Package ‘PathoStat’

March 23, 2017

Type Package

Title PathoStat Statistical Microbiome Analysis Package

Version 1.1.5

Date 2016-12-13

Author Solaiappan Manimaran <manimaran_1975@hotmail.com>, Matthew Bendall <bendall@gwmail.gwu.edu>, Sandro Valenzuela Diaz <sandrolvalenzuelad@gmail.com>, Eduardo Castro <castronallar@gmail.com>, Tyler Faits <tfaits@gmail.com>, W. Evan Johnson <wej@bu.edu>

Maintainer Solaiappan Manimaran <manimaran_1975@hotmail.com>

Description The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.

URL https://github.com/mani2012/PathoStat

BugReports https://github.com/mani2012/PathoStat/issues

License GPL (>= 2)

Depends R (>= 3.3.1)

Imports MCMCpack, limma, corpusc, rmarkdown, knitr, pander, matrixStats, reshape2, scales, ggplot2, rentrez, BatchQC, DT, gtools, tidyr, plyr, dplyr, ape, phyloseq, shiny, grDevices, stats, methods, XML, graphics, utils, alluvial, BiocStyle, edgeR, preprocessCore, DESeq2

Suggests testthat

biocViews Microbiome, Metagenomics, GraphAndNetwork, Microarray, PatternLogic, PrincipalComponent, Sequencing, Software, Visualization, RNASeq

SystemRequirements pandoc (http://pandoc.org/installing.html) for generating reports from markdown files.
coreOTU

VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

- coreOTU
- coreOTU_module
- coreOTU_moduleUI
- coreOTU_normalize
- coreOTU_quantile
- createPathoStat
- findRAfromCount
- findTaxonLevel
- findTaxonMat
- findTaxonomy
- formatTaxTable
- getShinyInput
- getShinyInputCombat
- getShinyInputOrig
- get_core
- get_coremat
- get_coremat_lineplot
- grepTid
- loadPathoscopeReports
- loadPstat
- log2CPM
- pathostat
- PathoStat-class
- plotConfRegion
- pstat_data
- readPathoscopeData
- runPathoStat
- savePstat
- setShinyInput
- setShinyInputCombat
- setShinyInputOrig
- sizeNormalize

Index 22

coreOTU Compute Core OTUs for the given data matrix

Description
Compute Core OTUs for the given data matrix

Usage
coreOTU(zcounts, otuthreshold = 0.05, prevalence = 0.4)
Arguments

- **zcounts**: Standardized counts
- **otuthreshold**: Abundance cutoff threshold for the OTU to be picked
- **prevalence**: Prevalence of the OTU at threshold cutoff among samples

Value

List containing core OTUs

Examples

```r
eexample_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
coreotus <- coreOTU(countdat)
```

Description

This function provides the server logic for the Core OTU tab. This function is not called directly; instead, it should be invoked within the Shiny app’s server function using the `callModule` function. See http://shiny.rstudio.com/articles/modules.html for information about this design pattern.

Usage

```r
coreOTUModule(input, output, session, pstat)
```

Arguments

- **input**: Shiny server input object created by `callModule`
- **output**: Shiny server output object created by `callModule`
- **session**: Session created by `callModule`
- **pstat**: PathoStat object (third argument to `callModule`).

Details

The `callModule` function should be invoked with this function as the first argument. `callModule` is responsible for creating the namespaced input, output, and session arguments. The second argument to `callModule` is the ID to be used for the namespace and must match the id argument provided to `coreOTUModuleUI`. The third argument to `callModule` should be a `PathoStat` object from the app’s server function, and is passed to this function as the pstat argument.

Value

None
coreOTUModuleUI

UI function for Core OTU Module

Description

This function creates the UI for the Core OTU tab. The tab panel can be included within a tabsetPanel, thus providing a simple way to add or remove this module from the Shiny app. The first argument, id, is the ID to be used for the namespace and must match the id argument provided to coreOTUModule.

Usage

coreOTUModuleUI(id, label = "Core OTUs")

Arguments

id Namespace for module
label Tab label

Value

A tabPanel that can be included within a tabsetPanel.

