Package ‘ASSIGN’

March 22, 2017

Type Package
Title Adaptive Signature Selection and InteGratioN (ASSIGN)
Version 1.10.0
Date 2014-10-30
Author Ying Shen, Andrea H. Bild, and W. Evan Johnson
Maintainer Ying Shen <yshen3@bu.edu>
Depends Rlab, msm, gplots
Description ASSIGN is a computational tool to evaluate the pathway deregulation/activation status in individual patient samples. ASSIGN employs a flexible Bayesian factor analysis approach that adapts predetermined pathway signatures derived either from knowledge-based literatures or from perturbation experiments to the cell-/tissue-specific pathway signatures. The deregulation/activation level of each context-specific pathway is quantified to a score, which represents the extent to which a patient sample encompasses the pathway deregulation/activation signature.
License MIT

Imports graphics, grDevices, stats, utils
biocViews Software, GeneExpression, Pathways, Bayesian

NeedsCompilation no

R topics documented:

assign.convergence .. 2
assign.cv.output .. 3
assign.mcmc .. 4
assign.output .. 6
assign.preprocess .. 7
assign.summary ... 9
assign.wrapper .. 10
geneList1 .. 12
testData1 ... 13
trainingData1 ... 13

Index 14
assign.convergence

Check the convergence of the MCMC chain

Description

The assign.convergence checks the convergence of the MCMC chain of the model parameters generated by the Gibbs sampling algorithm.

Usage

```r
assign.convergence(test, burn_in=0, iter=2000, parameter = c("B", "S", "Delta", "beta", "kappa", "gamma", "sigma"), whichGene, whichSample, whichPath)
```

Arguments

- `test`: The list object returned from the assign.mcmc function. The list components are the MCMC chains of the B, S, Delta, beta, gamma, and sigma.
- `burn_in`: The number of burn-in iterations. These iterations are discarded when computing the posterior means of the model parameters. The default is 0.
- `iter`: The number of total iterations. The default is 2000.
- `parameter`: A character string indicating which model parameter is to be checked for convergence. This must be one of "B", "S", "Delta", "beta", "kappa", "gamma", and "sigma".
- `whichGene`: A numerical value indicating which gene is to be checked for convergence. The value has to be in the range between 1 and G.
- `whichSample`: A numerical value indicating which test sample is to be checked for convergence. The value has to be in the range between 1 and N.
- `whichPath`: A numerical value indicating which pathway is to be checked for convergence. The value has to be in the range between 1 and K.

Details

To compute the convergency of the gth gene in B, set `whichGene=g`, `whichSample=NA`, `whichPath=NA`.

To compute the convergency of the gth gene in the kth pathway within the signature matrix (S), set `whichGene=g`, `whichSample=NA`, `whichPath=NA`.

To compute the convergency of the kth pathway in the jth test sample within the pathway activation matrix (A), set `whichGene=NA`, `whichSample=n`, `whichPath=k`.

Value

The assign.convergence function returns the a vector of the estimated values from each Gibbs sampling iteration of the model parameter to be checked, and a trace plot of this parameter.

Author(s)

Ying Shen
Examples

```r
## Not run:
# check the 10th gene in the 1st pathway for the convergency
trace.plot <- assign.convergence(test=mcmc.chain, burn_in=0, iter=2000, parameter="S", whichGene=10, whichSample=NA, whichPath=1)

## End(Not run)
```

Description

The `assign.cv.output` function outputs the summary results and plots for the cross validation done on the training dataset.

Usage

```r
assign.cv.output(processed.data, mcmc.pos.mean.trainingData, trainingData, trainingLabel, adaptive_B=FALSE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir)
```

Arguments

- `processed.data`: The list object returned from the `assign.preprocess` function.
- `mcmc.pos.mean.trainingData`: The list object returned from the `assign.mcmc` function. Notice that for cross validation, the Y argument in the `assign.mcmc` function should be set as the training dataset.
- `trainingData`: The genomic measure matrix of training samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number. The default is NULL.
- `trainingLabel`: The list linking the index of each training sample to a specific group it belongs to.
- `adaptive_B`: Logicals. If TRUE, the model adapts the baseline/background (B) of genomic measures for the test samples. The default is FALSE.
- `adaptive_S`: Logicals. If TRUE, the model adapts the signatures (S) of genomic measures for the test samples. The default is FALSE.
- `mixture_beta`: Logicals. If TRUE, elements of the pathway activation matrix are modeled by a spike-and-slab mixture distribution. The default is TRUE.
- `outputDir`: The path to the directory to save the output files. The path needs to be quoted in double quotation marks.

