Package ‘Anaquin’

April 25, 2017

Type Package

Title Statistical analysis of sequins

Version 1.2.0

Date 2016-11-24

Author Ted Wong

Maintainer Ted Wong <t.wong@garvan.org.au>

Description The project is intended to support the use of sequins (synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard open source library for quantitative analysis, modelling and visualization of spike-in controls.

License BSD_3_clause + file LICENSE

VignetteBuilder knitr

URL www.sequin.xyz

Depends R (>= 3.3), ggplot2 (>= 2.2.0)

Imports ggplot2, ROCR, knitr, qvalue, locfit, methods, stats, utils, plyr, DESeq2

Suggests RUnit, rmarkdown

BugReports https://github.com/student-t/RAnaquin/issues

LazyData true

biocViews DifferentialExpression, Preprocessing, RNASeq, GeneExpression, Software

NeedsCompilation no

R topics documented:

 analysis ... 2
 AnaquinData .. 3
 input .. 6
 label .. 7
 measured ... 8
 plotLinear ... 9
 plotLODR ... 11
 plotLogistic .. 12
 plotMA ... 14
Description

Return type of analysis from data set created by AnaquinData

Usage

```r
analysis(object, ...)
```

Arguments

- `...`: Not used
- `object`: S4 object created by AnaquinData

Details

This function takes an AnaquinData object and return the type of analysis.

Value

Type of analysis, eg: PlotLinear
AnaquinData

Examples

Sequin names
names <- row.names(UserGuideData_5.4.6.3)

Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)

Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])

anaquin <- AnaquinData(analysis="PlotLinear",
 seqs=names,
 input=input,
 measured=measured)

analysis(anaquin)

AnaquinData

Create Anaquin dataset

Description

Create an Anaquin dataset. The resulting S4 object is required for every Anaquin analysis.

Usage

AnaquinData(analysis, ...)

Arguments

analysis Type of analysis to be performed (eg. 'PlotLinear', 'PlotLogistic', 'PlotROC', 'PlotLODR'.)
... Analysis specific data inputs.

The function requires the following mandatory data inputs:

<table>
<thead>
<tr>
<th>analysis</th>
<th>Type of analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqs</td>
<td>Sequin names</td>
</tr>
<tr>
<td>...</td>
<td>Analysis specific data inputs</td>
</tr>
</tbody>
</table>

analysis indicates the type of the analysis. The current release supports the following analysis:

- **PlotLinear**: Linear model with sequins
- **PlotLogistic**: GLM logistic model with sequins
- **PlotROC**: ROC analysis with sequins
- **PlotLODR**: LODR (LOESS) analysis with sequins

seqs gives the sequin names. The function will give an error message unless both analysis and seqs are given.

The function accepts the following optional data inputs:
AnaquinData

```
std   Standard deviation
pval  P-value probability
qval  Q-value probability
ratio Expected sequin ratio
input Input concentration (attomol/ul)
measured Measured variable (eg: FPKM)
label Classified labels (eg: 'TP', 'FP')
score Value used for ranking sequins
```

Details

Create an Anaquin dataset. The resulting R-object is required for every Anaquin analysis.

Value

An S4 object of class `AnaquinData`.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
# Example 1: Create Anaquin dataset for PlotLogistic
#
data(UserGuideData_5.4.5.1)

title <- 'Assembly Plot'
xlab <- 'Input Concentration (log2)'
ylab <- 'Sensitivity'

# Sequin names
seqs <- row.names(UserGuideData_5.4.5.1)

# Input concentration
input <- log2(UserGuideData_5.4.5.1$InputConcent)

# Measured sensitivity
measured <- UserGuideData_5.4.5.1$Sn

anaquin <- AnaquinData(analysis='PlotLogistic',
                      seqs=seqs,
                      input=input,
                      measured=measured)

plotLogistic(anaquin, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)

