Package ‘ASpli’
March 28, 2017

Type Package
Title Analysis of alternative splicing using RNA-Seq
Version 1.0.0
Date 2016-08-22
Author Estefania Mancini, Marcelo Yanovsky and Ariel Chernomoretz
License GPL

biocViews GeneExpression, Transcription, AlternativeSplicing,
Coverage, DifferentialExpression, DifferentialSplicing,
TimeCourse, RNASeq, GenomeAnnotation, Sequencing, Alignment

Depends methods,GenomicRanges,GenomicFeatures,edgeR,BiocGenerics,
IRanges, GenomicAlignments, DESeq2, DEXSeq, Gviz, grDevices,
stats, utils, S4Vectors, AnnotationDbi, parallel
Suggests RNAseqData,HNRNPC.bam.chr14, BiocStyle
Maintainer Estefania Mancini <emancini@leloir.org.ar>

Description Integrative pipeline for the analysis of alternative
splicing using RNAseq.

NeedsCompilation no

R topics documented:

ASpli-package .. 2
AS accesors .. 3
AsDiscover .. 4
ASpliAS-class ... 5
ASpliCounts ... 6
ASpliCounts-class ... 7
ASpliDU-class ... 8
ASpliFeatures-class 8
binGenome .. 9
binGenome-methods .. 10
Counts accesors .. 10
DU accesors .. 11
Dureport ... 12
Dureport_DEXSeq .. 13
features accesors ... 14
loadBAM ... 15
Description

ASpli is an integrative and flexible package that facilitates the characterization of genome-wide changes in AS under different experimental conditions. ASpli analyzes the differential usage of introns, exons, and splice junctions using read counts, and estimates the magnitude of changes in AS by calculating differences in the percentage of exon inclusion or intron retention using splice junctions. This integrative approach allows the identification of changes in both annotated and novel AS events. ASpli allows users to produce self-explanatory intermediate outputs, based on the aim of their analysis. A typical workflow involves parsing the genome annotation into new features called bins, overlapping read alignments against those bins, and inferring differential bin usage based on the number of reads aligning to the bins and junctions.

Details

- **Package:** ASpli
- **Type:** Package
- **Version:** 0.99.0
- **Date:** 2016-05-25
- **License:** GPL
- **Depends:** methods, GenomicRanges, GenomicFeatures, edgeR, methods, BiocGenerics, IRanges, GenomicAlignments,

Author(s)

Estefania Mancini, Marcelo Yanovsky and Ariel Chernomoretz

References

AS accesors

Examples

```r
library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
    condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),rep("KD",4)))
pair <- c("CT","KD")
du <- DUreport(counts, targets, pair, group)
as <- AsDiscover(counts, targets, features, bam, threshold=5, l=100, pair=pair)
```

<table>
<thead>
<tr>
<th>AS accesors</th>
<th>Accessors for ASpliAS object</th>
</tr>
</thead>
</table>

Description

Accessors for ASpliAS object

Usage

```r
altPSI(x)
esPSI(x)
irPIR(x)
joint(x)
junctionsPIR(x)
junctionsPSI(x)
```

Arguments

- `x` An ASpliAS object

Value

Returns dataframes with genomic metadata and PSI and PIR metrics

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
AsDiscover

Examples

```r
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
library(RNAseqData.HNRNPC.bam.chr14)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
                      condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),rep("KD",4)))
pair <- c("CT", "KD")
as <- AsDiscover(counts, targets, features, bam, threshold=5, l=100, pair=pair)
altPSI(as)
esPSI(as)
irPIR(as)
joint(as)
junctionsPIR(as)
junctionsPSI(as)
```

AsDiscover

Report PSI and PIR using experimental junctions

Description

Given a bin, it is possible to calculate PSI/PIR metric using junctions to estimate changes in the use of it along different conditions.

