Package ‘CancerInSilico’

January 30, 2017

Type Package

Title An R interface for computational modeling of tumor progression

Version 1.0.0

Date 2016-06-01

Author Thomas D. Sherman, Raymond Cheng, Elana J. Fertig

Maintainer Thomas D. Sherman <tsherma4@jhu.edu>, Elana J. Fertig <ejfertig@jhmi.edu>

Description The CancerInSilico package provides an R interface for running mathematical models of tumor progression. This package has the underlying models implemented in C++ and the output and analysis features implemented in R.

License GPL (>= 2)

Imports methods, grDevices, graphics, stats

Depends Rcpp

LinkingTo Rcpp, testthat, BH

Suggests testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

biocViews MathematicalBiology, SystemsBiology, CellBiology, BiomedicalInformatics

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

CancerInSilico .. 2
CellModel-class .. 2
getAxisAngle .. 3
getAxisLength .. 3
getCoordinates ... 4
getCycleLength ... 4
getDensity ... 5
getGrowthRates ... 5
getNumberOfCells .. 6
getParameters ... 6
CellModel-class

getRadii .. 7
interactivePlot .. 7
plotCells .. 8
runCancerSim .. 8
runDrasdoHohme 9
show(CellModel-method) 10
timeToRow .. 10

Index 11

CancerInSilico CancerInSilico

Description

Package: CellModel
Type: Package
Version: 0.99.0
Date: 2016-06-24
License: LGPL

Author(s)

Maintainer: Elana J. Fertig <ejfertig@jhmi.edu>, Thomas D. Sherman <tsherman4@jhu.edu>

CellModel-class CellModel

Description

An S4 class to represent the output of a cell-based model

Slots

mInitialNumCells the initial number of cells in the model
mRunTime the total run time (hours) of the model
mInitialDensity the density the cells were seeded at
mInheritGrowth whether or not cells inherit growth rates from their parent
mOutputIncrement the frequency of print statements during the run
mRandSeed the random seed
getAxisAngle

mEpsilon model specific parameter
mNG model specific parameter
mTimeIncrement amount of time elapsed in each model step
mCycleLengthDist initial distribution of cell-cycle lengths

getAxisAngle getAxisAngle get the axis angle of each cell

Description
getAxisAngle get the axis angle of each cell

Usage
getAxisAngle(model, time)

Arguments
model A CellModel
time time in model hours

Value
vector containing the axis angle of each cell at time

getAxisLength getAxisLength get the axis length of each cell

Description
getAxisLength get the axis length of each cell

Usage
getAxisLength(model, time)

Arguments
model A CellModel
time time in model hours

Value
vector containing the axis length of each cell at time
getCoordinates

Description
getCoordinates get a two dimensional matrix of all the cell coordinates

Usage
gETCHORDADEMO(model, time)

Arguments
model A CellModel
time time in model hours

Value
an N X 2 matrix of cell coordinates at time

gETCHORDADEMO

Description
gETCHORDADEMO return the cycle lengths of each cells at time

Usage
gETCHORDADEMO(model, time)

Arguments
model a CellModel object
time time in model hours

Value
the cycle lengths of each cell at time

Examples
gETCHORDADEMO(runCancerSim(1,1), 1)
getDensity

getDensity gets the density of cells at a given time

Usage

getDensity(model, time)

Arguments

- model: A Cell Model
- time: time in model hours

Value

The density of cells at that time (not quite the same as confluency)

Examples

getDensity(runCancerSim(1,1),1)

getGrowthRates

getGrowthRates get the model growth rates of each cell

Usage

getGrowthRates(model, time)

Arguments

- model: A CellModel
- time: time in model hours

Value

vector containing the growth rate of each cell at time
getNumberOfCells

`getNumberOfCells` get the number of cells alive

Usage

```r
getNumberOfCells(model, time)
```

Arguments

- `model`: A `CellModel`
- `time`: time in model hours

Value

the number of cells at this time

Examples

```r
getNumberOfCells(runCancerSim(1,1), 1)
```

getParameters

`getParameters` get a named list of parameters in the model

Usage

```r
getParameters(model, fullDist = FALSE)
```

Arguments

- `model`: A `CellModel`
- `fullDist`: [bool] return full distribution of cycle length

