Package ‘CAFE’
January 14, 2017

Type Package
Title Chromosomal Aberrations Finder in Expression data
Version 1.10.0
Date 2014-03-16
Author Sander Bollen
Maintainer Sander Bollen <sander.h.bollen@gmail.com>
Depends R (>= 2.10), biovizBase, GenomicRanges, IRanges, ggbio
Imports affy, ggplot2, annotate, grid, gridExtra, tcltk, Biobase
Suggests RUnit, BiocGenerics, BiocStyle
Description Detection and visualizations of gross chromosomal aberrations using Affymetrix expression microarrays as input
License GPL-3
ByteCompile true
biocViews GeneExpression, Microarray, OneChannel, GeneSetEnrichment
NeedsCompilation no

R topics documented:

 CAFE-package ... 2
 armStats .. 3
 bandStats .. 4
 CAFE_data ... 5
 chromosomeStats ... 6
 cliSubset ... 7
 discontPlot ... 7
 discontSmooth .. 8
 facetPlot ... 9
 fisher.method ... 10
 guiSubset ... 11
 ProcessCels ... 12
 rawPlot ... 13
 slidPlot ... 14
 slidSmooth ... 15

Index 16
Description

CAFE attempts to find chromosomal aberrations in microarray expression (mRNA) data. It contains several plotting functions to aid in visualizing these aberrations. It generally recapitulates the workflow described by Mayshar et al (see references), and implements several algorithms described by Friedrich et al (see references).

Details

Package: CAFE
Type: Package
Version: 0.6.9.5
Date: 2013-05-16
License: GPLv3

Author(s)

Sander Bollen

References

Examples

Not run:
system("/some/path/to/cel/files")
data <- ProcessCels()
process cel files
samples <- c(1,2)
select samples 1 and 2 to compare against the rest
chromosomeStats(data,chromNum="ALL",samples=samples)
check for chromosomal gains
chromosomeStats(data,chromNum="ALL",samples=samples,alternative="less")
check for chromosomal losses
bandStats(data,chromNum=1,samples=samples)
check for band gains in chr1
bandStats(data,chromNum=1,samples=samples,alternative="less")
check for band losses in chr1
rawPlot(data,chromNum=1,samples=samples,idiogram=TRUE)
plot raw data with an ideogram
armStats

Find aberrations with chromosome arm resolution

Description
Calculate significant chromosomal arms with various statistical tests

Usage
armStats(datalist, chromNum=1, arm="q", samples=NULL, select="cli", test="fisher", bonferroni = TRUE, enrichment = "greater")

Arguments
datalist: The CAFE datalist to be analyzed, i.e. the output of ProcessCels.
chromNum: The chromosome to be calculated. This can be "ALL" to calculate all chromosomes.
arm: Select which arm - "q" or "p" - to analyse
samples: A vector containing sample numbers to be analyzed
select: Signifies which type of sample selection prompt will be shown, if samples=NULL. Currently supported are "cli" for a command line interface and "gui" for a tcl/tk-based graphical user interface.
test: Signifies which statistical test to be used in the final calculation. Must be either "fisher" for an exact fisher test or "chisqr" for a chi square test.
bonferroni: If bonferroni=TRUE, will correct the p-values of the enrichment test with a bonferroni method.
enrichment: Test for over or underexpression. Can be set to "greater" or "less".

Value
A named vector containing p-values.

Note
Technically speaking, the Fisher’s exact test is better than the chi-square test; the Fisher’s exact test gives an exact p-value, whereas the chi-square test only gives an approximation. However, the Fisher’s exact test can get slow for large sample sizes, and the chi-square test becomes better with increasing sample size but does not slow down as much.

Author(s)
Sander Bollen
bandStats

See Also

chromosomeStats bandStats

Examples

data("CAFE_data")
armStats(CAFE_data,chromNum="ALL",samples=c(1,3),arm="p")

bandStats

Find aberrations with cytoband resolution

Description

Calculate significant chromosome bands with various statistical tests

Usage

bandStats(datalist, chromNum=1, samples=NULL, select="cli", test="fisher",
bonferroni = TRUE, enrichment = "greater")

Arguments

datalist The CAFE datalist to be analyzed, i.e. the output of ProcessCels.
chromNum The chromosome to be calculated. This can be "ALL" to calculate all chromosomes.
samples A vector containing sample numbers to be analyzed
select Signifies which type of sample selection prompt will be shown, if samples=NULL. Currently supported are "cli" for a command line interface and "gui" for a tcl/tk-based graphical user interface.
test Signifies which statistical test to be used in the final calculation. Must be either "fisher" for an exact fisher test or "chisqr" for a chi square test.
bonferroni If bonferroni=TRUE, will correct the p-values of the enrichment test with a bonferroni method.
enrichment Test for over or underexpression. Can be set to "greater" or "less".

