filtered1 <- MS_FilterNetwork(MetaboSignal_table, type = "distance",
                                 target_node = "cpd:C00031",
                                 distance_th = 2)

# Remove edges containing nodes with distance to D-glucose ("cpd:C00031") > 2 or
# normalized-betweenness < 0.00005
network_filtered2 <- MS_FilterNetwork(MetaboSignal_table, type = "all",
                                 target_node = "cpd:C00031",
                                 distance_th = 2, bw_th = 0.00005)

# Note below that network_filtered1 has one edge more than network_filtered2. This is
# because "cpd:C00031" has betweenness = 0, and therefore it is removed in network_filtered2:
setdiff(as.vector(network_filtered1),as.vector(network_filtered2))
```

MS_FindKEGG

Get KEGG IDs for compounds, organisms or pathways

Description

This function returns a list of entries corresponding to one of the following KEGG databases: "compound", "organism", "pathway". It can also find entries with matching query keywords in a given database.

Usage

```r
MS_FindKEGG(KEGG_database, match = NULL, organism_code)
```

Arguments

- **KEGG_database** character vector containing the name of the KEGG database of interest: "compound", "organism", "pathway".
- **match** character vector containing one or more elements (i.e. key words) to be matched as compound names.
- **organism_code** character vector containing the KEGG code for the organism of interest. For example the KEGG code for the rat is "rno". This argument is only required for KEGG_database = "pathway".

Value

By default, a matrix where each row contains the KEGG entries of the database of interest. When using the option "match" a list is returned, each list element containing information of matched entries.
Examples

```r
MS_FindKEGG(KEGG_database = "compound", match = "acetoacetic acid")

MS_FindKEGG(KEGG_database = "organism", match = c("rattus","human"))

MS_FindKEGG(KEGG_database = "pathway", match = c("glycol", "insulin signal", "akt"),
organism_code = "rno")
```

MS_FindMappedNodes
Map gene IDs or metabolite IDs onto the network

Description

This function can be used to find out if a set of genes or metabolites of interest can be mapped onto the MetaboSignal_network.

Usage

```r
MS_FindMappedNodes(nodes, network_table, organism_code, organism_name,
orthology = TRUE)
```

Arguments

- `nodes` character vector containing the IDs of the genes or the metabolites to be mapped onto the network. All IDs need to correspond to the same molecular entity (i.e. gene or metabolite). For metabolites, KEGG IDs are required (see function "MS_FindKEGG()"). For genes, entrez IDs or official symbols can be used, but note that all genes need to be in the same ID format (i.e. entrez or symbols). It is preferable to use entrez IDs rather than gene symbols, since some gene symbols are not unique.

- `network_table` two-column matrix where each row represents and edge between two nodes. See function "MetaboSignal_matrix ()".

- `organism_code` character vector containing the KEGG code for the organism of interest. For example the KEGG code for the rat is "rno". See the function "MS_FindKEGG()". This argument is not required to map metabolites.

- `organism_name` character vector containing the common name of the organism of interest (e.g. "rat", "mouse", "human", "zebrafish") or taxonomy id. For more details, check: http://docs.mygene.info/en/latest/doc/data.html#species. This argument is not required to map metabolites.

- `orthology` logical scalar indicating whether the gene nodes of the network_table represent KEGG orthology IDs (FALSE) or specific KEGG gene IDs (TRUE). By default, orthology = TRUE.

Value

A list reporting which genes or metabolites can or cannot be mapped onto the network.
References

Carlson, M. org.Hs.eg.db: Genome wide annotation for Human.R package version 3.2.3.
http://www.kegg.jp/kegg/docs/keggapi.html

Examples

```r
data(MetaboSignal_table)

# Map D-glucose ("cpd:C00031") and taurine ("cpd:C00245") onto the network
MS_FindMappedNodes(nodes = c("cpd:C00031", "cpd:C00245"), MetaboSignal_table,
                    orthology = TRUE)

# Map entrez IDs onto the network
MS_FindMappedNodes(nodes = c("303565", "24267", "11114"), MetaboSignal_table,
                    organism_code = "rno", organism_name = "rat", orthology = TRUE)

# Map gene symbols onto the network
MS_FindMappedNodes(nodes = c("G6pc3", "Comt"), MetaboSignal_table, organism_code = "rno",
                    organism_name = "rat", orthology = TRUE)
```

Description

This function allows transforming entrez gene IDs or official gene symbols into KEGG IDs (orthology IDs or organism-specific gene IDs). The transformed KEGG IDs can be stored and used as source_genes in the functions "MetaboSignal_distances()" or "MetaboSignal_NetworkCytoscape()". This strategy allows reducing the time required to compute these functions.

Usage

