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1 Introduction
This vignette is intended to give a brief introduction of the ABSSeq R package
by analyzing the simulated data from Soneson et al. [4]. For details about the
approach, consult Yang [3]. Currently, ABSSeq integrates two modules: basic
model for pairwise comparison and linear model for complex design.

RNA-Seq quantifies gene expression with reads count, which usually consists
of conditions (or treatments) and several replicates for each condition. The ex-
pected expression of each gene is estimated from number of read count, propor-
tional to the expectation value of the true concentration of count. As a result, a
normalization method need to be apply on the original counts. The normalized
counts usually have enormous variation across genes and compared conditions.
The reliable identification of differential expression (DE) genes from such data
requires a probabilistic model to account for ambiguity caused by sample size,
biological and technical variations, levels of expression and outliers.

ABSSeq infers differential expression directly by the counts difference between
conditions. It assumes that the sum counts difference between conditions follow
a Negative binomial distribution with mean mu (proportional to expression level)
and dispersion factor r (size). The mu and r is determined by variation in the
experiment, i.e., biological variation, sequencing and mapping biases. Typically,
the number of replicates in a study is small and not enough to reveal all vari-
ation. To overcome this problem, a common solution is to borrow information
across genes. Here, we use local regression to smooth dispersion across genes.
The smoothed dispersions are then used to produce pseudocounts in the mu es-
timation to accounts for dynamic dispersions across expression levels, which in
turn moderates the fold-change.

ABSSeq tests counts difference directly against a baseline estimated from the
data set (mu), and therefore reports p-values related to magnitude of difference
(fold-change). In addition, ABSSeq moderates the fold-changes by two steps:
the expression level and gene-specific dispersion, that might facilitate the gene
ranking by fold-change and visualization (Heatmap). New alternative approach
(named aFold) was introduced, which calls DE genes via log fold-change(see
second Section for example). aFold uses a polynomial function to model the
uncertainty (or variance) of read count, and thus takes into consideration the
variance of expression levels across treatments and genes. aFold produces ac-
curate estimation of fold changes. In combination with the linear model from
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limma [2], aFold is capable to analyze data set with complex experimental design
(see last Section for example).

2 Pairwise study
We firstly import the ABSSeq package.

> library(ABSSeq)

Then, we load a simulated data set. It is a list object and contains three ele-
ments: the counts matrix, denoted by ’counts’, the groups, denoted by ’groups’
and differential expression genes, denoted by ’DEs’.

> data(simuN5)
> names(simuN5)

[1] "counts" "groups" "DEs"

simuN5 is simulated from Negative binomial distribution with means and
variances from Pickrell’s data [5] and added outliers randomly [4]. simuN5 in-
cludes group informtion.

> simuN5$groups

[1] 0 0 0 0 0 1 1 1 1 1

An ABSDataSet object is required for ABSSeqand could be constructed with
the ABSDataSet function by providing counts matrix and defined groups. Here,
we can also initiate a paired comparison for specific samples, such as data for
cancer and normal tissue from same individuals, by setting the paired param-
eter in ABSDataSet object.

> obj <- ABSDataSet(simuN5$counts, factor(simuN5$groups))
> pairedobj <- ABSDataSet(simuN5$counts, factor(simuN5$groups),paired=TRUE)

The ABSDataSet function also includes the parameter for the normalization
method, which has a default as qtotal. qtotal assesses the influence of DE
on data structure to normalize the data. Additional choices of normalization
methods are also provided, that are, total by total reads count, geometric
from DESeq [6], quantile by reads count in the first three quartiles from baySeq
[?], TMM from edgeR [1] and user through size factors provided by users. The
normalization method can be showed and revised by normMethod.

> obj1 <- ABSDataSet(simuN5$counts, factor(simuN5$groups),
+ normMethod="user",sizeFactor=runif(10,1,2))
> normMethod(obj1)

[1] "user"

> normMethod(obj1) <- "geometric"
> normMethod(obj1)
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[1] "geometric"

The size factors could be estimated from an ABSDataSet object via the
function normalFactors and retrieved by the function sFactors.

> obj <- normalFactors(obj)
> sFactors(obj)

[1] 1.2701723 1.1188592 0.6950348 1.1697439 1.1474554 0.9574766 0.9201882
[8] 1.1359601 0.8054707 0.7796388

Reads count after normalization could be retrieved by the function counts.

