Package ‘pqsfinder’

February 1, 2017

Type Package

Title Identification of potential quadruplex forming sequences

Version 1.3.13

Author Jiri Hon, Matej Lexa and Tomas Martinek

Maintainer Jiri Hon <jiri.hon@gmail.com>

Description The main functionality of this package is to detect DNA sequence patterns that are likely to fold into an intramolecular G-quadruplex (G4). Unlike many other approaches, this package is able to detect sequences responsible for G4s folded from imperfect G-runs containing bulges or mismatches and as such is more sensitive than competing algorithms.

License BSD_2_clause + file LICENSE

biocViews MotifDiscovery, SequenceMatching, GeneRegulation

LazyData TRUE

Depends Biostrings

Imports Rcpp (>= 0.12.3), GenomicRanges, IRanges, S4Vectors, methods

Suggests BiocStyle, knitr, Gviz, rtracklayer, biomaRt, BSgenome.Hsapiens.UCSC.hg38

LinkingTo Rcpp, BH (>= 1.62.0)

SystemRequirements GNU make, C++11

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation yes

\textbf{R topics documented:}

- as.character,PQSViews-method ... 2
- density,PQSViews-method .. 2
- maxScores ... 3
- maxScores,PQSViews-method ... 3
- pqsfinder .. 4
- PQSViews .. 6
- PQSViews-class ... 7
- score,PQSViews-method ... 7
- show,PQSViews-method ... 8
- strand,PQSViews-method ... 8
as.character,PQSViews-method

Coerce to character vector

Description
Coerce to character vector

Usage
S4 method for signature 'PQSViews'
as.character(x)

Arguments
x

PQSViews object.

Value
Character vector representing PQS.

density,PQSViews-method

Get density vector

Description
Density vector represents numbers of PQS (potential quadruplex forming sequences) overlapping at each position in input sequence.

Usage
S4 method for signature 'PQSViews'
density(x)

Arguments
x

PQSViews object.

Value
Density vector.

Examples
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTTGGGGAAAA"))
density(pqs)
maxScores

Description

Get vector of maximal scores for a given object.

Usage

maxScores(x, ...)

Arguments

x
An object.
...
Additional arguments, for use in specific methods.

Value

Vector of maximal scores.

Examples

showMethods("maxScores")

maxScores,PQSViews-method

Description

Get vector of maximal scores

Usage

S4 method for signature 'PQSViews'
maxScores(x)

Arguments

x
PQSViews object.

Value

Vector of maximal scores.

Examples

pqs <- pqsfinder(DNAString("CCCCCCGGGTTGGGTTGGGAAAA"))
maxScores(pqs)
pqsfinder

Identificate potential quadruplex forming sequences.

Description

Function for identification of all potential intramolecular quadruplex patterns (PQS) in DNA sequence.

Usage

pqsfinder(subject, strand = "*", overlapping = FALSE, max_len = 50L,
min_score = 23L, run_min_len = 2L, run_max_len = 11L,
loop_min_len = 1L, loop_max_len = 30L, max_bulges = 3L,
max_mismatches = 3L, max_defects = 3L, tetrad_bonus = 40L,
mismatch_penalty = 28L, edge_mismatch_penalty = 31L,
bulge_penalty = 20L, bulge_len_factor = 0.7, bulge_len_exponent = 0.8,
loop_mean_factor = 4.5, loop_mean_exponent = 1,
run_re = ".?G{1,10}.{0,9}G{1,10}?.?", custom_scoring_fn = NULL,
use_default_scoring = TRUE, verbose = FALSE)

Arguments

subject DNAString object.
strand Strand specification. Allowed values are "+", "-" or "*", where the last one represents both strands. Implicitly, the input DNASTring object is assumed to encode the "+" strand.
overlapping If true, than all overlapping PQS will be reported.
max_len Maximal length of PQS.
min_score Minimal PQS score.
run_min_len Minimal length of quadruplex run.
run_max_len Maximal length of quadruplex run.
loop_min_len Minimal length of quadruplex loop.
loop_max_len Maximal length of quadruplex loop.
max_bulges Maximal number of runs with bulge.
max_mismatches Maximal number of runs with mismatch.
max_defects Maximum number of defects in total (max_bulges + max_mismatches).
tetrad_bonus Score bonus for one complete G tetrade.
mismatch_penalty Penalization for a mismatch in tetrad.
edge_mismatch_penalty Penalization for an mismatch in edge tetrad.
bulge_penalty Penalization for a bulge in quadruplex run.
bulge_len_factor Penalization factor for a bulge length.
bulge_len_exponent Exponent of bulge length.
pqsfinder

loop_mean_factor
Penalization factor of loop length mean.

loop_mean_exponent
Exponent of loop length mean.