```r
MS_GetKEGG_GeneID(genes, organism_code, organism_name, output = "vector",
                   orthology = TRUE)
```

Arguments

- **genes**: character vector containing the entrez IDs or official symbols of the genes of interest. All genes need to be in the same ID format (i.e. entrez or symbols). It is preferable to use entrez IDs rather than gene symbols, since some gene symbols are not unique.
- **organism_code**: character vector containing the KEGG code for the organism of interest. For example the KEGG code for the rat is "rno". See the function "MS_FindKEGG()".
MS_GetShortestpaths

Calculate shortest paths

Description

This function calculates the shortest path(s) between any two reachable nodes of a network-table.

Usage

MS_GetShortestpaths(network_table, source_node, target_node, mode = "out", type = "first", network = FALSE, interaction_type = NULL)
Arguments

network_table
- two-column matrix where each row represents an edge between two nodes. See function "MetaboSignal_matrix()".

source_node
- character vector containing the KEGG ID of the node from which the shortest paths will be calculated.

target_node
- character vector containing the KEGG ID of the node to which the shortest path will be calculated.

mode
- character constant indicating whether a directed or an undirected network will be considered. "all" indicates that all the edges of the network will be considered as undirected. "out" indicates that all the edges of the network will be considered as directed. "SP" indicates that all network will be considered as directed except the edges linked to target metabolite, which will be considered as undirected. The difference between the "out" and "SP" options, is that the latter aids reaching target metabolites that are substrate of irreversible reactions. By default, mode = "out".

type
- indicates whether all shortest paths or a single shortest path will be considered when there are several shortest paths between the source_node and the target_node. If type = "all", all shortest paths will be considered. If type = "first" a single path will be considered. If type = "bw" the path with the highest betweenness score will be considered. The betweenness score is calculated as the average betweenness of the gene nodes of the path. Using type = "bw" increases the time required to compute this function. By default, type = "first".

network
- logical constant indicating the output of the function. If network = TRUE, the shortest path(s) will be represented as a two-column matrix where each row represents an edge between two nodes. If network = FALSE, the shortest path(s) will be represented as a vector (single path), or as a matrix (multiple paths), where each row represents a shortest path. By default, network = "FALSE".

interaction_type
- optional three-column matrix generated using the function "MS_interactionType()". This argument is ignored when network = FALSE.

Value

By default, a vector or a matrix where each row contains a shortest path from the source_node to the target_node. If network = TRUE, the function returns matrix where each row represents an edge between two nodes. KEGG IDs can be transformed into common names using the function "MS_ChangeNames()".

References

Examples

data(MetaboSignal_table)

Shortest path from HK ("K00844") to a-D-Glucose ("cpd:C00267")

path1 <- MS_GetShortestpaths(MetaboSignal_table, "K00844", "cpd:C00267", mode = "SP")
path2 <- MS_GetShortestpaths(MetaboSignal_table, "K00844", "cpd:C00267", mode = "out")

Shortest paths from G6PC ("K01084") to pyruvate ("cpd:C00022")
path3 <- MS_GetShortestpaths(MetaboSignal_table, "K01084", "cpd:C00022", type = "all")
path4 <- MS_GetShortestpaths(MetaboSignal_table, "K01084", "cpd:C00022", type = "bw")

Shortest paths from G6PC ("K01084") to pyruvate ("cpd:C00022") as network
path3 <- MS_GetShortestpaths(MetaboSignal_table, "K01084", "cpd:C00022", type = "all", network = TRUE)

MS_interactionType
Get interaction subtype

Description

This function generates a 3 column-matrix indicating the interaction subtype (e.g. activation, binding) between node pairs involved in the signaling pathways of interest. Each row of the matrix represents an edge between 2 nodes. The first column contains the in-nodes, the second column contains the out-nodes, and the third column contains the interaction subtype.

Usage

```r
MS_interactionType(paths, expand_genes = FALSE)
```

Arguments

- **paths**: character vector containing the KEGG IDs for the signaling pathways of interest (organism-specific). For example, the KEGG ID for the pathway "insulin signaling pathway" in the rat is "rno04910".
- **expand_genes**: logical scalar indicating whether the gene nodes will represent orthology IDs (FALSE) or organism-specific gene IDs (TRUE). By default, `expand_genes = FALSE`.

Value

A three-column matrix where each row represents an edge between two nodes.

References

http://www.kegg.jp/kegg/docs/keggapi.html

Examples

```r
# Get interaction-type matrix of nodes involved in "rno04910" and "rno04151"
interaction_type <- MS_interactionType(paths = c("rno04910", "rno04151"))
```
MS_NodeBW
Get distribution of node betweenness

Description

This function calculates the betweenness of each node of the network.

Usage

\[\text{MS_NodeBW(network_table, mode = "all", normalized = TRUE)} \]

Arguments

- **network_table**: two-column matrix where each row represents an edge between two nodes. See function "MetaboSignal_matrix()".
- **mode**: character constant indicating whether a directed ("out") or undirected ("all") network will be considered. By default, mode = "all".
- **normalized**: logical scalar indicating whether to normalize the betweenness scores. If TRUE, normalized betweenness scores will be returned. If FALSE, raw betweenness scores will be returned. By default, normalized = TRUE.

Value

A numeric vector containing the betweenness of each node of the network. The function also produces a histogram showing the distribution of node betweenness.

References

Examples