Value

a named list of parameters in the model

Examples

```r
getParameters(runCancerSim(1,1))
```
getRadii

getRadii get the radius of each cell

Usage

getRadii(model, time)

Arguments

model\;\text{A CellModel}
time\;\text{time in model hours}

Value

vector containing the radius of each cell at time

interactivePlot

interactivePlot plots a CellModel and allows the user to control the plot with various commands

Description

interactivePlot plots a CellModel and allows the user to control the plot with various commands

Usage

interactivePlot(model, time = 0)

Arguments

model\;\text{A CellModel}
time\;\text{time in model hours}

Value

plot a visual representation of cells that takes in command-line-like inputs, type 'h' for help and a list of all available commands
plotCells

plotCell plots a CellModel at a given time

Description

plotCell plots a CellModel at a given time

Usage

plotCells(model, time)

Arguments

model A CellModel

time time in model hours

Value

plot a visual representation of cells

Examples

plotCells(runCancerSim(10, 1), 1)

runCancerSim

runCancerSim runs a cell-based model of cancer

Description

runCancerSim runs a cell-based model of cancer

Usage

runCancerSim(initialNum, runTime, density = 0.01, cycleLengthDist = 12,
inheritGrowth = FALSE, outputIncrement = 6, randSeed = 0,
modelType = "DrasdoHohme2003", ...)

Arguments

initialNum how many cells initially (integer)

runTime how long the simulation runs (model hours)

density the density the cells are seeded at, must be in (0, 0.1]
cycleLengthDist cycle time distribution

inheritGrowth whether or not daughter cells have the same cycle-length as parents

outputIncrement time increment to print status at

randSeed seed for the model

modelType the name of the cell-based model to use

... model specific parameters (depends on modelType)
Details

This function provides a centralized R interface to run C++ code for cell-based models implemented in this package. Standard parameters, as well as model-specific parameters, are passed in to this function along with a model name. This function then runs the model and returns a CellModel object containing all the information from the model. This object can then be accessed with various functions designed to interact with the class. To see a list of available functions, there is a show() command implemented for CellModel objects.

Value

A CellModel containing all info from the model run

Examples

runCancerSim(1,4)

Description

runDrasdoHohme runs the model based on Drasdo and Hohme (2003)

Usage

runDrasdoHohme(initialNum, runTime, density, cycleLengthDist, inheritGrowth, outputIncrement, randSeed, ...)

Arguments

initialNum how many cells initially
runTime how long the simulation represents in realtime
density the density the cells are seeded at
cycleLengthDist cycle time distribution
inheritGrowth whether or not daughter cells have the same cycle-length as parents
outputIncrement time increment to print status at
randSeed seed for the model
... nG, epsilon parameters (specific to this model)

Details

This function calls the C++ implementation of the Drasdo and Hohme (2003) model.

Value

A CellModel containing all info from the model run
Description

show display summary of CellModel class

Usage

```r
## S4 method for signature 'CellModel'
show(object)
```

Arguments

- **object**: A CellModel Object

Value

shows all available functions and parameters of model

Examples

```r
show(runCancerSim(1,1))
```

Description

timeToRow return the correct row in the mCells list corresponding to a given time

Usage

```r
timeToRow(model, time)
```

Arguments

- **model**: A CellModel
- **time**: time in model hours

Value

corresponding row in mCells list
Index

CancerInSilico, 2
CancerInSilico-package
 (CancerInSilico), 2
CellModel-class, 2

getAxisAngle, 3
getAxisLength, 3
getCoordinates, 4
getCycleLengths, 4
getDensity, 5
getGrowthRates, 5
getNumberOfCells, 6
getParameters, 6
getRadii, 7

interactivePlot, 7

plotCells, 8

runCancerSim, 8
runDrasdoHohme, 9

show, CellModel-method, 10

timeToRow, 10