> head(counts(obj,norm=TRUE))

[,1] [,2] [,3] [,4] [,5] [,6]
1 58.25981 14.300280 48.91842 0.854888 1.742987 51.17618
2 1451.77156 967.950211 1256.05230 2067.119167 2926.475379 6327.04741
3 2662.63092 2245.143980 2474.69640 1502.038204 1938.201680 3469.53640
4 25.19343 9.831443 12.94899 17.952648 18.301365 17.75500
5 1491.13630 3674.278225 3630.03432 2285.970493 5126.125128 12830.60043
6 847.12917 832.097550 546.73525 130.797863 1342.100084 1438.15521

[,7] [,8] [,9] [,10]
1 6.520405 0.000000 7.449061 35.91407
2 57776.223615 4703.510143 12370.407060 12392.91781
3 3163.483249 3104.862488 30017.232227 43420.10493
4 190.178485 4.401563 24.830203 61.56697
5 8308.082941 18284.092397 15852.843010 17635.08870
6 949.805689 1277.333561 1443.876296 1602.02384

With the size factors, we can calculate the absolute counts difference between
conditions, mean (mu), size factor (r) and moderate log2 of fold-change for each
gene. It can be done by function callParameter as

> obj=callParameter(obj)

If we want to see correlation between the absolute log2 fold-change (with
or without moderation) and expression level in same conditions, we can use
function plotDifftoBase.

> obj <- callDEs(obj)
> plotDifftoBase(obj)

In the end, we model the counts differences with Negative binomial distri-
bution and calculate the pvalue for each gene. DE calling is performed by the
function callDEs, which reports pvalues as well as adjusted pvalues, that can be
accessed by results with names of pvalue and adj.pvalue. Noticely, this func-
tion also provides fold-change moderation according to gene-specific dispersion
by utilizing aFold, which will report fold-changes closer to gene’s dispersion. In
the end, ABSSeq produces three kinds fold-changes: the original (denoted by
’rawFC’), corrected by expression level (denoted by ’lowFC’) and moderated by
expression level and gene-specific dispersion (denoted by ’foldChange’), which
are stored in the ABSDataSet object and could be also retrieved by results.
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Figure 1: ’Absolute log2 fold-change against expression level’-plot for count
data. We show the fitted and raw data with different colors.

> obj <- callDEs(obj)
> head(results(obj,c("rawFC","lowFC","foldChange","pvalue","adj.pvalue")))

rawFC lowFC foldChange pvalue adj.pvalue
1 -0.1824058 -0.1030012 -0.04125768 7.682173e-01 1.00000000
2 2.9174817 2.6816216 0.36224008 4.230884e-02 1.00000000
3 2.0016381 0.8968301 0.50537531 2.661240e-02 0.86631330
4 0.8868678 0.6140338 0.21658502 1.460386e-01 1.00000000
5 2.2377865 2.1213283 1.02150694 4.989514e-05 0.01516204
6 1.1772042 0.9992554 0.43023062 6.939515e-02 1.00000000

The results function can be used to access all information in an ABSDataSet.

> head(results(obj))

Amean Bmean baseMean absD Variance rawFC lowFC
1 3.562610 3.380204 62.16317 23 1.220177e+03 -0.1824058 -0.1030012
2 10.650049 13.567531 23642.68938 84901 4.895532e+08 2.9174817 2.6816216
3 11.052189 13.053827 5514.05983 10509 2.181432e+06 2.0016381 0.8968301
4 4.093067 4.979935 115.68473 215 5.799681e+03 0.8868678 0.6140338
5 11.539225 13.777011 18473.15191 56703 1.873455e+07 2.2377865 2.1213283
6 9.192270 10.369474 1796.40395 3012 2.590491e+05 1.1772042 0.9992554
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foldChange pvalue adj.pvalue trimmed
1 -0.04125768 7.682173e-01 1.00000000 0
2 0.36224008 4.230884e-02 1.00000000 0
3 0.50537531 2.661240e-02 0.86631330 2
4 0.21658502 1.460386e-01 1.00000000 0
5 1.02150694 4.989514e-05 0.01516204 0
6 0.43023062 6.939515e-02 1.00000000 0

In addition to a step-by-step analysis in above, DE calling could be simply
performed by the function ABSSeq, which runs a default analysis by calling above
functions in order and returns a ABSDataSet object with all information.

