Using the OncoScore package

Luca De Sano* Carlo Gambacorti Passerini† Rocco Piazza† Daniele Ramazzotti*
Roberta Spinelli†

November 8, 2016

Abstract. OncoScore is a tool to measure the association of genes to cancer based on citation frequency in biomedical literature. The score is evaluated from PubMed literature by dynamically updatable web queries.

The OncoScore analysis consists of two parts. One can estimate a score to asess the oncogenic potential of a set of genes, given the lecterature knowledge, at the time of the analysis, or one can study the trend of such score over time.

We next present the two analysis and we conclude with showing the capabilities of the tool to visualize the results.

Requirements. First we load the library.

> library(OncoScore)

OncoScore analysis. The query that we show next retrieves from PubMed the citations, at the time of the query, for a list of genes in cancer related and in all the documents.

> query = perform.query(c("ASXL1","IDH1","IDH2","SETBP1","TET2"))

Starting the queries for the selected genes.

Performing queries for cancer literature

Number of papers found in PubMed for ASXL1 was: 309
Number of papers found in PubMed for IDH1 was: 1450
Number of papers found in PubMed for IDH2 was: 557
Number of papers found in PubMed for SETBP1 was: 69
Number of papers found in PubMed for TET2 was: 560

Performing queries for all the literature

Number of papers found in PubMed for ASXL1 was: 350
Number of papers found in PubMed for IDH1 was: 1581
Number of papers found in PubMed for IDH2 was: 648
Number of papers found in PubMed for SETBP1 was: 89
Number of papers found in PubMed for TET2 was: 717

OncoScore also provides a function to retrieve the names of the genes in a given portion of a chromosome that can be exploited if we are dealing, e.g., with copy number alterations hitting regions rather than specific genes.

> chr13 = get.genes.from.biomart(chromosome=13,start=54700000,end=72800000)
> head(chr13)

[1] "LINC00374" "RNA5SP30" "RNU7-87P" "HNF4GP1" "RN7SL375P" "BORA"

*Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi Milano Bicocca Milano, Italy.
†Dipartimento di Medicina e Chirurgia, Università degli Studi Milano Bicocca Milano, Italy.
Furthermore, one can also automatically perform the OncoScore analysis on chromosomic regions as follows:

```r
> result = compute.oncoscore.from.region(10, 100000, 500000)

### Performing query on BioMart
### Performing web query on: RNA5SP297 RNA5SP298 RN7SL754P ZMYND11 DIP2C
### Starting the queries for the selected genes.

### Performing queries for cancer literature
  Number of papers found in PubMed for RNA5SP297 was: -1
  Number of papers found in PubMed for RNA5SP298 was: -1
  Number of papers found in PubMed for RN7SL754P was: -1
  Number of papers found in PubMed for ZMYND11 was: 27
  Number of papers found in PubMed for DIP2C was: 1

### Performing queries for all the literature
  Number of papers found in PubMed for RNA5SP297 was: -1
  Number of papers found in PubMed for RNA5SP298 was: -1
  Number of papers found in PubMed for RN7SL754P was: -1
  Number of papers found in PubMed for ZMYND11 was: 45
  Number of papers found in PubMed for DIP2C was: 3

### Processing data
### Computing frequencies scores
### Estimating oncogenes
### Results:
  RNA5SP297 -> 0
  RNA5SP298 -> 0
  RN7SL754P -> 0
  ZMYND11 -> 49.07473
  DIP2C -> 12.30234

We now compute a score for each of the genes, to estimate their oncogenic potential.

```r
> result = compute.oncoscore(query)

Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 ASXL1 -> 77.8392
 IDH1 -> 83.08351
 IDH2 -> 76.75356
 SETBP1 -> 65.556
 TET2 -> 69.86954
```

**OncoScore timeline analysis.** The query that we show next retrieves from PubMed the citations, at specified time points, for a list of genes in cancer related and in all the documents.

```r
> query.timepoints = perform.query.timeseries(c("ASXL1","IDH1","IDH2","SETBP1","TET2"),
+ c("2012/03/01", "2013/03/01", "2014/03/01", "2015/03/01", "2016/03/01"))

Starting the queries for the selected genes.
Querying PubMed for timepoint 2012/03/01
Performing queries for cancer literature
 Number of papers found in PubMed for ASXL1 was: 83
 Number of papers found in PubMed for IDH1 was: 408
 Number of papers found in PubMed for IDH2 was: 172
 Number of papers found in PubMed for SETBP1 was: 5
 Number of papers found in PubMed for TET2 was: 169
Performing queries for all the literature
 Number of papers found in PubMed for ASXL1 was: 91
Using the OncoScore package

Number of papers found in PubMed for IDH1 was: 488
Number of papers found in PubMed for IDH2 was: 234
Number of papers found in PubMed for SETBP1 was: 10
Number of papers found in PubMed for TET2 was: 196

