1 Introduction to PANTHER.db

The PANTHER.db package provides a select interface to the compiled PANTHER ontology residing within a SQLite database.

```r
library(PANTHER.db)

## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
##
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport,
## clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply,
## parSapply, parSapplyLB
##
## The following objects are masked from 'package:stats':
##
## IQR, mad, xtabs
##
## The following objects are masked from 'package:base':
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame,
## as.vector, cbind, colnames, do.call, duplicated, eval, evalq, get, grep,
## grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order,
## paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, ronames, sapply,
## setdiff, sort, table, tapply, union, unique, unlist, unsplit
##
## Loading required package: Biobase
## Welcome to Bioconductor
```
PANTHER.db: An annotation package to access the PANTHER Classification System

If you already know about the select interface, you can immediately learn about the various methods for this object by just looking at the help page.

```r
help("PANTHER.db")
```

When you load the `PANTHER.db` package, it creates a `PANTHER.db` object. If you look at the object you will see some helpful information about it.

```r
PANTHER.db
```

By default, you can see that the `PANTHER.db` object is set to retrieve records from various organisms. The choice of the organism is the intersection of organisms supported by PANTHER and the core annotation packages in bioconductor. Methods are provided to restrict all queries to a specific organism. In order to change it, you first need to look up the appropriate organism identifier for the organism that you are interested in. The PANTHER gene ontology is based on the Uniprot reference proteome set. In order to display the choices, we have provided the helper function `availablePthOrganisms` which will list all the supported organisms along with their Uniprot organism name and taxonomy ids:

```r
availablePthOrganisms(PANTHER.db)
```
Once you have learned the PANTHER organism name for the organism of interest, you can then change the organism for the PANTHER.db object:

```r
pthOrganisms(PANTHER.db) <- "HUMAN"
```

PANTHER.db

PANTHER.db object:
| ORGANISMS: HUMAN
| PANTHERVERSION: 10.0
| PANTHERSOURCEURL: ftp.pantherdb.org
| PANTHERSOURCEDATE: 2015-0ct06
| package: AnnotationDbi
| Db type: PANTHER.db
| DBSCHEMA: PANTHER_DB
| DBSCHEMASECTION: 2.1
| UNIPROT to ENTREZ mapping: 2015-0ct06

```r
resetPthOrganisms(PANTHER.db)
```
As you can see, organisms are now restricted to Homo sapiens. To display all data which can be returned from a select query, the columns method can be used:

```r
columns(PANTHER.db)
```

Some of these fields can also be used as keytypes:

```r
keytypes(PANTHER.db)
```

It is also possible to display all possible keys of a table for any keytype. If keytype is unspecified, the FAMILY_ID will be returned.

```r
go_ids <- head(keys(PANTHER.db,keytype="GOSLIM_ID"))
go_ids
```

Finally, you can loop up whatever combinations of columns, keytypes and keys that you need when using select.

```r
cols <- c("FAMILY_ID","CLASS_ID")
res <- select(PANTHER.db, keys=go_ids, columns=cols,keytype="GOSLIM_ID")
head(res)
```
To access the PANTHER Protein Class ontology tree structure, the method `traverseClassTree` can be used:

```r
term <- "PC00209"
select(PANTHER.db, term, "CLASS_TERM", "CLASS_ID")
##   CLASS_ID CLASS_TERM
## 1  PC00209  sodium channel

ancestors <- traverseClassTree(PANTHER.db, term, scope="ANCESTOR")
select(PANTHER.db, ancestors, "CLASS_TERM", "CLASS_ID")
##   CLASS_ID CLASS_TERM
## 1  PC00133  ion channel
## 1042 PC00227  transporter

parents <- traverseClassTree(PANTHER.db, term, scope="PARENT")
select(PANTHER.db, parents, "CLASS_TERM", "CLASS_ID")
##   CLASS_ID CLASSTERM
## 1  PC00133  ion channel

children <- traverseClassTree(PANTHER.db, term, scope="CHILD")
select(PANTHER.db, children, "CLASS_TERM", "CLASS_ID")
##   CLASS_ID CLASSTERM
## 1  PC00243  voltage-gated sodium channel

offspring <- traverseClassTree(PANTHER.db, term, scope="OFFSPRING")
select(PANTHER.db, offspring, "CLASS_TERM", "CLASS_ID")
##   CLASS_ID CLASSTERM
## 1  PC00243  voltage-gated sodium channel
```