# Example 2: Create Anaquin dataset for PlotLinear
#
data(UserGuideData_5.4.6.3)
```
AnaquinData

title <- 'Gene Expression'
xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

Sequin names
seqs <- row.names(UserGuideData_5.4.6.3)

Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)

Measured FPKKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])

anaquin <- AnaquinData(analysis='PlotLinear',
 seqs=seqs,
 input=input,
 measured=measured)

plotLinear(anaquin, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)

Example 3: Create Anaquin dataset for plotROC
#

data(UserGuideData_5.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

How ROC points are ranked (scoring function)
score <- 1-UserGuideData_5.6.3$Pval

Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

anaquin <- AnaquinData(analysis='PlotROC',
 seqs=seqs,
 ratio=ratio,
 score=score,
 label=label)

plotROC(anaquin, title='ROC Plot', refRats=0)

Example 4: Create Anaquin dataset for plotLODR
#

data(UserGuideData_5.6.3)

xlab <- 'Average Counts'
ylab <- 'P-value'
title <- 'LODR Curves'

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Measured average mean
measured <- UserGuideData_5.6.3$Mean

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

P-value
pval <- UserGuideData_5.6.3$Pval

Q-value
qval <- UserGuideData_5.6.3$Qval

anaquin <- AnaquinData(analysis="PlotLODR",
 seqs=seqs,
 measured=measured,
 ratio=ratio,
 pval=pval,
 qval=qval)

plotLODR(anaquin, xlab=xlab, ylab=ylab, title=title, FDR=0.1)

input

Description

Return input concentration from data set created by AnaquinData.

Usage

```r
input(object, ...)
```

S4 method for signature 'AnaquinData'

```r
input(object)
```

Arguments

- `object`
 - S4 object created by AnaquinData

- `...`
 - Not used

Details

This function takes an AnaquinData object and return the input concentration in the data set.

Value

List of input concentration for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>
label

Examples

```r
data(UserGuideData_5.4.6.3)

# Sequin names
gnames <- row.names(UserGuideData_5.4.6.3)

# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)

# Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])

anaquin <- AnaquinData(analysis='PlotLinear',
                        seqs=names,
                        input=input,
                        measured=measured)

input(anaquin)
```

Description

Return classified labels from data set created by **AnaquinData**.

Usage

```r
label(object, ...)
## S4 method for signature 'AnaquinData'
label(object)
```

Arguments

- `object` S4 object created by `AnaquinData`
- `...` Not used

Details

This function takes an **AnaquinData** object and return the classified labels.

Value

List of classified labels for each sequin. Return **NULL** if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>
Examples

```r
data(UserGuideData_5.6.3)

# Sequin names
seqs <- row.names(UserGuideData_5.6.3)

# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

# How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval

# Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

anaquin <- AnaquinData(analysis='PlotROC',
                       seqs=seqs,
                       ratio=ratio,
                       score=score,
                       label=label)

label(anaquin)
```

measured

Return measured abundance

Description

Return measured abundance from data set created by `AnaquinData`.

Usage