Quering PubMed for timepoint 2013/03/01
 ### Performing queries for cancer literature
Number of papers found in PubMed for ASXL1 was: 132
Number of papers found in PubMed for IDH1 was: 662
Number of papers found in PubMed for IDH2 was: 267
Number of papers found in PubMed for SETBP1 was: 11
Number of papers found in PubMed for TET2 was: 254
 ### Performing queries for all the literature
Number of papers found in PubMed for ASXL1 was: 149
Number of papers found in PubMed for IDH1 was: 753
Number of papers found in PubMed for IDH2 was: 336
Number of papers found in PubMed for SETBP1 was: 18
Number of papers found in PubMed for TET2 was: 302

Quering PubMed for timepoint 2014/03/01
 ### Performing queries for cancer literature
Number of papers found in PubMed for ASXL1 was: 185
Number of papers found in PubMed for IDH1 was: 903
Number of papers found in PubMed for IDH2 was: 364
Number of papers found in PubMed for SETBP1 was: 29
Number of papers found in PubMed for TET2 was: 342
 ### Performing queries for all the literature
Number of papers found in PubMed for ASXL1 was: 208
Number of papers found in PubMed for IDH1 was: 1002
Number of papers found in PubMed for IDH2 was: 439
Number of papers found in PubMed for SETBP1 was: 36
Number of papers found in PubMed for TET2 was: 430

Quering PubMed for timepoint 2015/03/01
 ### Performing queries for cancer literature
Number of papers found in PubMed for ASXL1 was: 250
Number of papers found in PubMed for IDH1 was: 1188
Number of papers found in PubMed for IDH2 was: 467
Number of papers found in PubMed for SETBP1 was: 49
Number of papers found in PubMed for TET2 was: 452
 ### Performing queries for all the literature
Number of papers found in PubMed for ASXL1 was: 283
Number of papers found in PubMed for IDH1 was: 1300
Number of papers found in PubMed for IDH2 was: 550
Number of papers found in PubMed for SETBP1 was: 64
Number of papers found in PubMed for TET2 was: 576

Quering PubMed for timepoint 2016/03/01
 ### Performing queries for cancer literature
Number of papers found in PubMed for ASXL1 was: 309
Number of papers found in PubMed for IDH1 was: 1446
Number of papers found in PubMed for IDH2 was: 557
Number of papers found in PubMed for SETBP1 was: 69
Number of papers found in PubMed for TET2 was: 558
 ### Performing queries for all the literature
Number of papers found in PubMed for ASXL1 was: 350
Number of papers found in PubMed for IDH1 was: 1576
Number of papers found in PubMed for IDH2 was: 648
Number of papers found in PubMed for SETBP1 was: 89
Number of papers found in PubMed for TET2 was: 715

We now compute a score for each of the genes, to estimate their oncogenic potential at specified time points.
Using the OncoScore package

```r
> result.timeseries = compute.oncoscore.timeseries(query.timepoints)
```

Computing oncoscore for timepoint 2012/03/01
Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 - ASXL1 -> 77.19348
 - IDH1 -> 74.24489
 - IDH2 -> 64.1649
 - SETBP1 -> 34.9485
 - TET2 -> 74.90108

Computing oncoscore for timepoint 2013/03/01
Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 - ASXL1 -> 76.31902
 - IDH1 -> 78.71551
 - IDH2 -> 69.99559
 - SETBP1 -> 46.4559
 - TET2 -> 73.89695

Computing oncoscore for timepoint 2014/03/01
Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 - ASXL1 -> 77.39202
 - IDH1 -> 81.07946
 - IDH2 -> 73.46995
 - SETBP1 -> 64.97398
 - TET2 -> 70.44331

Computing oncoscore for timepoint 2015/03/01
Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 - ASXL1 -> 77.49295
 - IDH1 -> 82.55032
 - IDH2 -> 75.58179
 - SETBP1 -> 63.80208
 - TET2 -> 69.91466

Computing oncoscore for timepoint 2016/03/01
Processing data
Computing frequencies scores
Estimating oncogenes
Results:
 - ASXL1 -> 77.8392
 - IDH1 -> 83.11346
 - IDH2 -> 76.75356
 - SETBP1 -> 65.556
 - TET2 -> 69.81125

Visualization of the results. We next plot the scores measuring the oncogetic potential of the considered genes as a barplot.

```r
> plot.oncoscore(result, col = 'darkblue')
```

We finally plot the trend of the scores over the considered times as absolute and values and as variations.
Using the OncoScore package

Figure 1: **Oncogenetic potential of the considered genes.**

```r
> plot.oncoscore.timeseries(result.timeseries)
```

Figure 2: **Absolute values of the oncogenetic potential of the considered genes over times.**

```r
> plot.oncoscore.timeseries(result.timeseries, 
  + incremental = TRUE, 
  + ylab='absolute variation')
```

```r
> plot.oncoscore.timeseries(result.timeseries, 
  + incremental = TRUE, 
  + relative = TRUE, 
  + ylab='relative variation')
```
Figure 3: Variations of the oncogenetic potential of the considered genes over times.

Figure 4: Variations as relative values of the oncogenetic potential of the considered genes over times.