Package ‘ABAEnrichment’

April 25, 2017

Type Package
Title Gene expression enrichment in human brain regions
Version 1.6.0
Date 2017-04-23
Author Steffi Grote
Maintainer Steffi Grote <steffi_grote@eva.mpg.de>
Description The package ABAEnrichment is designed to test for enrichment of user defined candidate genes in the set of expressed genes in different human brain regions. The core function 'aba_enrich' integrates the expression of the candidate gene set (averaged across donors) and the structural information of the brain using an ontology, both provided by the Allen Brain Atlas project. 'aba_enrich' interfaces the ontology enrichment software FUNC to perform the statistical analyses. Additional functions provided in this package like 'get_expression' and 'plot_expression' facilitate exploring the expression data. From version 1.3.5 onwards genomic regions can be provided as input, too; and from version 1.5.9 onwards the function 'get_annotated_genes' offers an easy way to obtain annotations of genes to enriched or user-defined brain regions.

License GPL (>= 2)
Imports Rcpp (>= 0.11.5), gplots (>= 2.14.2), gtools (>= 3.5.0), ABAData (>= 0.99.2)
Depends R (>= 3.2)
LinkingTo Rcpp
Suggests BiocStyle, knitr, testthat
VignetteBuilder knitr
biocViews GeneSetEnrichment, GeneExpression

NeedsCompilation yes

R topics documented:

ABAEnrichment-package .. 2
aba_enrich .. 3
get_annotated_genes .. 5
ABAEnrichment-package

Gene expression enrichment in human brain regions

Description

The package ABAEnrichment is designed to test for enrichment of user defined candidate genes in the set of expressed genes in different human brain regions. The package integrates the expression of the candidate gene set (averaged across donors) and the structural information of the brain using an ontology, both provided by the Allen Brain Atlas project [1-4]. The statistical analysis is performed by the core function `aba_enrich` which interfaces the ontology enrichment software FUNC [5]. Additional functions provided in this package like `get_expression` and `plot_expression` facilitate exploring the expression data.

Details

Package: ABAEnrichment
Type: Package
Version: 1.5.9
Date: 2017-04-05
License: GPL (>= 2)

For details see vignette("ABAEnrichment", package="ABAEnrichment")

Author(s)

Steffi Grote
Maintainer: Steffi Grote <steffi_grote@eva.mpg.de>

References

See Also

vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
aba_enrich
get_expression
plot_expression
get_name
get_id
get_sampled_substructures
get_superstructures
get_annotated_genes

aba_enrich

Test genes for expression enrichment in human brain regions

Description

Tests for enrichment of user defined candidate genes in the set of expressed protein-coding genes in different human brain regions. It integrates the expression of the candidate gene set (averaged across donors) and the structural information of the brain using an ontology, both provided by the Allen Brain Atlas project [1-4]. The statistical analysis is performed using the ontology enrichment software FUNC [5].

Usage

aba_enrich(genes, dataset = 'adult', test = 'hyper',
cutoff_quantiles = seq(0.1, 0.9, 0.1), n_randsets = 1000,
gene_len = FALSE, circ_chrom = FALSE, ref_genome = 'grch37')

Arguments

genes If test='wilcoxon' a numeric vector of scores. If test='hyper' (default) a binary vector with 1 for candidate genes and 0 for background genes. If no background genes are defined, all remaining protein-coding genes are used as background. The names of the vector are the gene identifiers: either Entrez-ID, Ensembl-ID or gene-symbol. For test='hyper' the names of the vector can also describe chromosomal regions ('chr:start-stop').
dataset 'adult' for the microarray dataset of adult human brains; '5_stages' for RNA-seq expression data for different stages of the developing human brain, grouped into 5 developmental stages; 'dev_effect' for a developmental effect score. For details see vignette("ABAData", package="ABAData").
test 'hyper' (default) for the hypergeometric test or 'wilcoxon' for the Wilcoxon rank test.
cutoff_quantiles the FUNC enrichment analyses will be performed for the sets of expressed genes at given expression quantiles defined in this vector [0,1].
n_randsets integer defining the number of random sets created to compute the FWER.
gene_len logical. If test='hyper' the probability of a background gene to be chosen as a candidate gene in a random set is dependent on the gene length.
aba_enrich

circ_chrom logical. When genes defines chromosomal regions, circ_chrom=TRUE uses background regions from the same chromosome and allows randomly chosen blocks to overlap multiple background regions. Only if test='hyper'.