Value

A named vector containing p-values if testing a single chromosome. If chromNum="ALL", the output will be a two-column data frame, with cytoband names in the first column and p-values in the second column.

Note

Technically speaking, the Fisher’s exact test is better than the chi-square test; the Fisher’s exact test gives an exact p-value, whereas the chi-square test only gives an approximation. However, the Fisher’s exact test can get slow for large sample sizes, and the chi-square test becomes better with increasing sample size but does not slow down as much.
CAFE_data

Author(s)
Sander Bollen

See Also
chromosomeStats armStats

Examples
data(CAFE_data)
bandStats(CAFE_data, chromNum=17, samples=c(1,3), test="fisher")

CAFE_data
CAFE data set

Description
Contains the dataset of GSE6561 and GSE10809 processed by ProcessCels

Usage
data("CAFE_data")

Format
A list containing two lists
whole A list containing a dataframe for each sample
over A list containing a dataframe for each sample, but with only those probes that are deemed overexpressed

The dataframes inside the lists contain the following columns:
ID Affymetrix probe IDs
Sym Gene symbols
Value Log2 transformed expression values
LogRel Log2 transformed relative expression values (to the median)
Loc Chromosomal locations
Chr Chromosome identifiers

Source

Examples
data("CAFE_data")
chromosomeStats
Find aberrations with whole-chromosome resolution

Description
Calculate significant chromosomes with various statistical tests

Usage
```
chromosomeStats(datalist, chromNum=1, samples=NULL, select="cli", test="fisher",
bonferroni = TRUE, enrichment = "greater")
```

Arguments
- **datalist**: The CAFE datalist to be analyzed, i.e. the output of `ProcessCels`
- **chromNum**: The chromosome to be calculated. This can be "ALL" to calculate all chromosomes.
- **samples**: A vector containing sample numbers to be analyzed
- **select**: Signifies which type of sample selection prompt will be shown, if samples=Null. Currently supported are "cli" for a command line interface and "gui" for a tcl/tk-based graphical user interface.
- **test**: Signifies which statistical test to be used in the final calculation. Must be either "fisher" for an exact fisher test or "chisqr" for a chi square test.
- **bonferroni**: If bonferroni=TRUE, will correct the p-values of the enrichment test with a bonferroni method.
- **enrichment**: Test for over or underexpression. Can be set to "greater" or "less".

Value
A named vector containing p-values.

Note
Technically speaking, the Fisher’s exact test is better than the chi-square test; the Fisher’s exact test gives an exact p-value, whereas the chi-square test only gives an approximation. However, the Fisher’s exact test can get slow for large sample sizes, and the chi-square test becomes better with increasing sample size but does not slow down as much.

Author(s)
Sander Bollen

See Also
- `bandStats`
- `armStats`

Examples
```
data("CAFE_data")
sam <- c(9,11)
chromosomeStats(CAFE_data,chromNum=17,samples=sam,test="fisher")
```
cliSubset

Subset data with a CLI

Description
Provides command line interface for subsetting input datasets

Usage
cliSubset(datalist, alternative)

Arguments
datalist the dataset to be subsetted
alternative "greater" or "less"

Value
subset of input

Author(s)
Sander Bollen

See Also
guiSubset

Examples
Not run:
datalist <- data("CAFE_data")
sub <- cliSubset(datalist, alternative="greater")
End(Not run)

discontPlot
Plot with discontinuous smoother

Description
Plots chromosome plots with a discontinuous smoother

Usage
discontPlot(datalist, samples=c(1,2), chromNum=1, gamma=300, idiomogram=FALSE, file="default")
Arguments

datalist The CAFE datalist to be analyzed, i.e. the output of `ProcessCels`.
samples A vector or sample numbers to be plotted
chromNum the chromosome to be plotted
gamma The gamma level can be roughly compared to the sliding window size in a normal continuous smoother. The gamma level determines how strict the algorithm functions; a higher level will correspond to fewer jumps. This can not be higher than the total number of probesets on the to-be-analyzed chromosome. Must be a positive integer.
idiogram if TRUE, will overlay a chromosome idiogram over the chromosome plot
file Specify a file name to store output png file

Value

Plot to file system; Returns a ggplot2 graph if chromNum!="ALL". When chromNum=="ALL", returns a list of ggplot2 graphs.

