1 Installation from Bioconductor

crisprScoreData can be installed from the Bioconductor devel branch using the following commands in a fresh R session:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install(version="devel")
BiocManager::install("crisprScoreData")

2 Exploring the different data in crisprScoreData

We first load the crisprScoreData package:

library(crisprScoreData)
## Loading required package: ExperimentHub
## Loading required package: BiocGenerics
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
##     as.data.frame, basename, cbind, colnames, dirname, do.call,
##     duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
##     lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
##     pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
##     tapply, union, unique, unsplit, which.max, which.min
## Loading required package: AnnotationHub
## Loading required package: BiocFileCache
## Loading required package: dbplyr

This package contains several pre-trained models for different on-target activity prediction algorithms to be used in the package crisprScore.

We can access the file paths of the different pre-trained models directly with named functions:

# For DeepHF model:
DeepWt.hdf5()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6123 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b535bb7bab_6166"
DeepWt_T7.hdf5()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6124 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b519fdd9d8_6167"
DeepWt_U6.hdf5()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6125 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b53ba939d7_6168"
esp_rnn_model.hdf5()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6126 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b56cd9b8ba_6169"
hf_rnn_model.hdf5()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6127 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b5220f0848_6170"
# For Lindel model:
Model_weights.pkl()
## snapshotDate(): 2022-10-24
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6128 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b577a56bc9_6171"

Or we can access them using the ExperimentHub interface:

eh <- ExperimentHub()
## snapshotDate(): 2022-10-24
query(eh, "crisprScoreData")
## ExperimentHub with 9 records
## # snapshotDate(): 2022-10-24
## # $dataprovider: Fudan University, UCSF, University of Washington, New York ...
## # $species: NA
## # $rdataclass: character
## # additional mcols(): taxonomyid, genome, description,
## #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
## #   rdatapath, sourceurl, sourcetype 
## # retrieve records with, e.g., 'object[["EH6123"]]' 
## 
##            title             
##   EH6123 | DeepWt.hdf5       
##   EH6124 | DeepWt_T7.hdf5    
##   EH6125 | DeepWt_U6.hdf5    
##   EH6126 | esp_rnn_model.hdf5
##   EH6127 | hf_rnn_model.hdf5 
##   EH6128 | Model_weights.pkl 
##   EH7304 | CRISPRa_model.pkl 
##   EH7305 | CRISPRi_model.pkl 
##   EH7356 | RFcombined.rds
eh[["EH6127"]]
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6127 
## "/home/biocbuild/.cache/R/ExperimentHub/b72b5220f0848_6170"

For details on the source of these files, and on their construction see ?crisprScoreData and the scripts:

  • inst/scripts/make-metadata.R
  • inst/scripts/make-data.Rmd
sessionInfo()
## R Under development (unstable) (2022-10-25 r83175)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] crisprScoreData_1.3.0 ExperimentHub_2.7.0   AnnotationHub_3.7.0  
## [4] BiocFileCache_2.7.0   dbplyr_2.2.1          BiocGenerics_0.45.0  
## [7] BiocStyle_2.27.0     
## 
## loaded via a namespace (and not attached):
##  [1] KEGGREST_1.39.0               xfun_0.34                    
##  [3] bslib_0.4.0                   Biobase_2.59.0               
##  [5] bitops_1.0-7                  vctrs_0.5.0                  
##  [7] tools_4.3.0                   generics_0.1.3               
##  [9] stats4_4.3.0                  curl_4.3.3                   
## [11] tibble_3.1.8                  fansi_1.0.3                  
## [13] AnnotationDbi_1.61.0          RSQLite_2.2.18               
## [15] blob_1.2.3                    pkgconfig_2.0.3              
## [17] S4Vectors_0.37.0              assertthat_0.2.1             
## [19] GenomeInfoDbData_1.2.9        lifecycle_1.0.3              
## [21] compiler_4.3.0                stringr_1.4.1                
## [23] Biostrings_2.67.0             GenomeInfoDb_1.35.0          
## [25] httpuv_1.6.6                  htmltools_0.5.3              
## [27] sass_0.4.2                    RCurl_1.98-1.9               
## [29] yaml_2.3.6                    interactiveDisplayBase_1.37.0
## [31] pillar_1.8.1                  later_1.3.0                  
## [33] crayon_1.5.2                  jquerylib_0.1.4              
## [35] ellipsis_0.3.2                cachem_1.0.6                 
## [37] mime_0.12                     tidyselect_1.2.0             
## [39] digest_0.6.30                 stringi_1.7.8                
## [41] purrr_0.3.5                   dplyr_1.0.10                 
## [43] bookdown_0.29                 BiocVersion_3.17.0           
## [45] fastmap_1.1.0                 cli_3.4.1                    
## [47] magrittr_2.0.3                utf8_1.2.2                   
## [49] withr_2.5.0                   filelock_1.0.2               
## [51] promises_1.2.0.1              rappdirs_0.3.3               
## [53] bit64_4.0.5                   XVector_0.39.0               
## [55] rmarkdown_2.17                httr_1.4.4                   
## [57] bit_4.0.4                     png_0.1-7                    
## [59] memoise_2.0.1                 shiny_1.7.3                  
## [61] evaluate_0.17                 knitr_1.40                   
## [63] IRanges_2.33.0                rlang_1.0.6                  
## [65] Rcpp_1.0.9                    xtable_1.8-4                 
## [67] glue_1.6.2                    DBI_1.1.3                    
## [69] BiocManager_1.30.19           jsonlite_1.8.3               
## [71] R6_2.5.1                      zlibbioc_1.45.0