Package ‘StarBioTrek’
March 23, 2017

Type Package
Title StarBioTrek
Version 1.1.3
Date 02-08-2017
Author Claudia Cava, Isabella Castiglioni
Maintainer Claudia Cava <claudia.cava@ibfm.cnr.it>
Depends R (>= 3.3)
Imports SpidermiR, KEGGREST, org.Hs.eg.db, AnnotationDbi, e1071, ROCR, grDevices, igraph
Description This tool StarBioTrek presents some methodologies to measure pathway activity and cross-talk among pathways integrating also the information of network data.
License GPL (>= 3)
biocViews GeneRegulation, Network, Pathways, KEGG
Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, qgraph, png, grid
VignetteBuilder knitr
LazyData true
URL https://github.com/claudiacava/StarBioTrek
BugReports https://github.com/claudiacava/StarBioTrek/issues
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

average .. 2
ds_score_crtlk ... 2
euc_dist_crtlk ... 3
getKEGGdata ... 4
getNETdata ... 4
GE_matrix .. 5
list_path_net .. 5
average

For TCGA data get human pathway data and creates a matrix with the average of genes for each pathway.

Description

average creates a matrix with a summarized value for each pathway

Usage

average(dataFilt, pathway)

Arguments

dataFilt TCGA matrix
pathway pathway data

Value

a matrix value for each pathway

Examples

score_mean<-average(dataFilt=tumo[,1:2],path)

ds_score_crtlk

For TCGA data get human pathway data and creates a measure of discriminating score among pathways

Description

ds_score_crtlk creates a matrix with discriminating score for pathways

Usage

ds_score_crtlk(dataFilt, pathway)
euc_dist_crtlk

Arguments

- `dataFilt`
 TCGA matrix
- `pathway`
 pathway data

Value

a matrix value for each pathway

Examples

```r
cross_talk_st_dv<-ds_score_crtlk(dataFilt=tumo[,1:2],pathway=path)
```

euc_dist_crtlk

For TCGA data get human pathway data and creates a measure of cross-talk among pathways

Description

`euc_dist_crtlk` creates a matrix with euclidean distance for pairwise pathways

Usage

```r
euc_dist_crtlk(dataFilt, pathway)
```

Arguments

- `dataFilt`
 TCGA matrix
- `pathway`
 pathway data

Value

a matrix value for each pathway

Examples

```r
score_euc_dist<-euc_dist_crtlk(dataFilt=tumo[,1:2],path)
```
getKEGGdata
Get human KEGG pathway data.

Description

getKEGGdata creates a data frame with human KEGG pathway. Columns are the pathways and rows the genes inside those pathway.

Usage

getKEGGdata(KEGG_path)

Arguments

- `KEGG_path`: variable

Value

dataframe with human pathway data

Examples

path<-getKEGGdata(KEGG_path="Transcript")

getNETdata
Get network data.

Description

getNETdata creates a data frame with network data. Network category can be filtered among: physical interactions, co-localization, genetic interactions and shared protein domain.

Usage

getNETdata(network, organism = NULL)

Arguments

- `network`: variable. The user can use the following parameters based on the network types to be used. PHint for Physical_interactions, COloc for Co-localization, GENint for Genetic_interactions and SHpd for Shared_protein_domains
- `organism`: organism==NULL default value is homo sapiens

Value

dataframe with gene-gene (or protein-protein interactions)

Examples

organism="Saccharomyces_cerevisiae"
netw<-getNETdata(network="SHpd",organism)
GE_matrix

Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only pathways given in input.

Description
GE_matrix creates a matrix of gene expression for pathways given by the user.

Usage
GE_matrix(DataMatrix, pathway)

Arguments
DataMatrix gene expression matrix (e.g. TCGA data)
pathway pathway data as provided by getKEGGdata

Value
a matrix for each pathway (gene expression level belong to that pathway)

Examples
list_path_gene <- GE_matrix(DataMatrix = tumo[,1:2], pathway = path)

list_path_net
Get human KEGG pathway data and output of path_net in order to define the common genes.

Description
list_path_net creates a list of interacting genes for each human pathway.

Usage
list_path_net(lista_net, pathway)

Arguments
lista_net output of path_net
pathway pathway data as provided by getKEGGdata

Value
a list of genes for each pathway (interacting genes belong to that pathway)

Examples
lista_netw <- path_net(pathway = path, data = netw)
lista_net <- list_path_net(lista_net = lista_netw, pathway = path)
matrix_plot
Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the mean gene expression for only pathways given in input.