Usage

```r
AsDiscover(counts, 
            targets, 
            features, 
            bam, 
            l, 
            pair, 
            threshold, 
            cores)
```

Arguments

counts An object of class ASpliCounts.
targets A dataframe containing sample, bam and condition columns
features An object of class ASpliFeatures.
bam A list with BAM files
l Read length of sequenced read. Default 100L
pair Vector of length two, either numeric or character, providing the pair of groups to be compared
threshold Minimum number of reads supporting junctions. Default=5
cores Number of processors to use
ASpliAS-class

Value

An object of class ASpliAS

irPIR reports: event, e1i counts (J1), ie1 counts (J2), j_within (J3), PIR by condition. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

altPSI reports: event, J1 (start), J2 (end), J3 (exclusion), PSI. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

esPSI reports: event, J1 (start), J2 (end), J3 (exclusion), PSI. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

junctionsPIR PIR metric for each experimental junction using e1i and ie2 counts. Exclusion junction is the junction itself. This output helps to discover new introns as well as new retention events.

junctionsPSI Given a junction, it is possible to analyze if it shares start, end or both with another junction. If so, is because there is more than one way for/of splicing. Using strand information it is possible to classify those pair of junctions into Alt5’ss, Alt3’ss or ES. Ratio between them along samples is reported.

Author(s)

Estefania Mancini, Marcelo Yanovsky and Ariel Chernomoretz

See Also

Accessors: irPIR, altPSI, esPSI, junctionsPIR, junctionsPSI Export: writeAS

Examples

library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
geno <- loadDb(chr14)
features <- binGenome(geno)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
 condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),rep("KD",4)))
pair <- c("CT","KD")
as <- AsDiscover(counts, targets, features, bam, l=100L, pair=pair)
writeAS(as=as, output.dir="only_as")

ASpliAS-class

Description

Results of PSI and PIR using experimental junctions
ASpliCounts

Slots

irPIR: Reports: event, eli counts (J1), ie1 counts (J2), j_within (J3), PIR by condition. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

altPSI: Reports: event, J1 (start), J2 (end), J3 (exclusion), PSI. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

esPSI: Reports: event, J1 (start), J2 (end), J3 (exclusion), PSI. J1, J2, J3 sum of junctions (J1, J2, J3) by condition.

join: It is a combination of irPIR, altPSI and esPSI tables

junctionsPIR: PIR metric for each experimental junction using eli and ie2 counts. Exclusion junction is the junction itself. This output helps to discover new introns as well as new retention events

junctionsPSI: Given a junction, it is possible to analyze if it shares start, end or both with another junction. If so, is because there is more than one way for/of splicing. Using strand information it is possible to classify those pair of junctions into Alt5’ss, Alt3’ss or ES. Ratio between them along samples is reported.

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also

Methods: AsDiscover, Accessors: irPIR, esPSI, junctionsPIR, junctionsPSI

ASpliCounts Class "ASpliCounts"

Description

Contains results of read overlaps against all feature levels summarization

Slots

gene.counts
exon.intron.counts
junction.counts
e1i.counts
ie2.counts
gene.rd
bin.rd

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
ASpliCounts-class

Class "ASpliCounts"

Description

Contains results of read overlaps against all feature levels summarization

Slots

gene.counts: Object of class "data.frame"
exon.intron.counts: Object of class "data.frame"
junction.counts: Object of class "data.frame"
e1i.counts: Object of class "data.frame"
ie2.counts: Object of class "data.frame"
gene.rd: Object of class "data.frame"
bin.rd: Object of class "data.frame"

Methods

AsDiscover psi and pir metrics
countsb bin counts accessor
countse1i e1i counts accessor
countsg gene counts accessor
countsie2 ie2 counts accessor
countsj junction counts accessor
DUreport_DEXSeq differential expression and usage estimation using DEXSeq
DUReport differential expression and usage estimation using DEXSeq
rdsb bin read densities accessor
rdsg gen read densities accessor
rds compute read densities on genes and bins
writeCounts Export count tables
writeRds Export read density tables

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
ASpliDU-class
Class "ASpliDU"

Description

Contains results of differential expression at gene level and differential usage at bin and junction level estimation using DEreport method.