ref_genome 'grch37' (default) or 'grch38'. Defines the reference genome used when genomic regions are provided as input or when gene_len=TRUE.

Details

For details please refer to vignette("ABAEnrichment", package="ABAEnrichment").

Value

A list with components

results a dataframe with the FWERs from the enrichment analyses per brain region and age category, ordered by 'age_category', 'times_FWER_under_0.05', 'min_FWER' and 'mean_FWER'; with 'min_FWER' for example denoting the minimum FWER for expression enrichment of the candidate genes in this brain region across all expression cutoffs. 'FWERs' is a semicolon separated string with the single FWERs for all cutoffs. 'equivalent_structures' is a semicolon separated string that lists structures with identical expression data due to lack of independent expression measurements in all regions.

genes a vector of the requested genes, excluding those genes for which no expression data is available and which therefore were not included in the enrichment analysis.

cutoffs a dataframe with the expression values that correspond to the requested cutoff quantiles.

Author(s)

Steffi Grote

References

See Also

vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
get_expression
plot_expression
get_name
get_id
get_annotated_genes

Get genes that are expressed in enriched or user-defined brain regions

Description

Uses an object returned from `aba_enrich` as input and returns the brain regions that are significantly (given a FWER-threshold) enriched in expressed candidate genes (or genes with high scores if `test`='wilcoxon' in `aba_enrich`). Alternatively, also user-defined brain regions, dataset and expression cutoffs can be used as input.

Usage

```r
get_annotated_genes(res, fwer_threshold = 0.05, background = FALSE,
                     structure_ids = NULL, dataset = NULL, cutoff_quantiles = NULL, genes = NULL)
```

Arguments

- `res` an object returned from `aba_enrich` (list of 3 elements). If not defined, `structure_ids`, `dataset` and `cutoff_quantiles` have to be specified.
get_annotated_genes

fwer_threshold numeric defining the FWER-threshold. Given res as input, get_annotated_genes extracts all brain-region/expression-cutoff combinations from res that have a FWER < fwer_threshold and adds the (candidate) genes that are annotated to those brain regions at the given expression cutoffs.

background logical indicating whether background genes should be included. Only used when res is defined and contains the results from a hypergeometric test (which is the default in aba_enrich).

structure_ids vector of brain structure IDs, e.g. 'Allen:10208'. If res is not defined, structure_ids specifies the brain regions for which annotated genes at the given cutoff_quantiles will be returned.

dataset 'adult' for the microarray dataset of adult human brains; '5_stages' for RNA-seq expression data of the developing human brain, grouped into 5 developmental stages; 'dev_effect' for a developmental effect score. Only used when res is not defined.

cutoff_quantiles vector of numeric values between 0 and 1. They define the expression quantiles (across all genes) which are used as cutoffs to decide whether a gene counts as expressed (and gets annotated to a brain region) or not. Only used when res is not defined.

genes optional vector of gene identifiers, either Entrez-ID, Ensembl-ID or HGNC-symbol. If defined, only annotations of those genes are returned. If not defined, all expressed genes from Allen Brain Atlas are returned. Only used when res is not defined.

Details

Genes get annotated to a brain region when their expression value in that brain region, which is provided by the Allen Brain Atlas, exceeds a certain cutoff. Multiple cutoffs can be used. They are defined as quantiles of gene expression across all genes and brain regions. An expression cutoff of e.g. 0.8 means that only genes with expression levels higher than 80% of all measured values count as 'expressed' and get annotated to the corresponding brain region. Note that those annotations are inherited by all superstructures (parent nodes). When the 'dev_effect' dataset is used as dataset-argument, the expression value is replaced by a measure of how much a gene’s expression changes during the development (prenatal to adult). Genes with a developmental score higher than the cutoff then get annotated to the brain regions.