Author(s)

Sander Bollen

References

See Also

`rawPlot slidPlot facetPlot`

Examples

data("CAFE_data")
discontPlot(CAFE_data,samples=9,chromNum=17,gamma=300)

discontSmooth A discontinuous smoother

Description

Calculates discontinuous smoother

Usage

discontSmooth(y,gamma)
Arguments

y
input vector

gamma
The gamma level can be roughly compared to the sliding window size in a normal continuous smoother. The gamma level determines how strict the algorithm functions; a higher level will correspond to fewer jumps. This cannot be larger than length(y). Must be a positive integer.

Details

Uses the potts filter algorithm described by Friedrich et al.

Value

Vector with same length as input y

Author(s)

Sander Bollen

References

Examples

#generate piecewise vector with gaussian noise
y <- 1:450
y[1:150] <- 2
y[151:300] <- 3
y[301:450] <- 1
y <- y + rnorm(450)

#calculate smoother
y_smooth <- discontSmooth(y,20)

Description

Plots all chromosomes in horizontal alignment next to each other, with optionally a moving average smoother applied to the data

Usage

facetPlot(datalist,samples=c(1,2),slid=FALSE,combine=FALSE,k=1,file="default")
fisher.method

Combines p-values by using Fisher’s method

Description

Combines p-values by using Fisher’s method

Usage

```r
fisher.method(pvals)
```

Arguments

- `pvals` Vector of p values
guiSubset

Value

Combined p value

Author(s)

Sander Bollen

Examples

pvals <- runif(20) #generate 20 pvals
fisher.method(pvals)

Description

Provides graphical user interface for subsetting input datasets

Usage

guiSubset(datalist,alternative)

Arguments

datalist the dataset to be subsetted
alternative "greater" or "less"

Value

Subset of input to variable guiSelectedSet in working directory

Author(s)

Sander Bollen

See Also

cliSubset

Examples

Not run:
data("CAFE_data")
guiSubset(CAFE_data,alternative="greater")

End(Not run)
ProcessCels Processing CEL files

Description

Normalizes and computes relative expressions for all CEL files in work directory

Usage

ProcessCels(threshold.over=1.5, threshold.under=(2/3), remove_method=1, local_file=NULL)

Arguments

threshold.over Determines the threshold, as a multiple of median value, where probes are considered overexpressed. Default is 1.5
threshold.under Determines the threshold, as a fraction of median value, where probes are considered underexpressed. Default is 2/3
remove_method Determines which method is used to remove multiple probesets that are annotated to map to the same gene. The default option, 1, will keep 1 probeset with the following priority: 1): nnn_at; 2): nnn_a_at; 3): nnn_s_at; 4): nnn_x_at; 5): lowest nnn if multiple probes still exist
If remove_method=2, probesets will only be removed if several probesets of the same gene map to the exact same location. In the case that many probesets map to the same location, one probeset will be retained according to the priority of option 1 above.
If remove_method=0, no multiple probesets will be removed
local_file Use a local - previously downloaded - UCSC file (e.g. http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/affyU133Plus2.txt.gz) instead of directly retrieving the file instead.

Details

this function uses the RMA algorithm to normalize *.CEL files in work directory. It then computes relative expressions for every probe on every sample. Locations for probesets are downloaded from UCSC, as the standard BioConductor annotations do not map probeset location (they only map the location to the corresponding gene). Multiple probesets belonging to the same gene are removed as described above. The function then determines which probes are overexpressed and underexpressed relative to the median probeset values across all samples. Finally, the relative expressions are log2-transformed.