Description
GE_matrix creates a matrix of mean gene expression for pathways given by the user.

Usage
matrix_plot(DataMatrix, pathway)

Arguments
DataMatrix gene expression matrix (eg. TCGA data)
pathway pathway data as provided by getKEGGdata

Value
a matrix for each pathway (mean gene expression level belong to that pathway)

Examples
list_path_plot<-matrix_plot(DataMatrix=tumo[,1:2],pathway=path)

path_net
Get human KEGG pathway data and network data in order to define the common gene.

Description
path_net creates a list of network data for each human pathway. The network data will be generated when interacting genes belong to that pathway.

Usage
path_net(pathway, data)

Arguments
pathway pathway data as provided by getKEGGdata
data network data as provided by getNETdata

Value
a list of network data for each pathway (interacting genes belong to that pathway)

Examples
lista_net<-path_net(pathway=path, data=netw)
plotting_cross_talk

Get human KEGG pathway data and a gene expression matrix we obtain a matrix with the gene expression for only pathways given in input.

Description
plotting_matrix creates a matrix of gene expression for pathways given by the user.

Usage
plotting_cross_talk(DataMatrix, pathway, path_matrix)

Arguments
DataMatrix gene expression matrix (eg. TCGA data)
pathway pathway data as provided by getKEGGdata
path_matrix output of the function matrix_plot

Value
a plot for pathway cross talk

Examples
mt<plotting_cross_talk(DataMatrix=tumo[,1:2],pathway=path,path_matrix=list_path_plot)

process_matrix
Process matrix TCGA data after the selection of pairwise pathway

Description
processing gene expression matrix

Usage
process_matrix(measure, list_perf)

Arguments
measure matrix with measure of cross-talk among pathways
list_perf output of the function select_class

Value
a gene expression matrix for case study 1
SelectedSample

Description
getKEGGdata creates a data frame with human KEGG pathway. Columns are the pathways and rows the genes inside those pathway.

Usage
proc_path(mer)

Arguments
mer output for example of select_path_carb

Value
dataframe with human pathway data

SelectedSample
Select the class of TCGA data

Description
select two labels from ID barcode

Usage
SelectedSample(Dataset, typesample)

Arguments
Dataset gene expression matrix
typesample the labels of the samples (e.g. tumor,normal)

Value
a gene expression matrix of the samples with specified label

Examples
tumo<-SelectedSample(Dataset=Data_CANCER_normUQ_filt, typesample="tumor")[,2]
select_class

Select the class of TCGA data

Description

select two labels from ID barcode

Usage

`select_class(auc.df, cutoff)`

Arguments

- `auc.df`: list of AUC value
- `cutoff`: cut-off for AUC value

Value

a gene expression matrix with only pairwise pathway with a particular cut-off

StarBioTrek

Download data

Description

StarBioTrek allows you to Download data of samples from StarBioTrek

Details

The functions you’re likely to need from **StarBioTrek** is `path_star` Otherwise refer to the vignettes to see how to format the documentation.

st_dv

For TCGA data get human pathway data and creates a measure of standard deviations among pathways

Description

st_dv creates a matrix with standard deviation for pathways

Usage

`st_dv(DataMatrix, pathway)`

Arguments

- `DataMatrix`: TCGA matrix
- `pathway`: pathway data
Value

a matrix value for each pathway

Examples

```r
stand_dev<-st_dev(DataMatrix=tumo[,1:2],pathway=path)
```

svm_classification
SVM classification for each feature

Description

svm class creates a list with auc value

Usage

`svm_classification(TCGA_matrix, tumour, normal, nfs)`

Arguments

- **TCGA_matrix**: gene expression matrix
- **tumour**: barcode samples for a class
- **normal**: barcode samples for another class
- **nfs**: nfs split data into a training and test set

Value

a list with AUC value for pairwise pathway

Examples

```r
nf <- 60
res_class<-svm_classification(TCGA_matrix=score_euc_dist,nfs=nf,
normal=colnames(norm[,1:10]),tumour=colnames(tumo[,1:10]))
```
Index

average, 2

ds_score_crtlk, 2

euc_dist_crtlk, 3

GE_matrix, 5
getKEGGdata, 4
getNETdata, 4

list_path_net, 5

matrix_plot, 6

path_net, 6
plotting_cross_talk, 7
proc_path, 8
process_matrix, 7

select_class, 9
SelectedSample, 8
st_dv, 9
StarBioTrek, 9
StarBioTrek-package (StarBioTrek), 9
svm_classification, 10