Value

A data frame with the age category, the brain region ID, the expression cutoff quantile and the annotated genes for significantly enriched or user-defined brain-region/expression-cutoff combinations. If res was given as input, two additional columns are added: the FWER and the score which was used for the genes in the aba_enrich input (1/0 for candidate and background genes for the hypergeometric test or scores for the wilcoxon rank sum test). Given res as input, the output is ordered by the FWER, else it is ordered by the expression cutoff.

Author(s)

Steffi Grote
References

See Also

vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
aba_enrich
gene
get_id

Examples

Note that arguments ‘cutoff_quantiles’ and ‘n_randsets’ are reduced
to lower computational time in the examples.

perform an enrichment analysis for expression of 7 candidate and 7 background genes
and get candidate genes annotated to brain regions that have a FWER < 0.05
set.seed(123)
genes = rep(c(1,0), each=7)
names(genes) = c('PENK', 'COCH', 'PDYN', 'CA12', 'SYNDIG1', 'MME',
 'ANO3', 'KCNJ6', 'ELAVL4', 'BEAN1', 'PVALB', 'EPN3', 'PAX2', 'FAB12')
res = aba_enrich(genes, dataset='5_stages', cutoff_quantiles=c(0.3,0.5,0.7,0.9), n_randset=100)
anno = get_annotated_genes(res, fwer_threshold=0.05)
head(anno)

find out which of the above genes have expression above
the 50% and 70% expression-cutoff, respectively,
in the Cerebellar Cortex of the developing human brain (Allen:10657)
get_annotated_genes(structure_ids="Allen:10657", dataset="5_stages",
cutoff_quantiles=c(0.5,0.7), genes=names(genes))

get_expression

Get expression data for given genes and brain structure IDs

Description

Expression data obtained from the Allen Brain Atlas project [1-4].

Usage

get_expression(structure_ids, gene_ids = NA, dataset = NA, background = FALSE)
get_expression

Arguments

structure_ids vector of brain structure IDs, e.g. 'Allen:10208'.
gene_ids vector of gene identifiers, either Entrez-ID, Ensembl-ID or HGNC-symbol. If not defined, genes from previous enrichment analysis with aba_enrich are used.
dataset 'adult' for the microarray dataset of adult human brains; '5_stages' for RNA-seq expression data of the developing human brain, grouped into 5 developmental stages; 'dev_effect' for a developmental effect score. If not defined, dataset from last enrichment analysis with aba_enrich are used.
background logical indicating whether expression from background genes should be included. Only used when gene_ids and dataset are NA and test from preceding aba_enrich call is 'hyper'.

Details

Get gene expression in defined brain regions from adult or developing humans, or a developmental effect score for the developing human brain. Expression data is obtained from the Allen Brain Atlas project [1-4], averaged across donors, and for the developing human brain divided into five major age categories. The developmental effect score is based on expression data of the developing human brain. If gene_ids and dataset are not specified, the genes and dataset from the last enrichment analysis with aba_enrich are used, since it may be a common case to first run the enrichment analysis and then look at the expression data. If a requested brain region has no expression data annotated, data from sampled substructures of this region is returned.

Please refer to the ABAData package vignette for details on the datasets.

Value

A matrix with expression values or developmental effect scores per brain region (rows) and gene (columns).

For expression data from the developing human brain ('5_stages') it is a list with an expression matrix for each of the 5 developmental stages.

Author(s)

Steffi Grote

References

get_id

See Also
vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
plot_expression
aba_enrich
get_name
get_id
get_sampled_substructures
get_annotated_genes

Examples

get expression data of six genes in two brain regions from developing human brain,
each of the five list elements corresponds to an age category
get_expression(structure_ids=c("Allen:10657","Allen:10208"), gene_ids=c("ENSG00000168036",
 "ENSG00000157764","ENSG00000182158","ENSG00000147889"), dataset="5_stages")

get_id

Get the structure ID of a brain region given its name

Description

Returns brain regions given (part of) their name, together with their structure IDs from the ontologies for the adult and for the developing brain (e.g. 'Allen:10657' as used throughout the ABAEnrichment package).