> data(simuN5)
> obj <- ABSDataSet(simuN5$counts, factor(simuN5$groups))
> obj <- ABSSeq(obj)
> res <- results(obj,c("Amean","Bmean","foldChange","pvalue","adj.pvalue"))
> head(res)

Amean Bmean foldChange pvalue adj.pvalue
1 3.562610 3.380204 -0.04125768 7.682173e-01 1.00000000
2 10.650049 13.567531 0.36224008 4.230884e-02 1.00000000
3 11.052189 13.053827 0.50537531 2.661240e-02 0.86631330
4 4.093067 4.979935 0.21658502 1.460386e-01 1.00000000
5 11.539225 13.777011 1.02150694 4.989514e-05 0.01516204
6 9.192270 10.369474 0.43023062 6.939515e-02 1.00000000

Moreover, ABSSeq also allows testing on user-defined baseline for counts
difference by giving a same value to minRates and maxRates as

> data(simuN5)
> obj <- ABSDataSet(simuN5$counts, factor(simuN5$groups),minRates=0.2, maxRates=0.2)
> #or by slot functions
> #minRates(obj) <- 0.2
> #maxRates(obj) <- 0.2
> obj <- ABSSeq(obj)
> res <- results(obj,c("Amean","Bmean","foldChange","pvalue","adj.pvalue"))
> head(res)

Amean Bmean foldChange pvalue adj.pvalue
1 3.562610 3.380204 -0.04125768 7.038358e-01 1.0000000000
2 10.650049 13.567531 0.36224008 2.192792e-02 0.4006852443
3 11.052189 13.053827 0.50537531 4.337366e-03 0.1594078122
4 4.093067 4.979935 0.21658502 8.852225e-02 0.6238114781
5 11.539225 13.777011 1.02150694 7.752227e-07 0.0002099674
6 9.192270 10.369474 0.43023062 1.754797e-02 0.3604790716

ABSSeq penalizes the dispersion estimation by adding a common dispersion
value to the observed dispersion for each gene, which is obtained by quantile
estimation on observed dispersions. This penalized dispersion could be provided
by user as
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> data(simuN5)
> obj <- ABSDataSet(simuN5$counts, factor(simuN5$groups),minDispersion=0.1)
> #or by slot functions
> #minimalDispersion(obj) <- 0.2
> obj <- ABSSeq(obj)
> res <- results(obj,c("Amean","Bmean","foldChange","pvalue","adj.pvalue"))
> head(res)

Amean Bmean foldChange pvalue adj.pvalue
1 3.562610 3.380204 -0.04125768 0.75314495 1.0000000
2 10.650049 13.567531 0.36224008 0.04397104 1.0000000
3 11.052189 13.053827 0.50537531 0.04324281 1.0000000
4 4.093067 4.979935 0.21658502 0.14923425 1.0000000
5 11.539225 13.777011 1.02150694 0.00043097 0.1732082
6 9.192270 10.369474 0.43023062 0.09085401 1.0000000

In addition, ABSSeq provides special parameter estimation for data set with-
out replicates. It firstly treats the two groups as replicates and separates genes
into two sets according to fold-change cutoff (depends on expression level). The
set with fold-change under cutoff is used to estimate the dispersion for each
gene by local regression as well as fold-change moderation. Here is the example,
which replaces the callParameter by callParameterwithoutReplicates.

> data(simuN5)
> obj <- ABSDataSet(simuN5$counts[,c(1,2)], factor(c(1,2)))
> obj <- ABSSeq(obj)
> res <- results(obj,c("Amean","Bmean","foldChange","pvalue","adj.pvalue"))
> head(res)

Amean Bmean foldChange pvalue adj.pvalue
1 6.141438 4.176475 -1.30085645 0.003116490 0.01707491
2 10.760856 10.176462 -0.56268049 0.153013673 0.35063405
3 11.635516 11.389556 -0.23985467 0.845037624 1.00000000
4 4.958562 3.671725 -0.73879630 0.089056224 0.23482571
5 10.799432 12.100000 1.25952601 0.001112932 0.00740706
6 9.984289 9.958485 -0.02476103 0.999999092 1.00000000

3 Detecting DE via aFold
Recently, ABSSeq integrates a new method for DE detection: aFold. aFold
utilizes a polynormial function to model the uncertainty of observed reads count
and moderate the fold change calculation. aFold takes into account variations
among samples and genes and reports DE and fold changes in a reliable way.
The fold changes produced by aFold may help the experimentalist to avoid
arbitrary choice of cut-off thresholds and may enhance subsequent downstream
functional analyses. Here is the example for how to use aFold in ABSSeq.