Details

The `assign.cv.output` function is suggested to run after the `assign.preprocess`, `assign.mcmc` and `assign.summary` function. For the cross validation, The Y argument in the `assign.mcmc` function is the output value "trainingData_sub" from the `assign.preprocess` function.
The `assign.cv.output` returns one .csv file containing one/multiple pathway activity for each individual training samples, scatter plots of pathway activity for each individual pathway in all the training samples, and heatmap plots for the gene expression signatures for each individual pathways.

Author(s)

Ying Shen

Examples

```r
classify.cv.output(processed.data=processed.data,
mcmc.pos.mean.trainingData=mcmc.pos.mean, trainingData=trainingData1,
trainingLabel=trainingLabel1,
adaptive_B=FALSE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir=tempdir)
```

Description

The `assign.mcmc` function uses a Bayesian sparse factor analysis model to estimate the adaptive baseline/background, adaptive pathway signature, and pathway activation status of individual test (disease) samples.

Usage

```r
assign.mcmc(Y, Bg, X, Delta_prior_p, iter=2000, adaptive_B=TRUE, adaptive_S=FALSE,
mixture_beta=TRUE, sigma_sZero = 0.01, sigma_sNonZero = 1, p_beta = 0.01,
sigma_bZero = 0.01, sigma_bNonZero = 1, alpha_tau = 1, beta_tau = 0.01,
Bg_zeroPrior=TRUE, S_zeroPrior=TRUE, ECM = FALSE)
```

Arguments

- **Y**: The G x J matrix of genomic measures (i.e., gene expression) of test samples. Y is the testData_sub variable returned from the data.process function. Genes/probes present in at least one pathway signature are retained.
- **Bg**: The G x 1 vector of genomic measures of the baseline/background (B). Bg is the B_vector variable returned from the data.process function. Bg is the starting value of baseline/background level in the MCMC chain.
- **X**: The G x K matrix of genomic measures of the signature. X is the S_matrix variable returned from the data.process function. X is the starting value of pathway signatures in the MCMC chain.
- **Delta_prior_p**: The G x K matrix of prior probability of a gene being "significant" in its associated pathway. Delta_prior_p is the Pi_matrix variable returned from the data.process function.
- **adaptive_B**: Logicals. If TRUE, the model adapts the baseline/background (B) of genomic measures for the test samples. The default is TRUE.
The assign.mcmc function can be set as following major modes. The combination of logical values of adaptive_B, adaptive_S and mixture_beta can form different modes.

Mode A: adaptive_B = FALSE, adaptive_S = FALSE, mixture_beta = FALSE. This is a regression mode without adaptation of baseline/background, signature, and no shrinkage of the pathway activation level.

Mode B: adaptive_B = TRUE, adaptive_S = FALSE, mixture_beta = FALSE. This is a regression mode with adaptation of baseline/background, but without signature, and with no shrinkage of the pathway activation level.

Mode C: adaptive_B = TRUE, adaptive_S = FALSE, mixture_beta = TRUE. This is a regression mode with adaptation of baseline/background, but without signature, and with shrinkage of the pathway activation level when it is not significantly activated.

Mode D: adaptive_B = TRUE, adaptive_S = TRUE, mixture_beta = TRUE. This is a Bayesian factor analysis mode with adaptation of baseline/background, adaptation signature, and with shrinkage of the pathway activation level.
Value

- **beta_mcmc**
 - The iter x K x J array of the pathway activation level estimated in every iteration of MCMC.

- **tau2_mcmc**
 - The iter x G matrix of the precision of genes estimated in every iteration of MCMC.

- **gamma_mcmc**
 - The iter x K x J array of probability of pathway being activated estimated in every iteration of MCMC.

- **kappa_mcmc**
 - The iter x K x J array of pathway activation level (adjusted beta scaling between 0 and 1) estimated in every iteration of MCMC.

- **S_mcmc**
 - The iter x G x K array of signature estimated in every iteration of MCMC.

- **Delta_mcmc**
 - The iter x G x K array of binary indicator of a gene being significant estimated in every iteration of MCMC.

Author(s)

Ying Shen

Examples

```r
mcmc.chain <- assign.mcmc(Y=processed.data$testData_sub, Bg = processed.data$B_vector, X=processed.data$S_matrix, Delta_prior_p = processed.data$Pi_matrix, iter = 20, adaptive_B=TRUE, adaptive_S=FALSE, mixture_beta=TRUE)
```

assign.output

Prediction/validation output for test data

Description

The `assign.output` function outputs the summary results and plots for prediction/validation for the test dataset.