Usage

get_id(structure_name)

Arguments

structure_name (partial) name of a brain structure, e.g. 'telencephalon'

Value

a data frame with the full names of the brain structures that contain structure_name; together with the ontology ('developmental' or 'adult') and the structure IDs.

Author(s)

Steffi Grote

References

get_name

See Also
get_name
get_sampled_substructures
get_superstructures
vignette("ABAData", package="ABAData")

Examples

get structure IDs of brain regions that contain 'accumbens' in their names
get_id("accumbens")
get structure IDs of brain regions that contain 'telencephalon' in their names
get_id("telencephalon")
get all brain regions that have direct or indirect expression data together with thier IDs
all_regions = get_id(""
head(all_regions)

get_name
Get the full name of a brain region given structure IDs

Description
Returns the full name of brain regions given the structure IDs, e.g. 'Allen:10657' as used throughout
the ABAEnrichment package. The full name is composed of an acronym and the name as used by
the Allen Brain Atlas project [1-2].

Usage
get_name(structure_ids)

Arguments
structure_ids a vector of brain structure IDs, e.g. c('Allen:10657','Allen:10173') or c(10657,10173)

Value
vector of the full names of the brain structures; composed of acronym, underscore and name.

Note
The acronym is added because the names alone are not unique.

Author(s)
Steffi Grote

References
get_sampled_substructures

See Also

get_id
get_sampled_substructures
get_superstructures

Examples

get the full names of the brain structures 'Allen:10657' and 'Allen:10225'
get_name(c('Allen:10657', 'Allen:10225'))

get_sampled_substructures

Return sampled substructures of a given brain region

Description

The function returns for a given brain structure ID all its substructures with available expression data, potentially including the structure itself.

Usage

get_sampled_substructures(structure_id)

Arguments

structure_id a brain structure ID, e.g. 'Allen:10657' or '10657'

Details

The ontology enrichment analysis in aba_enrich tests all brain regions for which data is available, although the region might not have been sampled directly. In this case the region inherits the expression data from its substructures with available expression data. The function get_sampled_substructures helps to explore where the expression data for a brain region came from.

Value

vector of brain structure IDs that contains all substructures of the requested brain region that were sampled.

Author(s)

Steffi Grote

References

get_superstructures

See Also

vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
aba_enrich
get_name
get_superstructures

Examples

get the brain structures from which the brain structures 'Allen:4010' and 'Allen:10208'
inherit their expression data
get_sampled_substructures('Allen:4010')
get_sampled_substructures('Allen:10208')

get_superstructures

Returns all superstructures of a brain region using the Allen Brain Atlas ontology

Description

Returns all superstructures of a brain region and the brain region itself given a structure ID, e.g. 'Allen:10657' as used throughout the ABAEnrichment package. The output vector contains the superstructures according to the hierarchy provided by the Allen Brain Atlas ontology [1,2] beginning with the root ('brain' or 'neural plate') and ending with the requested brain region.

Usage

get_superstructures(structure_id)

Arguments

structure_id a brain structure ID, e.g. 'Allen:10657' or '10657'

Value

vector of brain structure IDs that contains all superstructures of the requested brain region and the brain region itself. The order of the brain regions follows the hierarchical organization of the brain.

Note

The ontologies for the adult and the developing human brain are different.