See Also

coreOTUModule for the server function, tabPanel for the UI component returned by this function, or http://shiny.rstudio.com/articles/modules.html for more information about Shiny modules.
coreOTUNormalize

Examples

shiny::mainPanel(
 shiny::tabsetPanel(
 coreOTUModuleUI("coreOTUModule")
)
)

Description

Compute Empirical Bayes OTU Normalized data

Usage

coreOTUNormalize(zcounts, wt = 0.25, otuthreshold = 0.05,
 prevalence = 0.4)

Arguments

zcounts counts data to be normalized
wt Weight parameter indicating how much information to borrow across samples
 using Empirical Bayes
otuthreshold Abundance cutoff threshold for the OTU to be picked
prevalence Prevalence of the OTU at threshold cutoff among samples

Value

list containing Empirical Bayes coreOTU Normalized data

Examples

eexample_data_dir <- system.file("example/data", package = "PathoStat")
 pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
coreotunormdat <- coreOTUNormalize(countdat)
`coreOTUQuantile`
Compute coreOTU Quantile Normalized data

Description

Compute coreOTU Quantile Normalized data

Usage

```r
coreOTUQuantile(zcounts, otuthreshold = 0.05, prevalence = 0.4)
```

Arguments

- `zcounts`: counts data to be normalized
- `otuthreshold`: Abundance cutoff threshold for the OTU to be picked
- `prevalence`: Prevalence of the OTU at threshold cutoff among samples

Value

List containing coreOTU Quantile Normalized data

Examples

```r
eexample_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
coreotunormdat <- coreOTUQuantile(countdat)
```

`createPathoStat`
Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app

Description

Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app

Usage

```r
createPathoStat(input_dir = ".", sample_data_file = "sample_data.tsv",
                pathoreport_file_suffix = "-sam-report.tsv")
```

Arguments

- `input_dir`: Directory where the tsv files from PathoScope are located
- `sample_data_file`: Sample Data file with information about samples
- `pathoreport_file_suffix`: PathoScope report files suffix
findRAfromCount

Return the Relative Abundance (RA) data for the given count OTU table

Description

Return the Relative Abundance (RA) data for the given count OTU table

Usage

```
findRAfromCount(count_otu)
```

Arguments

- `count_otu`: Count OTU table

Value

- `ra_otu`: Relative Abundance (RA) OTU table

Examples

```
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
ra_otu <- findRAfromCount(phyloseq::otu_table(pstat))
```

findTaxonLevel

Find the taxonomy for the given taxon id

Description

Find the taxonomy for the given taxon id

Usage

```
findTaxonLevel(tid)
```

Arguments

- `tid`: Given taxon id
findTaxonMat

Value

taxonomy LineageEx

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevel <- findTaxonomy(tids[1])
```
findTaxonomy

Find the taxonomy for each taxon ids

Description
Find the taxonomy for each taxon ids

Usage

```r
findTaxonomy(tids)
```

Arguments

- **tids**
 Given taxonomy ids

Value

taxondata Data with the taxonomy information

Examples

```r
elementary_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(elementary_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevels <- findTaxonomy(tids[1:5])
```

formatTaxTable

Format taxonomy table for rendering

Description
Format taxonomy table for rendering

Usage

```r
formatTaxTable(ttable)
```

Arguments

- **ttable**
 Taxonomy table

Value

Formatted table suitable for rendering with. DT::renderDataTable
getShinyInput

Description

Getter function to get the shinyInput option

Usage

getShinyInput()

Value

shinyInput option

Examples

getShinyInput()

getShinyInputCombat

Description

Getter function to get the shinyInputCombat option

Usage

getShinyInputCombat()

Value

shinyInputCombat option

Examples

getShinyInputCombat()
getShinyInputOrig

Description

Getter function to get the shinyInputOrig option

Usage

```
getShinyInputOrig()
```

Value

shinyInputOrig option

Examples

```
getShinyInputOrig()
```

get_core

Select rows of OTU matrix that meet given detection and prevalence thresholds

Description

Select rows of OTU matrix that meet given detection and prevalence thresholds

Usage

```
get_core(pstat, detection, prevalence)
```

Arguments

- `pstat`: PathoStat object
- `detection`: An integer specifying the minimum value considered to be "detected"
- `prevalence`: An integer specifying the minimum number of samples that must be detected

Value

Subsetted PathoStat object
get_coremat

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Description

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Usage