Slots

- genes
- bins
- junctions

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
Description

Exons and introns are subdivided into new features called exon and intron bins and are then classified into exclusively exonic bins, exclusively intronic bins or alternative splicing (AS) bins.

Usage

```
binGenome(genome, md = NULL)
```

Arguments

- **genome**: An object of class transcriptDb (TxDb)
- **md**: A dataframe with symbol (common names) of TxDb genes. If there isn’t md file, gene name will be repeated.

Details

Exon and intron coordinates are extracted from gene annotation, only those from multi-exonic genes are saved for further evaluation. In case more than one isoform exist, some exons and introns will overlap. Exons and introns are then disjoint into new features called exon and intron bins, and then they are classified into exclusively exonic bins, exclusively intronic bind or alternative splicing bins (AS-bins), which are labeled according to which alternative splicing event are assumed to came from:

- **ES**: exon skipping
- **IR**: intron retention
- **Alt5l3’ss**: alternative five/three prime splicing site
- **"** (ES*, IR*, AltSS*) means this AS bin/region is involved simultaneously in more than one AS event type
- **external**: from the beginning or the end of a transcript

Subgenic features are labeled as follow (hypothetical GeneAAA):

- **GeneAAA:E001**: defines first exonic bin
- **GeneAAA:I001**: defines first intronic bin
- **GeneAAA:Io001**: defines first intron before disjoint into bins
- **GeneAAA:J001**: defines first junction

Junctions are defined as the last position of five prime exon (donor position) and first position of three prime exon (acceptor position). Using TxDb object, it is possible to extract annotated/known junctions. This information will be useful for the analysis of "experimental" junctions (reads aligned with gaps). Bins and junctions are labelled always in 5’ to 3’ sense. This notation is strand independent. It implies that bin / junction with lower numbering is always at 5’.

Value

An ASplitFeatures object. It is a list of features using GRanges format.
Counts accesors

Author(s)
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also
features\texttt{g}, features\texttt{b}, features\texttt{j}

Examples
\begin{verbatim}
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
GeneCoord <- features\texttt{g}(features)
BinCoord <- features\texttt{b}(features)
JunctionCoord <- features\texttt{j}(features)
\end{verbatim}

\textbf{Description}
Feature coordinates extraction from a Transcript Db Database

\textbf{Methods}
\begin{verbatim}
signature(genome = "TxDb") An object of class transcriptDb (TxDb)
\end{verbatim}

Author(s)
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also
features\texttt{g}, features\texttt{b}, features\texttt{j}

\textbf{Counts accesors}
Accessors for ASpliCounts object

Usage
\begin{verbatim}
countsb(x)
countself1(x)
countsg(x)
countself2(x)
countsj(x)
rdsg(x)
rdsb(x)
\end{verbatim}
DU accessor

Arguments

- x: An ASpliCounts object

Value

Returns dataframes with counts by sample and genomic metadata

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

Examples

```r
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
library(RNAseqData.HNRNPC.bam.chr14)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14.BAMFILES,
                      condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000);
countsb(counts)
countsEl(counts)
countsG(counts)
countsIE2(counts)
countsJ(counts)
rdsG(counts)
rdsB(counts)
```

Description

Accessors for ASpliDU object

Usage

- `genesDE(x)`
- `binsDU(x)`
- `junctionsDU(x)`

Arguments

- x: An ASpliDU object

Value

Returns dataframes with genomic metadata and logFC and pvalue

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
Examples

```r
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
library(RNAseqData.HNRNPC.bam.chr14)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
                     condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000);
group <- factor(c(rep("CT",4),rep("KD",4)))
pair <- c("CT","KD")
du <- DUreport(counts, targets, pair, group)
genDE(du)
binsDU(du)
junctionsDU(du)
```

DUreport

Differential gene expression and differential bin/junction usage estimation

Description

Estimate differential expression at gene level and differential usage at bin and junction level.