Author(s)

Steffi Grote
plot_expression

References

See Also

get_name
get_id
get_sampled_substructures

Examples

Get the IDs of the superstructures of the precentral gyrus (adult brain ontology)
get_superstructures("Allen:4010")
Get the IDs and the names of the superstructures of the dorsolateral prefrontal cortex
(developing brain ontology)
data.frame(hierarchy=get_name(get_superstructures("Allen:10173")))

plot_expression Plot expression data for given genes and brain structure IDs

Description

The function produces a heatmap (heatmap.2 from package gplots) of gene expression in defined brain regions from adult or developing humans, or a developmental effect score for the developing human brain. Expression data is obtained from the Allen Brain Atlas project [1-4], averaged across donors, and for the developing human brain divided into five major age categories. If gene_ids and dataset are not specified, the genes and dataset from the last enrichment analysis with aba_enrich are used, since it may be a common case to first run the enrichment analysis and then look at the expression data. If a requested brain region has no expression data annotated, data from sampled substructures of this region is returned.

Usage

plot_expression(structure_ids, gene_ids = NA, dataset = NA, background = FALSE, dendro = TRUE, age_category = 1)

Arguments

structure_ids vector of brain structure ids, e.g. "Allen:10208".
gene_ids vector of gene identifiers, either Entrez-ID, Ensembl-ID or HGNC-symbol. If not defined, genes from previous enrichment analysis with aba_enrich are used.
dataset ‘adult’ for the microarray dataset of adult human brains; ’5_stages’ for RNA-seq expression data of the developing human brain, grouped into 5 developmental stages; ’dev_effect’ for a developmental effect score. If not defined, dataset from last enrichment analysis with aba_enrich are used.
background logical indicating whether expression from background genes should be included. Only used when gene_ids and dataset are NA so that genes from the last enrichment analysis with aba_enrich are used and when this analysis was performed using the hypergeometric test.

dendro logical indicating whether rows and columns should be rearranged with a dendrogram based on row/column means (using hclust). If FALSE and if gene_ids and dataset are NA so that genes from the last enrichment analysis with aba_enrich are used, the genes are arranged according to the last aba_enrich execution: for a hypergeometric test the genes are grouped into candidate and background genes (indicated by a coloured side-bar with red and black, respectively) and for a Wilcoxon rank test the genes are ordered by the scores which they were given for the Wilcoxon rank test, which are also indicated by a side-bar.

age_category an integer between 1 and 5 indicating the age category if dataset='5_stages'.

Value

Invisibly, a list with components

rowInd row index permutation vector as returned by order.dendrogram

colInd column index permutation vector.

call the matched call

carpet reordered 'x' values used to generate the main `carpet'

rowDendrogram row dendrogram, if present

colDendrogram column dendrogram, if present

breaks values used for color break points

col colors used

colorTable A three-column data frame providing the lower and upper bound and color for each bin

Author(s)

Steffi Grote

References

See Also

vignette("ABAEnrichment", package="ABAEnrichment")
vignette("ABAData", package="ABAData")
get_expression
aba_enrich
get_name
plot_expression

get_id
get_sampled_substructures
get_annotated_genes
heatmap.2
hclust

Examples

plot expression data of six genes in two brain regions from children (age_category 3)
without dendrogram
plot_expression(structure_ids=c("Allen:10657","Allen:10208"),
gene_ids=c("ENSG00000168036","ENSG00000157764","ENSG00000182158","ENSG00000147889"),
dataset="5_stages", dendro=FALSE, age_category=3)
Index

*Topic **htest**
 aba_enrich, 3
 ABAEnrichment-package, 2

*Topic **package**
 ABAEnrichment-package, 2

aba_enrich, 2, 3, 3, 5–9, 11–14
ABAData, 8
ABAEnrichment (ABAEnrichment-package), 2
ABAEnrichment-package, 2

get_annotated_genes, 3, 5, 5, 9, 15
get_expression, 2–4, 7, 14
get_id, 3, 4, 7, 9, 11, 13, 15
get_name, 3, 4, 7, 9, 10, 10, 12–14
get_sampled_substructures, 3, 5, 9–11, 11, 13, 15
get_superstructures, 3, 5, 10–12, 12

hclust, 14, 15
heatmap.2, 2, 13, 15

order.dendrogram, 14

plot_expression, 2–4, 9, 13