```
get_coremat(pstat)
```

Arguments

- `pstat` : PathoStat object

Value

Data frame containing number of OTUs at varying detection and prevalence thresholds, with rows corresponding to number of samples and columns corresponding to detection thresholds. An additional column called "prev" contains the sample threshold for each row.

get_coremat_lineplot

Create line plot from core OTU matrix

Description

Create line plot from core OTU matrix

Usage

```
get_coremat_lineplot(coremat)
```

Arguments

- `coremat` : Core OTU matrix (data.frame)

Value

Line plot with number of OTUs on the x-axis and detection threshold on the y-axis. Lines connect data points with the same number of samples.
grepTid

Greps the tid from the given identifier string

Description
Greps the tid from the given identifier string

Usage
grepTid(id)

Arguments
id
Given identifier string

Value
tid string

Examples
tid <- grepTid("ti\|367928\|org\|Bifidobacterium_adolescentis_ATCC_15703")

loadPathoscopeReports
Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, ret[['Final.Best.Hit.Read.Numbers']] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Description
Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, ret[['Final.Best.Hit.Read.Numbers']] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Usage
loadPathoscopeReports(reportfiles, nrows = NULL)

Arguments
reportfiles
Paths to report files
nrows
Option to read first N rows of PathoScope reports
loadPstat

Value

Returns a list where each element is named according to the PathoID column. For example, `ret["Final.Best.Hit.Read.Numbers"]` on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Examples

```r
input_dir <- system.file("example/data", package = "PathoStat")
reportfiles <- list.files(input_dir, pattern = "*-sam-report.tsv",
                          full.names = TRUE)
loadPathoscopeReports(reportfiles)
```

loadPstat

Load the R data(.rda) file with pathostat object

Description

Load the R data(.rda) file with pathostat object

Usage

```r
loadPstat(indir = ".", infileName = "pstat_data.rda")
```

Arguments

- `indir`: Input Directory of the .rda file
- `infileName`: File name of the .rda file

Value

pstat pathostat object (NULL if it does not exist)

Examples

```r
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
```
Description

Compute log2(counts per mil reads) and library size for each sample

Usage

```r
log2CPM(qcounts, lib.size = NULL)
```

Arguments

- `qcounts`: quantile normalized counts
- `lib.size`: default is colsums(qcounts)

Value

list containing log2(quantile counts per mil reads) and library sizes

Examples

```r
element_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(element_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
lcpm <- log2CPM(countdat)
```

Description

Build PathoStat-class object from its phyloseq component.

Usage

```r
pathostat(physeq1)
```

Arguments

- `physeq1`: phyloseq object

Value

`pstat` The pathostat object generated from the given phyloseq object

Examples

```r
rich_dense_biom = system.file("extdata", "rich_dense_otu_table.biom", package="phyloseq")
phyob <- phyloseq::import_biom(rich_dense_biom)
pstat_biom <- pathostat(phyob)
```
PathoStat-class

PathoStat class to store PathoStat input data including phyloseq object

Description

Contains all currently-supported BatchQC output data classes:

Details

slots:

average_count a single object of class otu_tableOrNULL
besthit_count a single object of class otu_tableOrNULL
highconf_count a single object of class otu_tableOrNULL
lowconf_count a single object of class otu_tableOrNULL

plotConfRegion

Compute the confidence region for the given proportions

Description

Compute the confidence region for the given proportions

Usage

plotConfRegion(p1, p2, size = 100, uselogit = TRUE, n = 10000,
 seed = 1000, jit = FALSE)

Arguments

p1 Read counts for first taxon
p2 Read counts for second taxon
size Total read counts in the sample
uselogit Use logit transformation to compute confidence region
n Total number of simulation points to generate
seed Seed to use in random simulation
jit jitter option (FALSE by default) for the plot

Value

Confidence region plot

Examples

p1 <- 20
p2 <- 25
size <- 200
plotConfRegion(p1, p2, size, uselogit=False)
pstat_data

pathostat object generated from example pathoscope report files

Description
This example data consists of 33 samples from a diet study with 11 subjects taking 3 different diets in random order.

Usage
pstat

Format
pathostat object extension of phyloseq-class experiment-level object:
- **otu_table** OTU table with 41 taxa and 33 samples
- **sample_data** Sample Data with 33 samples by 18 sample variables
- **tax_table** Taxonomy Table with 41 taxa by 9 taxonomic ranks
- **sample_data** Phylogenetic Tree with 41 tips and 40 internal nodes

Value
pathostat object

readPathoscopeData
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Description
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Usage