Value

list
$whole named list, where each element is a data.frame corresponding to a *.CEL file - containing columns: 1): ”ID” (Affy ID number); 2): ”Sym” (gene Symbol); 3): ”Value” (Expression values); 4): ”LogRel” (Relative expressions); 5): ”Loc” (Chromosomal locations); 6): ”Chr” (Chromosome number); 7): ”Band” (Cytoband); 8): ”Arm” (Chromosomal arm)
$over$ same as $whole$, but contains only those probes which are deemed overexpressed
$under$ same as $whole$, but contains only those probes which are deemed underexpressed

Author(s)
Sander Bollen

Examples
Not run:
data <- ProcessCels()
End(Not run)

rawPlot

Plot without any smoother

Description
Makes chromosome plot using raw data values

Usage
rawPlot(datalist,samples=c(1,2),chromNum=1,idiogram=FALSE,file="default")

Arguments
datalist The CAFE datalist to be analyzed, i.e. the output of ProcessCels.
samples A vector or sample numbers to be plotted
chromNum The chromosome to be analyzed
idiogram If TRUE, will plot a chromosome idiogram over the plot
file Specify a file name to store output png file

Value
Plot to file system; Returns a ggplot2 graph if chromNum!="ALL". When chromNum=="ALL", returns a list of ggplot2 graphs.

Author(s)
Sander Bollen

See Also
slidPlot facetPlot discontPlot

Examples
data("CAFE_data")
rawPlot(CAFE_data,samples=8,chromNum=17)
slidPlot

Plot with sliding average smoother

Description
Plots chromosome plots with a moving average smoother

Usage
```
slidPlot(datalist, samples=c(1,2), chromNum=1, combine=FALSE, k=1, idiogram=FALSE, file="default")
```

Arguments
- `datalist`: The CAFE datalist to be analyzed, i.e. the output of `ProcessCels`
- `samples`: A vector of sample numbers to be plotted
- `chromNum`: The chromosome to be analyzed
- `combine`: If TRUE, will plot the unaltered raw data in the background
- `k`: The sliding window size. Must be a positive integer, smaller than the total number of probesets on the chromosome
- `idiogram`: If TRUE, will plot a chromosome idiogram over the plot
- `file`: Specify a file name to store output png fileS

Value
Plot to file system; Returns a ggplot2 graph if chromNum!="ALL". When chromNum=="ALL", returns a list of ggplot2 graphs.

Note
Makes heavy use of the ggplot2 package.

Author(s)
Sander Bollen

References

See Also
`rawPlot`, `facetPlot`, `discontPlot`

Examples
```
data("CAFE_data")
slidPlot(CAFE_data, samples=9, chromNum=17, k=50, combine=TRUE)
```
slidSmooth

slidSmooth A moving average smoother

Description
Calculates moving average smoother

Usage
slidSmooth(x,k)

Arguments
x input vector
k The moving average window size. Must be an integer value greater than 0, and no larger than length(y).

Value
Vector with same length as input y

Author(s)
Sander Bollen

Examples
#generate piecewise vector with gaussian noise
y <- 1:450
y[1:150] <- 2
y[151:300] <- 3
y[301:450] <- 1
y <- y + rnorm(450)

#calculate smoother
y_smooth <- slidSmooth(y,20)
Index

* Topic **datagen**
 * ProcessCels, 12

* Topic **datasets**
 * CAFE_data, 5

* Topic **dplot**
 * discontPlot, 7
 * facetPlot, 9
 * rawPlot, 13
 * slidPlot, 14

* Topic **hplot**
 * discontPlot, 7
 * facetPlot, 9
 * rawPlot, 13
 * slidPlot, 14

* Topic **htest**
 * fisher.method, 10

* Topic **manip**
 * cliSubset, 7
 * guiSubset, 11

* Topic **multivariate**
 * armStats, 3
 * bandStats, 4
 * chromosomeStats, 6

* Topic **package**
 * CAFE-package, 2

* Topic **smooth**
 * discontSmooth, 8
 * slidSmooth, 15

armStats, 3, 5, 6

bandStats, 4, 4, 6

CAFE (CAFE-package), 2
CAFE-package, 2
CAFE_data, 5
chromosomeStats, 4, 5, 6
cliSubset, 7, 11

discontPlot, 7, 10, 13, 14
discontSmooth, 8

facetPlot, 8, 9, 13, 14
fisher.method, 10