Usage

```r
DUreport(counts, targets, pair, group, minGenReads, minBinReads, minRds, ignoreExternal, threshold)
```

Arguments

- **counts**: An object of class ASpliCounts
- **targets**: A dataframe containing sample, bam and condition columns
- **pair**: vector of length two, either numeric or character, providing the pair of groups to be compared
- **group**: Factorial vector with tags for each sample
- **minGenReads**: Default 10 reads
- **minBinReads**: Default 5 reads
- **minRds**: Default 0.05
- **ignoreExternal**: Ignore Exon Bins at the beginning or end of the transcript. Default TRUE
- **threshold**: Minimum number of junction. Default 5

Value

An ASpliDU object with results at genes, bins and junctions level

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
DUreport_DEXSeq

See Also

DEXSeq, edgeR Accesors: genesDE, binsDU,junctionsDU Export: writeDU

Examples

library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
 condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),
 rep("KD",4)))
pair <- c("CT","KD")
du <- DUreport(counts, targets, pair, group)
writeDU(du, output.dir="only_du")

DUPreport_DEXSeq Differential gene expression and differential bin/junction usage estimation

Description

Estimate differential expression at gene level and differential usage at bin and junction level.

Usage

DUreport_DEXSeq(counts, targets, pair, group, minGenReads, minBinReads, minRds,threshold)

Arguments

counts An object of class ASpliCounts
targets A dataframe containing sample, bam and condition columns
pair vector of length two, either numeric or character, providing the pair of groups to
 be compared
group Factorial vector with tags for each sample
minGenReads Default 10 reads
minBinReads Default 5 reads
minRds Default 0.05
threshold Minimum number of junction. Default 5

Value

An ASpliDU object with results at genes, bins and junctions level

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
features accesors

See Also

DEXSeq, edgeR | Accesors: genesDE, binsDU, junctionsDU | Export: writeDU

Examples

```
library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
    condition=rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),
    rep("KD",4)))
pair <- c("CT","KD")
du <- DUreport_DEXSeq(counts, targets, pair, group)
writeDU(du, output.dir="only_du")
```

features accesors

Accessors for ASpliFeatures object

Description

Accessors for ASpliFeatures object

Usage

`featuresg(x)`
`featuresb(x)`
`featuresj(x)`

Arguments

x | An ASpliFeatures object

Value

Returns a GenomicRanges object

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

Examples

```
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
featuresg(features)
featuresb(features)
featuresj(features)
```
loadBAM

Description

Load BAM files into R session using targets object specification

Usage

```r
loadBAM(targets, cores)
```

Arguments

- `targets`: A dataframe containing sample, bam and condition columns
- `cores`: Number of processors to use

Value

A list of GAlignments. Each element of the list correspond to a BAM file (or sample)

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

Examples

```r
library(RNAseqData.HNRNPC.bam.chr14)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
                      condition=c(rep("CT",4),rep("KD",4)))
targets
bam <- loadBAM(targets)
```

plotTopTags

Description

Using genomic coordinates and BAM files this function is useful for make coverage plots

Usage

```r
plotTopTags(auxdf, genome, targetsPlot, output.dir)
```

Arguments

- `auxdf`: A data frame: row.naMes=bin names, gene coordinates, bin coordinates and event name columns
- `genome`: TxDb genome
- `targetsPlot`: A dataframe containing: bam files name, condition (y axe tag), color for each condition
- `output.dir`: Name of directory where plots are supossed to be exported
Value