```r
data(MetaboSignal_table)
MS_NodeBW(MetaboSignal_table)
```

MS_RemoveNode
Remove undesired nodes from the network

Description

This function allows removing undesired nodes of the network-table.

Usage

\[\text{MS_RemoveNode(nodes, network_table)} \]
MS_ReplaceNode

Arguments
- **nodes** character vector containing the node IDs to be removed.
- **network_table** two-column matrix where each row represents and edge between two nodes. See function "MetaboSignal_matrix ()".

Value
A two-column matrix corresponding to the input network-table without the undesired nodes.

Examples
```r
data(MetaboSignal_table)

# Remove glucose nodes
GlucoseRemoved <- MS_RemoveNode(nodes = c("cpd:C00267", "cpd:C00221", "cpd:C00031"), MetaboSignal_table)
```

MS_ReplaceNode

Replace nodes of the network

Description
This function allows replacing node IDs of a network-table. It can be used to cluster the IDs of chemical isomers (e.g. alpha-D-glucose ("cpd:C00267"), D-glucose ("cpd:C00031"), and beta-D-glucose ("cpd:C00021")) into a single ID.

Usage

MS_ReplaceNode(node1, node2, network_table)

Arguments
- **node1** character vector containing the node IDs to be replaced.
- **node2** character vector containing the ID that will be used as a replacement.
- **network_table** two-column matrix where each row represents and edge between two nodes. See function "MetaboSignal_matrix ()".

Value
A two-column matrix corresponding to the input network-table with replaced nodes.

Examples
```r
data(MetaboSignal_table)

# Cluster D-glucose isomers ("cpd:C00267","cpd:C00221","cpd:C00031")
GlucoseClustered <- MS_ReplaceNode(node1 = c("cpd:C00267", "cpd:C00221"),
                                   node2 = "cpd:C00031", MetaboSignal_table)
```
MS_ToCytoscape

Export network in cytoscape format

Description

The function exports a network file ("CytoscapeNetwork.txt") and two attribute files ("CytoscapeAttributesType.txt", "CytoscapeAttributesTarget.txt"), which can be imported into cytoscape to visualize the network. The first attribute file allows customizing the nodes of the network based on the molecular entity they represent: metabolites, metabolic-genes, or signaling-genes. The second attribute file allows discriminating a set of nodes of interest ("target") from any other node ("untarget") of the network.

Usage

MS_ToCytoscape (network_table, organism_code, names = TRUE, target_nodes = NULL, interaction_type, file_name = "Cytoscape")

Arguments

network_table two-column matrix where each row represents and edge between two nodes. See function "MetaboSignal_matrix ()".
organism_code character vector containing the KEGG code for the organism of interest. For example the KEGG code for the rat is "rno". See the function "MS_FindKEGG()".
names logical scalar indicating whether the metabolite or gene KEGG IDs will be transformed into common metabolite names or gene symbols. Reaction IDs remain unchanged. By default, names = TRUE.
target_nodes character vector containing the IDs of the target nodes to be discriminated from the other nodes of the network. This argument is optional.
interaction_type optional three-column matrix generated using the function "MS_interactionType()".
file_name character vector that allows customizing the name of the exported files. By default, the file_name = "Cytoscape".

Value

A data frame where each row represents an edge between two nodes. The function also generates and exports a network file ("CytoscapeNetwork.txt") and two attribute files ("CytoscapeAttributesType.txt", "CytoscapeAttributesTarget.txt"), which can be imported into cytoscape to visualize the network.

References

neglected_genes

Genes removed during tissue-expression filtering

This vector contains the IDs of the genes that were removed from the MetaboSignal_table due to adipose-tissue filtering in the example of the vignette.

Usage

```r
data(neglected_genes)
```

Format

- **Value**
 - Vector

rno_pathways

Examples of metabolic and signaling rat KEGG pathways

This list contains examples of metabolic (first element of the list) and signaling (second element of the list) rat KEGG pathways.

Usage

```r
rno_pathways
```

Format

- **List**

Value

- **List**
Description

This network-table corresponds to the bw-ranked shortest-path subnetwork reported in the example of the vignette.

Usage

`data(subnetwork)`

Format

Matrix

Value

Matrix
Index

directionality_reactions, 2
hpaNormalTissue, 3
MetaboSignal_distances, 3
MetaboSignal_matrix, 5
MetaboSignal_NetworkCytoscape, 7
MetaboSignal_table, 9
MetaboSignal_tableUnfiltered, 10
MS_ChangeNames, 10
MS_FilterNetwork, 11
MS_FindKEGG, 12
MS_FindMappedNodes, 13
MS_GetKEGG_GeneID, 14
MS_GetShortestpaths, 15
MS_interactionType, 17
MS_NodeBW, 18
MS_RemoveNode, 18
MS_ReplaceNode, 19
MS_ToCytoscape, 20
neglected_genes, 21
rno_pathways, 21
subnetwork, 22