Usage

```r
assign.output(processed.data, mcmc.pos.mean.testData, trainingData, testData, trainingLabel, testLabel, geneList, adaptive_B=TRUE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir)
```

Arguments

- **processed.data**
 - The list object returned from the `assign.preprocess` function.

- **mcmc.pos.mean.testData**
 - The list object returned from the `assign.mcmc` function. Notice that for prediction/validation in the test dataset, the Y argument in the `assign.mcmc` function should be set as the test dataset.

- **trainingData**
 - The genomic measure matrix of training samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number.

- **testData**
 - The genomic measure matrix of test samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number.
assign.preprocess

- **trainingLabel**: The list linking the index of each training sample to a specific group it belongs to.
- **testLabel**: The vector of the phenotypes/labels of the test samples.
- **geneList**: The list that collects the signature genes of one/multiple pathways. Every component of this list contains the signature genes associated with one pathway.
- **adaptive_B**: Logicals. If TRUE, the model adapts the baseline/background (B) of genomic measures for the test samples. The default is TRUE.
- **adaptive_S**: Logicals. If TRUE, the model adapts the signatures (S) of genomic measures for the test samples. The default is FALSE.
- **mixture_beta**: Logicals. If TRUE, elements of the pathway activation matrix are modeled by a spike-and-slab mixture distribution. The default is TRUE.
- **outputDir**: The path to the directory to save the output files. The path needs to be quoted in double quotation marks.

Details

The assign.output function is suggested to run after the assign.preprocess, assign.mcmc and assign.summary functions. For the prediction/validation in the test dataset, the Y argument in the assign.mcmc function is the output value "testData_sub" from the assign.preprocess function.

Value

The assign.output returns one .csv file containing one/multiple pathway activity for each individual test samples, scatter plots of pathway activity for each individual pathway in all the test samples, and heatmap plots for the gene expression of the prior signature and posterior signatures (if adaptive_S equals TRUE) of each individual pathway in the test samples.

Author(s)

Ying Shen

Examples

```r
assign.output(processed.data=processed.data, 
mcmc.pos.mean.testData=mcmc.pos.mean, trainingData=trainingData1, 
testData=testData1, trainingLabel=trainingLabel1, testLabel=testLabel1, 
geneList=NULL, adaptive_B=TRUE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir=tempdir)
```

assign.preprocess
Input data preprocessing

Description

The assign.preprocess function is used to perform quality control on the user-provided input data and generate starting values and/or prior values for the model parameters. The assign.preprocess function is optional. For users who already have the correct format for the input of the assign function, they can skip this step and go directly to the assign.mcmc function.
Usage

assign.preprocess(trainingData=NULL, testData, trainingLabel, geneList=NULL, n_sigGene=NA, theta0=0.05, theta1=0.9)

Arguments

trainingData The genomic measure matrix of training samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number. The default is NULL.

testData The genomic measure matrix of test samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number.

trainingLabel The list linking the index of each training sample to a specific group it belongs to. See details and examples for more information.

geneList The list that collects the signature genes of one/multiple pathways. Every component of this list contains the signature genes associated with one pathway. The default is NULL.

n_sigGene The vector of the signature genes to be identified for one pathway. n_sigGene needs to be specified when geneList is set NULL. The default is NA. See examples for more information.

theta0 The prior probability for a gene to be significant, given that the gene is NOT defined as "significant" in the signature gene lists provided by the user. The default is 0.05.

theta1 The prior probability for a gene to be significant, given that the gene is defined as "significant" in the signature gene lists provided by the user. The default is 0.9.

Details

The assign.preprocess function is applied to perform quality control on the user-provided genomic data and meta data, re-format the data in a way that can be used in the following analysis, and generate starting/prior values for the pathway signature matrix. The output values of the assign.preprocess function will be used as input values for the assign.mcmc function.

For training data with 1 control group and 3 experimental groups (10 samples/group; all 3 experimental groups share 1 control group), the trainingLabel can be specified as: trainingLabel <- list(control = list(expr1=1:10, expr2=1:10, expr3=1:10), expr1 = 11:20, expr2 = 21:30, expr3 = 31:40)

For training data with 3 control groups and 3 experimental groups (10 samples/group; Each experimental group has its corresponding control group), the trainingLabel can be specified as: trainingLabel <- list(control = list(expr1=1:10, expr2=21:30, expr3=41:50), expr1 = 11:20, expr2 = 31:40, expr3 = 51:60)

It is highly recommended that the user use the same expriment name when specifying control indice and exprimental indice.