```r
measured(object, ...)
## S4 method for signature 'AnaquinData'
measured(object)
```

Arguments

- **object**: S4 object created by `AnaquinData`
- **...**: Not used

Details

This function takes an `AnaquinData` object and return the measured abundance.

Value

List of measured abundance for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>
Examples

data(UserGuideData_5.4.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.4.6.3)

Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConCent)

Measured FPKM
FPKM <- log2(UserGuideData_5.4.6.3[,2:4])

anaquin <- AnaquinData(analysis=’PlotLinear’,
 seqs=seqs,
 input=input,
 measured=FPKM)

measured(anaquin)

plotLinear

Description

Create a scatter plot with expected abundance on the x-axis, and measured abundance on the y-axis.

Usage

plotLinear(data, title, xlab, ylab, showSD, showLOQ, xBreaks, yBreaks, errors, showAxis, ...)

Arguments

data Anaquin dataset created by AnaquinData. It needs to define information in Details.
title Label of the plot.
xlab Label for the x-axis
ylab Label for the y-axis
xBreaks Breaks for the x-axis
yBreaks Breaks for the y-axis
showSD Show standard deviation bars vertically? Default to TRUE.
showLOQ Show limit-of-quantification? Default to TRUE.
errors How errors bar should be calculated. SD or Range
showAxis Show x-axis and y-axis? Default to TRUE.
... Reserved for internal testing

Details

plotLinear requires the following data inputs from AnaquinData.
The `plotLinear` function plots a scatter plot with expected abundance on the x-axis, and measured abundance on the y-axis. The expected abundance is typically the input concentration of sequins in the mixture, although other measures (such as expected allele frequency) are also possible. The function builds a linear regression between the two variables, and reports associated statistics (R², correlation and regression parameters) on the plot.

The function also estimates limit-of-quantification (LOQ) breakpoint, and reports it on the plot if found. LOQ is defined as the lowest empirical detection limit, a threshold value beyond which stochastic behavior occur. LOQ is estimated by fitting segmented linear regression with two segments on the entire data set, while minimizing the total sum of squares of the differences between the variables.

Value

The functions does not return anything but it prints a scatter plot.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```r
library(Anaquin)

# Data set generated by Cufflinks and Anaquin. described in Section 5.4.6.3 of the user guide.
data(UserGuideData_5.4.6.3)

title <- 'Gene Expression'
xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

# Sequin names
seqs <- row.names(UserGuideData_5.4.6.3)

# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)

# Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])

anaquin <- AnaquinData(analysis='PlotLinear',
                        seqs=seqs,
                        input=input,
                        measured=measured)

plotLinear(anaquin, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)
```
Create Limit-of-Detection Ratio (LODR) plot

Description

Create a Limit-of-Detection Ratio (LODR) plot between measured abundance (x-axis) and p-value probability (y-axis).

Usage

plotLODR(data, FDR, title, xlab, ylab, legTitle, showConf, ...)

Arguments

data: Anaquin dataset created by AnaquinData. It needs to define information in Details.
FDR: Chosen false-discovery-rate. Default to NULL.
title: Label of the plot. Default to NULL.
xlab: Label for the x-axis. Default to NULL.
ylab: Label for the y-axis. Default to NULL.
legTitle: Title for the legend. Default to 'Ratio'.
showConf: Show confidence interval? Default to FALSE.
...
Reserved for internal testing

Details

plotLODR requires the following data inputs from AnaquinData.

seqs: List of sequin identifiers (eg. R2_11_2).
measured: Measured abundance (eg: average counts, DP field in a VCF file etc)
ratio: Expected ratio; eg: expected log-fold ratio or expected allele frequency etc
pval: P-value probability

Create a Limit-of-Detection Ratio (LODR) plot between measured abundance (x-axis) and p-value probability (y-axis).

The LODR plot indicates the confidence in measurement relative to the magnitude of the measurement. For example, p-value should converge to zero as the sequencing depth increases.

The function also fits non-parametric curves for each sequin ratio group. The curves are modelled with local regression analysis, and are colored by the sequin group.

plotLODR is an amendment from the LODR code in the ERCC dashboard R-package. Further details on the statistical algorithm is available in the ERCC documentation at https://bioconductor.org/packages/release/bioc/html/erccdashboard.html.

Value

The functions does not return anything but it prints a LODR plot.
plotLogistic

Plot logistic model for sequins

Description

Create a scatter plot with input concentration on the x-axis, and measured proportion on the y-axis.

Usage

plotLogistic(data, title, xlab, ylab, showLOA, threshold, ...)