run_re
Regular expression specifying one run of quadruplex.

custom_scoring_fn
Custom quadruplex scoring function. It takes the following 10 arguments: subject - Input DNAString object, score - implicit PQS score, start - PQS start position, width - PQS width, loop_1 - start pos. of loop #1, run_2 - start pos. of run #2, loop_2 - start pos. of loop #2, run_3 - start pos. of run #3, loop_3 - start pos. of loop #3, run_4 - start pos. of run #4. Return value of the function has to be new score represented as a single integer value. Please note that if use_default_scoring is enabled, the custom scoring function is evaluated AFTER the default scoring system but ONLY IF the default scoring system resulted in non-zero score (for performance reasons). On the other hand, when use_default_scoring is disabled, custom scoring function is evaluated on every PQS.

use_default_scoring
Enables default internal scoring system. This option is particularly useful in case you intend to radically change the default behavior and specify your own scoring function. By disabling the default scoring you will get a full control above the underlying detection algorithm.

verbose
Enables detailed output. Turn it on if you want to see all possible PQS found at each positions and not just the best one. It is highly recommended to use this option for debugging custom quadruplex scoring function. Each PQS is reported on separate row in the following format: start cnt pqsf_sequence score, where start is the PQS starting position, pqsf_sequence shows the PQS sequence structure with each run surrounded by square brackets and score is the score assigned to the particular PQS by all applied scoring functions.

Details

Use `elementMetadata` function to get extra PQS features like number of tetrads (nt), bulges (nb), mismatches (nm) or loop lengths (ll1, ll2, ll3).

Value

PQSVIEWS object

Examples

```r
pv <- pqsfinder(DNAString("CCCCCCCGGGTGGGTGGTAAAA"))
pv
elementMetadata(pv)
```
PQSViews
PQSViews class constructor

Description

User friendly constructor for PQSViews class representing potential quadruplex forming sequences (PQS). PQSViews is a subclass of XStringViews class and adds two more slots to store PQS density and PQS score distribution.

Usage

```r
PQSViews(subject, start, width, strand, score, density, max_scores, nt, nb, nm, 111, 112, 113)
```

Arguments

- **subject**: DNAString object.
- **start**: Start positions.
- **width**: Lengths.
- **strand**: Strand specifications.
- **score**: Scores.
- **density**: Numbers of PQS overlapping at each position in subject.
- **max_scores**: Score of the best PQS found at each position.
- **nt**: Tetrad numbers.
- **nb**: Bulge counts.
- **nm**: Mismatch counts.
- **111**: Loop 1 lengths.
- **112**: Loop 2 lengths.
- **113**: Loop 3 lengths.

Details

Use `elementMetadata` function to get extra PQS features like number of tetrads, bulges, mismatches or loop lengths.

Value

PQSViews object.

Examples

```r
pv <- PQSViews(DNAString("CGGGCGGGGC"), c(1,2), c(2,3), c("+","+"),  
c(10,11), 1:10, 1:10, 0, 0, 1, 1, 1)
start(pv)  
width(pv)  
strand(pv)  
score(pv)  
density(pv)  
maxScores(pv)  
elementMetadata(pv)
```
PQSViews-class

An S4 class to represent potential quadruplex forming sequences

Description

Represents potential quadruplex forming sequences found by `pqsfinder` function. This is a subclass of `XStringViews-class` class and adds one more slot.

Slots

density Numbers of PQS (potential quadruplex forming sequences) overlapping at each position in input sequence.

max_scores Score of the best PQS found at each position.

score,PQSViews-method Get PQS score vector

Description

Get PQS score vector

Usage

```r
## S4 method for signature 'PQSViews'
score(x)
```

Arguments

- `x` PQSViews object.

Value

Score vector.

Examples

```r
pqs <- pqsfinder(DNAString("CCCCCGGTTGGTGGTGGAAAA"))
score(pqs)
```
show,PQSVi-es-method Show method

Description
Show method

Usage
S4 method for signature 'PQSVi-es'
show(object)

Arguments
object PQSVi-es object.

Value
PQSVi-es object printed.

strand,PQSVi-es-method Get PQS strand vector

Description
Get PQS strand vector

Usage
S4 method for signature 'PQSVi-es'
strand(x)

Arguments
x PQSVi-es object.

Value
Strand vector.

Examples
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTGGGTGGGAAAA"))
strand(pqs)
Index

.PQSViews (PQSViews-class), 7
as.character, PQSViews-method, 2
density, PQSViews-method, 2
elementMetadata, 5, 6
maxScores, 3
maxScores, PQSViews-method, 3
pqsfinder, 4, 7
PQSViews, 5, 6
PQSViews-class, 7
score, PQSViews-method, 7
show, PQSViews-method, 8
strand, PQSViews-method, 8
XStringViews, 6