Value

trainingData_sub The G x N matrix of G genomic measures (i.e., gene expression) of N training samples. Genes/probes present in at least one pathway signature are retained. Only returned when the training dataset is available.
assign.summary

The G x N matrix of G genomic measures (i.e., gene expression) of N test samples. Genes/probes present in at least one pathway signature are retained.

B_vector
The G x 1 vector of genomic measures of the baseline/background. Each element of the B_vector is calculated as the mean of the genomic measures of the control samples in training data.

S_matrix
The G x K matrix of genomic measures of the signature. Each column of the S_matrix represents a pathway. Each element of the S_matrix is calculated as the mean of genomic measures of the experimental samples minus the mean of the control samples in the training data.

Delta_matrix
The G x K matrix of binary indicators. Each column of the Delta_matrix represents a pathway. The elements in Delta_matrix are binary (0, insignificant gene; 1, significant gene).

Pi_matrix
The G x K matrix of probability p of a Bernoulli distribution. Each column of the Pi_matrix represents a pathway. Each element in the Pi_matrix is the probability of a gene to be significant in its associated pathway.

diffGeneList
The list that collects the signature genes of one/multiple pathways generated from the training samples or from the user provided gene list. Every component of this list contains the signature genes associated with one pathway.

Author(s)
Ying Shen

Examples

```r
processed.data <- assign.preprocess(trainingData=trainingData1,
                                   testData=testData1, trainingLabel=trainingLabel1, geneList=geneList1)
```

```r
assign.summary <- assign.summary(test=..., burn_in=1000, iter=2000, adaptive_B = TRUE, adaptive_S = FALSE,
                                   mixture_beta = TRUE)
```

Description
The assign.summary function computes the posterior mean of the model parameters estimated in every iteration during the Gibbs sampling.

Usage

```r
assign.summary(test, burn_in=1000, iter=2000, adaptive_B = TRUE, adaptive_S = FALSE,
                mixture_beta = TRUE)
```

Arguments

- **test**: The list object returned from the assign.mcmc function. The list components are the MCMC chains of the B, S, Delta, beta, gamma, and sigma.
- **burn_in**: The number of burn-in iterations. These iterations are discarded when computing the posterior means of the model parameters. The default is 1000.
- **iter**: The number of total iterations. The default is 2000.
assign.wrapper

adaptive_B Logicals. If TRUE, the model adapts the baseline/background (B) of genomic measures for the test samples. The default is TRUE.

adaptive_S Logicals. If TRUE, the model adapts the signatures (S) of genomic measures for the test samples. The default is FALSE.

mixture_beta Logicals. If TRUE, elements of the pathway activation matrix are modeled by a spike-and-slab mixture distribution. The default is TRUE.

Details

The assign.summary function is suggested to run after the assign.convergence function, which is used to check the convergency of the MCMC chain. If the MCMC chain does not converge to a stationary phase, more iterations are required in the assign.mcmc function. The number of burn-in iterations is usually set to be half of the number of total iterations, meaning that the first half of the MCMC chain is discarded when computing the posterior means.

Value

beta_pos The N x K matrix of the posterior mean of the pathway activation level in test samples (transposed matrix A). Columns: K pathways; rows: N test samples

sigma_pos The G x 1 vector of the posterior mean of the variance of gene.

kappa_pos The N x K matrix of posterior mean of pathway activation level in test samples (transposed matrix A) (adjusted beta_pos scaling between 0 and 1). Columns: K pathways; rows: N test samples

gamma_pos The N x K matrix of the posterior probability of pathways being activated in test samples.

S_pos The G x K matrix of the posterior mean of pathway signature genes.

Delta_pos The G x K matrix of the posterior probability of genes being significant in the associated pathways.

Author(s)

Ying Shen

Examples

assign.wrapper ASSIGN All-in-one function

Description

The assign.wrapper function integrates the assign.preprocess, assign.mcmc, assign.summary, assign.output, assign.cv.output functions into one wrapper function.