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

Data set generated by DESeq2 and Anaquin. described in Section 5.6.3.3 of the user guide.
data(UserGuideData_5.6.3)

xlab <- 'Average Counts'
ylab <- 'P-value'
title <- 'LODR Curves'

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

Measured average abundance
measured <- UserGuideData_5.6.3$Mean

P-value
pval <- UserGuideData_5.6.3$Pval

Q-value
qval <- UserGuideData_5.6.3$Qval

anaquin <- AnaquinData(analysis="PlotLODR",
 seqs=seqs,
 measured=measured,
 ratio=ratio,
 pval=pval,
 qval=qval)

plotLODR(anaquin, xlab=xlab, ylab=ylab, title=title, FDR=0.1)
plotLogistic

Arguments

- `data` Anaquin dataset created by `AnaquinData`. It needs to define information in Details.
- `title` Title of the plot. (Default to NULL).
- `xlab` Label for the x-axis. (Default to NULL).
- `ylab` Label for the y-axis. (Default to NULL).
- `showLOA` Display limit-of-assembly. (Default to TRUE).
- `threshold` Threshold required for limit-of-assembly (LOA)
- `...` Reserved for internal testing

Details

`plotLogistic` requires the following data inputs from `AnaquinData`.

- `seqs` List of sequin identifiers (eg. R2_11_2).
- `input` Input concentration of sequins in attomol/ul.
- `measured` Measured variable (eg: sensitivity).

The `plotLogistic` function creates a scatter plot with input concentration on the x-axis, and measured proportion on the y-axis. Common measured statistics include p-value, percentage and sensitivity. The plot builds a GLM logistic regression model between the two variables.

The function also estimates limit-of-assembly (LOA) breakpoint, and reports it on the plot if found. The LOA breakpoint is an empirical detection limit, and also the abundance whereby the fitted logistic curve exceeds a user-defined threshold.

Value

The functions does not return anything but it prints a scatter plot with a fitted logistic function.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```r
library(Anaquin)

# # Data set generated by Cufflinks and Anaquin. described in Section 5.4.5.1 of # the user guide.
# data(UserGuideData_5.4.5.1)

title <- 'Assembly Plot'
xlab <- 'Input Concentration (log2)'
ylab <- 'Sensitivity'

# Sequin names
seqs <- row.names(UserGuideData_5.4.5.1)

# Input concentration
```
input <- log2(UserGuideData_5.4.5.1$InputConcent)

Measured sensitivity
measured <- UserGuideData_5.4.5.1$Sn

anaquin <- AnaquinData(analysis='PlotLogistic',
 seqs=seqs,
 input=input,
 measured=measured)

plotLogistic(anaquin, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)

plotMA
Create MA plot

Description

Create an MA plot between the M (log ratios) and A (mean average) for endogenous features and sequins.

Usage

```r
plotMA(data, ...)
```

Arguments

- `data` Anaquin dataset created by `AnaquinData`. It needs to define information in **Details**.
- `...` Reserved for internal testing

Details

`plotMA` requires the following data inputs from `AnaquinData`.

- `seqs` List of sequin identifiers (eg. R2_11_2).
- `mean` Log mean average
- `lfc` Log-fold ratio

Create an MA plot between the M (log ratios) and A (mean average) for endogenous features and sequins.

This function can used for differential isoform/gene analysis. The distribution of the sequins are compared with the samples.

Value

The function returns a `ggplot2` object for the plot.

Author(s)

Ted Wong <t.wong@garvan.org.au>
Examples

```r
library(Anaquin)

data('UserGuideData_5.6.3')
data <- AnaquinData(analysis='PlotMA',
  seqs=row.names(UserGuideData_5.6.3),
  mean=log2(UserGuideData_5.6.3$Mean),
  lfc=UserGuideData_5.6.3$ObsLFC)

plotMA(data)
```

plotROC

Create ROC plot

Description

Create a receiver operating characteristic (ROC) plot at various threshold settings.

Usage