> data(simuN5)
> obj <- ABSDataSet(counts=simuN5$counts, groups=factor(simuN5$groups))
> obj <- ABSSeq(obj, useaFold=TRUE)
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> res <- results(obj,c("Amean","Bmean","foldChange","pvalue","adj.pvalue"))
> head(res)

Amean Bmean foldChange pvalue adj.pvalue
1 3.562610 3.380204 -0.04125768 7.757687e-01 9.410283e-01
2 10.650049 13.567531 0.36224008 1.238933e-02 1.665142e-01
3 11.052189 13.053827 0.50537531 4.847530e-04 1.531717e-02
4 4.093067 4.979935 0.21658502 1.348430e-01 5.603766e-01
5 11.539225 13.777011 1.02150694 1.759256e-12 5.345993e-10
6 9.192270 10.369474 0.43023062 2.975533e-03 6.158168e-02

4 PCA analysis via aFold
aFold model also stabilizes variances across expression levels, which could be
used for principal component analysis (PCA). Here is an example. Noticeably,
the group information is not necessary for the ABSDataSet object under PCA
analysis.

> data(simuN5)
> obj <- ABSDataSet(counts=simuN5$counts)
> ##as one group
> cond <- as.factor(rep("hex",ncol(simuN5$counts)))
> ##normalization
> cda <- counts(obj,T)
> ##variance stabilization
> sds <- genAFold(cda,cond)
> ##sds is list vector, which contains variance stabilized read counts in 3rd element
> ##or expression level adjusted counts in 4th element. 3rd element is more sensitive
> ##to difference between samples than the 4th one. Here we use the 4th element for a
> ##PCA analysis.
> ## log transformation
> ldat <- log2(sds[[4]])
> ## PCA analysis
> PCA <- prcomp(t(ldat), scale = F)
> ## Percentage of components
> percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
> ## ploting
> pc1=PCA$x[,1]
> pc2=PCA$x[,2]
> #plot(pc1,pc2,main="",pch=16,col="black",xlab="PC1",ylab="PC2",cex=1.2)

5 DE analysis with complex design
In combination with linear model from limma [2], aFold is capable to analyze
data set with complex experimental design, which is performed by the function
ABSSeqlm. Here is an example.

> data(simuN5)
> groups<-factor(simuN5$groups)
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> obj <- ABSDataSet(counts=simuN5$counts)
> design <- model.matrix(~0+groups)
> res <- ABSSeqlm(obj,design,condA=c("groups0"),condB=c("groups1"))
> head(res)

basemean logFC pvalue p.adj
1 4.690153 -0.03870026 8.051044e-01 9.610751e-01
2 14.191909 0.36116377 2.129451e-02 4.435846e-01
3 14.022025 0.35511690 2.356381e-02 4.705514e-01
4 5.924728 0.20662942 1.876926e-01 8.335799e-01
5 13.832014 1.00860220 1.270311e-10 4.796003e-08
6 10.391500 0.41516516 8.120320e-03 2.443746e-01

Noticely, the parameters condA and condB could contain multiple condi-
tions (factors) to run a comparison between multiple condtions. The function
ABSSeqlm could be also used for analysis of variance (ANOVA) across condi-
tions. To run ANOVA, all conditions (factors) are imported to the parameter
condA in the function ABSSeqlm (without condB).

> res <- ABSSeqlm(obj,design,condA=c("groups0","groups1"))
> head(res)

basemean logFC pvalue p.adj
1 4.690153 0.02736522 8.631600e-01 0.99995335
2 14.191909 0.25538135 1.077354e-01 0.99995335
3 14.022025 0.25110556 1.137579e-01 0.99995335
4 5.924728 0.14610906 3.574518e-01 0.99995335
5 13.832014 0.71318946 7.060844e-06 0.00266579
6 10.391500 0.29356610 6.446461e-02 0.99995335

The linear model is performed by lmFit from limma [2], which could be
suppressed via the parameter lmodel as

> res <- ABSSeqlm(obj,design,condA=c("groups0"),condB=c("groups1"),lmodel=FALSE)
> head(res)

basemean logFC pvalue p.adj
1 4.690153 -0.03870026 8.051044e-01 9.610751e-01
2 14.191909 0.36116377 2.129451e-02 4.435846e-01
3 14.022025 0.35511690 2.356381e-02 4.705514e-01
4 5.924728 0.20662942 1.876926e-01 8.335799e-01
5 13.832014 1.00860220 1.270311e-10 4.796003e-08
6 10.391500 0.41516516 8.120320e-03 2.443746e-01
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