Usage

assign.wrapper(trainingData=NULL, testData, trainingLabel, testLabel=NULL, geneList=NULL, n_sigGene=NA, adaptive_B=TRUE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir, p_beta=0.01, theta0=0.05, theta1=0.9, iter=2000, burn_in=1000)
assign.wrapper

Arguments

trainingData The genomic measure matrix of training samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number. The default is NULL.

testData The genomic measure matrix of test samples (i.e., gene expression matrix). The dimension of this matrix is probe number x sample number.

trainingLabel The list linking the index of each training sample to a specific group it belongs to. See examples for more information.

testLabel The vector of the phenotypes/labels of the test samples. The default is NULL.

geneList The list that collects the signature genes of one/multiple pathways. Every component of this list contains the signature genes associated with one pathway. The default is NULL.

n_sigGene The vector of the signature genes to be identified for one pathway. n_sigGene needs to be specified when geneList is set NULL. The default is NA. See examples for more information.

adaptive_B Logicals. If TRUE, the model adapts the baseline/background (B) of genomic measures for the test samples. The default is TRUE.

adaptive_S Logicals. If TRUE, the model adapts the signatures (S) of genomic measures for the test samples. The default is FALSE.

mixture_beta Logicals. If TRUE, elements of the pathway activation matrix are modeled by a spike-and-slab mixture distribution. The default is TRUE.

outputDir The path to the directory to save the output files. The path needs to be quoted in double quotation marks.

p_beta p_beta is the prior probability of a pathway being activated in individual test samples. The default is 0.01.

theta0 The prior probability for a gene to be significant, given that the gene is NOT defined as "significant" in the signature gene lists provided by the user. The default is 0.05.

theta1 The prior probability for a gene to be significant, given that the gene is defined as "significant" in the signature gene lists provided by the user. The default is 0.9.

iter The number of iterations in the MCMC. The default is 2000.

burn_in The number of burn-in iterations. These iterations are discarded when computing the posterior means of the model parameters. The default is 1000.

Details

The assign.wrapper function is an all-in-one function which output the necessary results for the basic users. For the users who need more intermediate results for model diagnosis, it is better to run the assign.preprocess, assign.mcmc, assign.convergence, assign.summary functions by order and extract the output values from the returned list objects of those functions.

Value

The assign.wrapper returns one/multiple pathway activity for each individual training samples and test samples, scatter plots of pathway activity for each individual pathway in the training and test samples, heatmap plots for gene expression signatures for each individual pathways, heatmap plots for the gene expression of the prior signature and posterior signatures (if adaptive_S equals TRUE) of each individual pathway in the test samples.
Author(s)

Ying Shen and W. Evan Johnson

Examples

data(trainingData1)
data(testData1)
data(geneList1)

trainingLabel1 <- list(control = list(bcat=1:10, e2f3=1:10, myc=1:10, ras=1:10, src=1:10), bcat = 11:19, e2f3 = 20:28, myc = 29:38, ras = 39:48, src = 49:55)
testLabel1 <- rep(c("subtypeA","subtypeB"),c(53,58))

assign.wrapper(trainingData=trainingData1, testData=testData1, trainingLabel=trainingLabel1, testLabel=testLabel1, geneList=geneList1, adaptive_B=TRUE, adaptive_S=FALSE, mixture_beta=TRUE, outputDir=tempdir, p_beta=0.01, theta0=0.05, theta1=0.9, iter=20, burn_in=10)

geneList1 Pathway signature gene sets

Description

Signature genes for 5 oncogenic pathways.

Usage

data(geneList1)

Format

List with 5 components representing each pathway. 200 signature genes are selected for each pathway.

Source

testData1
Gene expression profiling from cancer patients (test dataset)

Description
Gene expression datasets for 111 lung cancer patient samples, including 53 cases of lung adenocarcinoma and 58 cases of lung squamous carcinoma.

Usage
data(testData1)

Format
Data frame with 1000 genes/probes (rows) and 111 samples (columns)

Source

trainingData1
Gene expression profiling from cell line preturbation experiments (training dataset)

Description
Gene expression datasets for 5 oncogenic pathway preturbation experiments, including B-Catenin, E2F3, MYC, RAS, and SRC pathways.

Usage
data(trainingData1)

Format
Data frame with 1000 genes/probes (rows) and 55 samples (columns)

Source
Index

Topic datasets
 geneList1, 12
 testData1, 13
 trainingData1, 13

assign.convergence, 2
assign.cv.output, 3
assign.mcmc, 4
assign.output, 6
assign.preprocess, 7
assign.summary, 9
assign.wrapper, 10

geneList1, 12

testData1, 13
trainingData1, 13