```r
plotROC(data, refRats, title, legTitle, ...)
```

Arguments

- `data` Anaquin dataset created by `AnaquinData`. It needs to define information in `Details`.
- `refRats` Reference ratio groups
- `title` Label of the plot. Default to `NULL`.
- `legTitle` Title of the legend. Default to `Ratio`.
- `...` Reserved for internal testing

Details

`plotROC` requires the following data inputs from `AnaquinData`.

- `seqs` List of sequin identifiers (eg. R2_11_2)
- `label` Classified labels (‘TP’ or ‘FP’)
- `score` How the ROC points should be ranked
- `ratio` Expected ratio; eg: expected log-fold ratio

Create a receiver operating characteristic (ROC) plot at various threshold settings. The true positive rate (TPR) is plotted on the x-axis and false positive rate (FPR) is plotted on the y-axis.

The function requires a scoring threshold function, and illustrates the performance of the data as the threshold is varied. Common scoring threshold include p-value, sequencing depth and allele frequency, etc.

ROC plot is a useful diagnostic performance tool; it provides tools to select possibly optimal models and to discard suboptimal ones. In particularly, the AUC statistics indicate the performance of the model relatively to a random experiment (AUC 0.5).
Value

The functions does not return anything but it prints a ROC plot and it’s AUC statistics.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

library(Anaquin)

Data set generated by DESeq2 and Anaquin. described in Section 5.6.3.3 of
the user guide.
data(UserGuideData_5.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval

Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

anaquin <- AnaquinData(analysis='PlotROC',
 seqs=seqs,
 ratio=ratio,
 score=score,
 label=label)

plotROC(anaquin, title='ROC Plot', refRats=0)

pval

Return p-value probability

Description

Return p-value probability from data set created by AnaquinData.

Usage

pval(object, ...)
S4 method for signature 'AnaquinData'
pval(object)

Arguments

object S4 object created by AnaquinData

... Not used
Description

Return q-value probability from data set created by AnaquinData.

Usage

qval(object, ...)
S4 method for signature 'AnaquinData'
qval(object)
Arguments

object S4 object created by AnaquinData
... Not used

Details

This function takes an AnaquinData object and return it's q-value probability.

Value

List of q-value probability for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

data(UserGuideData_5.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

Measured average abundance
measured <- UserGuideData_5.6.3$Mean

P-value
pv <- UserGuideData_5.6.3$Pval

Q-value
qv <- UserGuideData_5.6.3$Qval

anaquin <- AnaquinData(analysis='PlotLODR',
 seqs=seqs,
 measured=measured,
 ratio=ratio,
 pval=pv,
 qval=qv)

qval(anaquin)

<table>
<thead>
<tr>
<th>ratio</th>
<th>Return ratio</th>
</tr>
</thead>
</table>

Description

Return ratio from data set created by AnaquinData.
Usage

ratio(object, ...)
S4 method for signature 'AnaquinData'
ratio(object)

Arguments

object S4 object created by AnaquinData
...
Not used

Details

This function takes an AnaquinData data set object and return its sequin ratio.

Value

List of sequin ratio for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

data(UserGuideData_5.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval

Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

anaquin <- AnaquinData(analysis=’PlotROC’,
 seqs=seqs,
 ratio=ratio,
 score=score,
 label=label)

ratio(anaquin)

RnaQuin.aggregate Aggregate isoform concentration

Description

Aggregate isoform concentration for genes
Usage

RnaQuin.aggregate(isos, concent)

Arguments

isos List of RnaQuin isoform names
concent List of input concentration for each RnaQuin isoform

Details

This function provides a convenient mechanism to add up the RnaQuin input concentration for iso-
forms to the gene level. For example, if we have the following isoforms: R1_101_1: 10 attomol/ul
and R1_101_2: 15 attomol/ul.

R1_101_1 and R1_101_2 forms the splice variants of a gene. Their input concentration would add