Coverage plots in png format of selected events

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

Examples

```r
calligraphy
library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata", "chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize = 50000)
pair <- c("CT","KD")
group <- c(rep("CT", 4),rep("KD", 4))
du_HNRNPC <- DUreport(counts, targets, pair, group)
bins <- binsDU(du_HNRNPC)
topTagsBins <- which(bins$bin.fdr <= 0.1 &
abs(bins$logFC) >=0.58)
targetsPlot <- data.frame(bam=targets$bam,
sample=targets$condition,
color=c(rep("blue", 4),rep("red", 4)),
stringsAsFactors=FALSE)

auxdf<-bins[topTagsBins,]
# for simplicity, just one: LRR1:E005
plotTopTags(auxdf["LRR1:E005",],
geno,
targetsPlot,
output.dir="testPlots")
```

rds

Divides read counts by gene and bin length

Description

Divides read counts by gene and bin length

Usage

rds(counts, targets)

Arguments

counts An ASspliCounts object

targets Target dataframe
readCounts

Value

Read densities of genes and bins

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

readCounts

Summarize read overlaps

Description

Summarize read overlaps against all feature levels

Usage

```r
readCounts(features, bam, cores, l, maxISize, minAnchor)
```

Arguments

- `features`: An object of class ASpliFeatures. It is a list of GRanges at gene, bin and junction level
- `bam`: List of bam files
- `l`: Read length of sequenced library. It is used for compute E1I and IE2 read summarization
- `maxISize`: maximum intron expected size. Junctions longer than this size will be discarded
- `cores`: Number of cores to use. Default 1
- `minAnchor`: Percentage of read that should be aligned in exon-intron boundary

Value

An object of class ASpliCounts. Each slot is a dataframe containing features metadata and read counts. Summarization is reported at gene, bin, junction and intron flanking regions (E1I, IE2)

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also

Accesors: countsg, countsb, countsj, countsei1, countsie2, rdsrg, rdsrb Export: writeCounts

Examples

```r
library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
geno <- loadDb(chr14)
features <- binGenome(geno)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)#OK
writeCounts(counts, output.dir="only_counts")
```
show-methods

Display a summary of data contained in ASpliObjects

Description
Display a summary of data contained in ASpliObjects

Details
Display a summary of data contained in ASpliObjects

Author(s)
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

write

Write results

Description
Export tab delimited files in structured output

Usage
writeCounts(counts, output.dir="counts")
writeRds(counts, output.dir="rds")
writeDU(du, output.dir="du")
writeAS(as, output.dir="as")
writeAll(counts, du, as, output.dir="output")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counts</td>
<td>An ASpliCounts object</td>
</tr>
<tr>
<td>as</td>
<td>An ASpliAS object</td>
</tr>
<tr>
<td>du</td>
<td>An ASpliDU object</td>
</tr>
<tr>
<td>output.dir</td>
<td>Name of output folder (new or existing)</td>
</tr>
</tbody>
</table>

Value
Tab delimited files are exported in a tidy manner into output folder

Author(s)
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also
AsDiscover, binGenome, DUreport
write-methods

<table>
<thead>
<tr>
<th>write-methods</th>
<th>Write results</th>
</tr>
</thead>
</table>

Description

Export tab delimited files in structured output

Details

Tab delimited files are exported in a tidy manner into output folder

Author(s)

Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz

See Also

AsDiscover, binGenome, DUreport
Index

*Topic alternative splicing, RNA-seq, junctions
 ASpli-package, 2
 altPSI, 5
 altPSI (AS accesors), 3
 altPSI, ASpliAS-method (ASpliAS-class), 5
 AS accesors, 3
 AsDiscover, 4, 6, 18, 19
 AsDiscover, ASpliCounts-method (ASpliCounts-class), 7
 ASpli (ASpli-package), 2
 ASpli-package, 2
 ASpliAS-class, 5
 ASpliCounts, 6
 ASpliCounts-class, 7
 ASpliDU-class, 8
 ASpliFeatures-class, 8
 binGenome, 9, 18, 19
 binGenome, Txdb-method (binGenome-methods), 10
 binGenome-methods, 10
 binsDU, 13, 14
 binsDU (DU accesors), 11
 binsDU, ASpliDU-method (ASpliDU-class), 8
 Counts accesors, 10
 countsb, 17
 countsb (Counts accesors), 10
 countsb, ASpliCounts-method (ASpliCounts-class), 7
 countse1i, 17
 countse1i (Counts accesors), 10
 countse1i, ASpliCounts-method (ASpliCounts-class), 7
 countsg, 17
 countsg (Counts accesors), 10
 countsg, ASpliCounts-method (ASpliCounts-class), 7
 countsie2, 17
 countsie2 (Counts accesors), 10
 countsie2, ASpliCounts-method (ASpliCounts-class), 7
 countsj, 17
 countsj (Counts accesors), 10
 countsj, ASpliCounts-method (ASpliCounts-class), 7
 DEXSeq, 13, 14
 DU accesors, 11
 DUreport, 12, 18, 19
 DUreport, ASpliCounts-method (ASpliCounts-class), 7
 DUreport_DEXSeq, 13
 DUreport_DEXSeq, ASpliCounts-method (ASpliCounts-class), 7
 edgeR, 13, 14
 esPSI, 5, 6
 esPSI (AS accesors), 3
 esPSI, ASpliAS-method (ASpliAS-class), 5
 features accesors, 14
 featuresb, 10
 featuresb (features accesors), 14
 featuresb, ASpliFeatures-method (ASpliFeatures-class), 8
 featuresg, 10
 featuresg (features accesors), 14
 featuresg, ASpliFeatures-method (ASpliFeatures-class), 8
 featuresj, 10
 featuresj (features accesors), 14
 featuresj, ASpliFeatures-method (ASpliFeatures-class), 8
 genesDE, 13, 14
 genesDE (DU accesors), 11
 genesDE, ASpliDU-method (ASpliDU-class), 8
 irPIR, 5, 6
 irPIR (AS accesors), 3
 irPIR, ASpliAS-method (ASpliAS-class), 5
 joint (AS accesors), 3
 joint, ASpliAS-method (ASpliAS-class), 5
 junctionsDU, 13, 14
junctionsDU (DU accesors), 11
junctionsDU, ASpliDU-method
 (ASpliDU-class), 8
junctionsPIR, 5, 6
junctionsPIR (AS accesors), 3
junctionsPIR, ASpliAS-method
 (ASpliAS-class), 5
junctionsPSI, 5, 6
junctionsPSI (AS accesors), 3
junctionsPSI, ASpliAS-method
 (ASpliAS-class), 5

loadBAM, 15

plotTopTags, 15

rds, 16
rds, ASpliCounts-method
 (ASpliCounts-class), 7
rdsb, 17
rdsb (Counts accesors), 10
rdsb, ASpliCounts-method
 (ASpliCounts-class), 7
rdsg, 17
rdsg (Counts accesors), 10
rdsg, ASpliCounts-method
 (ASpliCounts-class), 7
readCounts, 17
readCounts, ASpliFeatures-method
 (ASpliFeatures-class), 8

show, ASpliAS-method (show-methods), 18
show, ASpliCounts-method (show-methods), 18
show, ASpliDU-method (show-methods), 18
show, ASpliFeatures-method
 (show-methods), 18
show-methods, 18

write, 18
write-methods, 19
writeAll (write), 18
writeAll, ANY-method (write-methods), 19
writeAS, 5
writeAS (write), 18
writeAS, ASpliAS-method (ASpliAS-class), 5
writeAS-methods (write-methods), 19
writeCounts, 17
writeCounts (write), 18
writeCounts, ASpliCounts-method
 (ASpliCounts-class), 7
writeCounts-methods (write-methods), 19

writeDU, 13, 14
writeDU (write), 18
writeDU, ASpliDU-method (ASpliDU-class), 8
writeDU-methods (write-methods), 19
writeRds (write), 18
writeRds, ASpliCounts-method
 (ASpliCounts-class), 7
writeRds-methods (write-methods), 19