```r
readPathoscopeData(input_dir = ".",  
pathoreport_file_suffix = "-sam-report.tsv")
```

Arguments
- **input_dir** Directory where the tsv files from PathoScope are located
- **pathoreport_file_suffix** PathoScope report files suffix

Value
List of final guess relative abundance and count data
Examples

```r
runPathoStat

example_data_dir <- system.file("example/data", package = "PathoStat")
readPathoscopeData(input_dir=example_data_dir)
```

runPathoStat

Statistical Microbiome Analysis on the pathostat input and generates a html report and produces interactive shiny app plots

Description

Statistical Microbiome Analysis on the pathostat input and generates a html report and produces interactive shiny app plots

Usage

```r
runPathoStat(pstat = NULL, report_file = "PathoStat_report.html",
             report_dir = ".", report_option_binary = "111111111",
             view_report = FALSE, interactive = TRUE)
```

Arguments

- **pstat**: phyloseq extension pathostat object
- **report_file**: Output report file name
- **report_dir**: Output report directory path
- **report_option_binary**: 9 bits Binary String representing the plots to display and hide in the report
- **view_report**: when TRUE, opens the report in a browser
- **interactive**: when TRUE, opens the interactive shinyApp

Value

- **outputfile**: The output file with all the statistical plots

Examples

```r
runPathoStat(interactive = FALSE)
```
savePstat

Save the pathostat object to R data(.rda) file

Usage

`savePstat(pstat, outdir = ".", outfileName = "pstat_data.rda")`

Arguments

- `pstat`: pathostat object
- `outdir`: Output Directory of the .rda file
- `outfileName`: File name of the .rda file

Value

outfile .rda file

Examples

```r
data(pstat_data)
outfile <- savePstat(pstat)
```

setShinyInput

Setter function to set the shinyInput option

Description

Setter function to set the shinyInput option

Usage

`setShinyInput(x)`

Arguments

- `x`: shinyInput option

Value

shinyInput option

Examples

`setShinyInput(NULL)`
setShinyInputCombat
Setter function to set the shinyInputCombat option

Description
Setter function to set the shinyInputCombat option

Usage
```
setShinyInputCombat(x)
```

Arguments
- `x` shinyInputCombat option

Value
shinyInputCombat option

Examples
```
setShinyInputCombat(NULL)
```

setShinyInputOrig
Setter function to set the shinyInputOrig option

Description
Setter function to set the shinyInputOrig option

Usage
```
setShinyInputOrig(x)
```

Arguments
- `x` shinyInputOrig option

Value
shinyInputOrig option

Examples
```
setShinyInputOrig(NULL)
```
sizeNormalize

Normalize the given data based on library size

Description

Normalize the given data based on library size

Usage

sizeNormalize(zcounts)

Arguments

zcounts
Input counts data matrix

Value

acounts Normalized counts data matrix

Examples

example_data_dir <- system.file("example/data", package = "PathoStat")
pathreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathreport_file_suffix)
countdat <- datlist$countdata
acounts <- sizeNormalize(countdat)
Index

*Topic** datasets
 - pstat_data, 17

 callModule, 3, 4
 coreOTU, 2
 coreOTUModule, 3, 4
 coreOTUModuleUI, 3, 4, 4
 coreOTUNormalize, 5
 coreOTUQuantile, 6
 createPathoStat, 6
 findRAfromCount, 7
 findTaxonLevel, 7
 findTaxonMat, 8
 findTaxonomy, 9
 formatTaxTable, 9
 get_core, 11
 get_coremat, 12
 get_coremat_lineplot, 12
 getShinyInput, 10
 getShinyInputCombat, 10
 getShinyInputOrig, 11
 grepTid, 13

 loadPathoscopeReports, 13
 loadPstat, 14
 log2CPM, 15

 PathoStat, 3
 pathostat, 15
 PathoStat-class, 16
 pathostat1 (PathoStat-class), 16
 plotConfRegion, 16
 pstat (pstat_data), 17
 pstat_data, 17

 readPathoscopeData, 17
 runPathoStat, 18

 savePstat, 19
 setShinyInput, 19
 setShinyInputCombat, 20
 setShinyInputOrig, 20
 sizeNormalize, 21