up to 25 attomol/ul for R1_101.

Value

Data frame with two columns. The first column gives the RnaQuin gene names. The second column
gives the aggregated gene level input concentration attomol/ul.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

data("RnaQuinMixtureA")

Aggregate input concentration for isoforms into genes
RnaQuin.aggregate(RnaQuinMixtureA$ID, RnaQuinMixtureA$MixA)

RnaQuin.genes

Filter RnaQuin genes

Description

Filter RnaQuin genes from a list of genes names.

Usage

RnaQuin.genes(genes)

Arguments

genes List of character strings for the gene names

Details

This function provideds a convenient mechanism to filter RnaQuin genes from a list of gene names.
A most common usage is for filter a gene expression table.
Value

List of RnaQuin genes from the input. If no sequin gene is found, the function returns an empty list.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

This could also come from a count matrix table
x <- c("R1_11", "R1_12")
RnaQuin.genes(x)

RnaQuin.iso2gen Convert RnaQuin isoforms to genes

Description

Convert RnaQuin isoform names to gene names.

Usage

RnaQuin.iso2gen(isos)

Arguments

isos List of character strings for the isoform names

Details

This function provides a convenient mechanism to convert RnaQuin isoform names to gene names.

Value

List of RnaQuin gene names for each input isoform.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

This could also come from a count matrix table
x <- c("R1_1_1", "R1_1_2", "R1_1_3", "R1_2_1")

Convert RnaQuin isoforms to genes
RnaQuin.iso2gen(x)
RnaQuin.isoforms

Filter RnaQuin isoforms

Description
Filter RnaQuin isoforms from a list of isoforms names.

Usage
RnaQuin.isoforms(isos)

Arguments
isos List of character strings for the isoform names

Details
This function provides a convenient mechanism to filter RnaQuin isoforms from a list of isoform names. A most common usage is for filtering a isoform expression table.

Value
List of RnaQuin isoforms from the input. If no sequin isoforms is found, the function returns an empty list.

Author(s)
Ted Wong <t.wong@garvan.org.au>

Examples
This could also come from a count matrix table
x <- c('R1_11_1', 'This_Is_Not_Sequin', 'R1_12_2')
RnaQuin.isoforms(x)

RnaQuinMixtureA

RnaQuin mixture A

Description
Individual sequins are combined across a range of precise concentrations to formulate mixtures. By modulating the concentration at which each sequin is present in the mixture, we can emulate quantitative features of genome biology.

This is the mixture A in RnaQuin.

Usage
data(RnaQuinMixtureA)
Format

Data frame:

- ID: Sequin name
- Length: Sequin length
- MixA: Input concentration

Value

Data frame with columns defined in *Format*.

<table>
<thead>
<tr>
<th>RnaQuinMixtureB</th>
<th>RnaQuin mixture B</th>
</tr>
</thead>
</table>

Description

Individual sequins are combined across a range of precise concentrations to formulate mixtures. By modulating the concentration at which each sequin is present in the mixture, we can emulate quantitative features of genome biology.

This is the mixture B in *RnaQuin*.

Usage

data(RnaQuinMixtureB)

Format

Data frame:

- ID: Sequin name
- Length: Sequin length
- MixA: Input concentration

Value

Data frame with columns defined in *Format*.
Description
Return scores from data set created by AnaquinData.

Usage
score(object, ...)
S4 method for signature 'AnaquinData'
score(object)

Arguments
object S4 object created by AnaquinData
...
Not used

Details
This function takes an AnaquinData object and return the ROC ranking scores.

Value
List of scores for each sequin. Return NULL if unavailable.

Author(s)
Ted Wong <t.wong@garvan.org.au>

Examples
data(UserGuideData_5.6.3)

Sequin names
seqs <- row.names(UserGuideData_5.6.3)

Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

How the ROC curves are ranked
score <- 1-UserGuideData_5.6.3$Pval

Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

anaquin <- AnaquinData(analysis='PlotROC',
 seqs=seqs,
 ratio=ratio,
 score=score,
 label=label)

score(anaquin)
Return sequin names from AnaquinData data set.

Usage

```
seqs(object, ...)
```

S4 method for signature 'AnaquinData'

```
seqs(object)
```

Arguments

- `object`: S4 object created by `AnaquinData`
- `...`: Not used

Details

This function takes an `AnaquinData` object and return the sequin names in the data set.

Value

List of sequin names.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.4.6.3)
# Sequin names
names <- row.names(UserGuideData_5.4.6.3)
# Input concentration
input <- log2(UserGuideData_5.4.6.3$InputConcent)
# Measured FPKM
measured <- log2(UserGuideData_5.4.6.3[,2:4])
anaquin <- AnaquinData(analysis='PlotLinear',
                        seqs=names,
                        input=input,
                        measured=measured)
seqs(anaquin)
```
Description

Return standard deviation from AnaquinData data set.

Usage

```
std(object, ...)
## S4 method for signature 'AnaquinData'
std(object)
```

Arguments

- `object`: S4 object created by AnaquinData
- `...`: Not used

Details

This function takes an AnaquinData object and return the standard deviation in the data set.

Value

List of standard deviation for each sequin. Return NULL if unavailable.

Author(s)

Ted Wong <t.wong@garvan.org.au>

Examples

```
data(UserGuideData_5.6.3)

# Sequin names
names <- row.names(UserGuideData_5.6.3)

# Expected LFC
input <- log2(UserGuideData_5.6.3$ExpLFC)

# Measured LFC
measured <- log2(UserGuideData_5.6.3$ObsLFC)

# Standard deviation
sd <- UserGuideData_5.6.3$SD

anaquin <- AnaquinData(analysis="PlotLinear",
                   seqs=names,
                   input=input,
                   std=sd,
                   measured=measured)

std(anaquin)
```
UserGuideData_5.4.5.1 Section 5.4.5.1 Assembly Dataset

Description
Assembly sensitivity estimated by Cuffcompare. Section 5.4.5.1 of the Anaquin user guide has details on the data set.

Usage
data(UserGuideData_5.4.5.1)

Format
Data frame:

• InputConcent: Input concentration in attomol/ul
• Sn: Measured sensitivity

Value
Data frame with columns defined in Format.

Source

UserGuideData_5.4.6.3 Gene expression (RnaQuin)

Description
Gene expression estimated by Cufflinks. Section 5.4.6.3 of the Anaquin user guide has details on the data set.

Usage
data(UserGuideData_5.4.6.3)

Format
Data frame:

• InputConcent: Input concentration in attomol/ul
• Observed1: Measured FPKM for the first replicate
• Observed2: Measured FPKM for the second replicate
• Observed3: Measured FPKM for the third replicate
Value

Data frame with columns defined in Format.

Source

UserGuideData_5.6.3
* Differential expression (RnaQuin)

Description

Differential gene expression estimated by DESeq2. Section 5.6.3 has details on the data set.

Usage

`data(UserGuideData_5.6.3)`

Format

Data frame:

- ExpLFC: Expected log-fold change
- ObsLFC: Observed log-fold change
- SD: Standard deviation of the measurement
- Pval: P-value probability
- Qval: Q-value probability
- Mean: Average counts across the samples
- Label: Average counts across the samples

Value

Data frame with columns defined in Format.

Source

Index

analysis, 2
analysis, AnaquinData-method (analysis), 2
AnaquinData, 3
input, 6
input, AnaquinData-method (input), 6
label, 7
label, AnaquinData-method (label), 7
measured, 8
measured, AnaquinData-method (measured), 8
plotLinear, 9
plotLODR, 11
plotLogistic, 12
plotMA, 14
plotROC, 15
pval, 16
pval, AnaquinData-method (pval), 16
qval, 17
qval, AnaquinData-method (qval), 17
ratio, 18
ratio, AnaquinData-method (ratio), 18
RnaQuin.aggregate, 19
RnaQuin.genes, 20
RnaQuin.iso2gen, 21
RnaQuin.isoforms, 22
RnaQuinMixtureA, 22
RnaQuinMixtureB, 23
score, 24
score, AnaquinData-method (score), 24
seqs, 25
seqs, AnaquinData-method (seqs), 25
std, 26
std, AnaquinData-method (std), 26
UserGuideData_5.4.5.1, 27
UserGuideData_5.4.6.3, 27
UserGuideData_5.6.3, 28