Package ‘CausalR’

January 14, 2017

Type Package
Title Causal Reasoning Methods
Version 1.6.0
Date 2016-04-12
Author Glyn Bradley, Steven Barrett, David Wiley, Bhushan Bonde, Peter Woollard, Chirag Mis-
try, David Riley, Mark Pipe
Maintainer Glyn Bradley <glyn.x.bradley@gsk.com>, Steven Barrett
<steven.j.barrett@gsk.com>, Bhushan Bonde <bkbonde@gmail.com>
Description Causal reasoning methods for biological networks, to enable regulator prediction and re-
construction of regulatory networks from high dimensional data.
Depends R (>= 3.2)
Imports igraph
Suggests knitr, RUnit, BiocGenerics
VignetteBuilder knitr
biocViews GraphAndNetwork, Network
License GPL (>= 2)
NeedsCompilation no
RoxygenNote 5.0.1

R topics documented:

CausalR-package 3
AddIDsToVertices 3
AddWeightsToEdges 4
AnalyseExperimentalData 4
AnalysePredictionsList 5
CalculateEnrichmentPValue 5
CalculateSignificance 6
CalculateSignificanceUsingCubicAlgorithm 7
CalculateSignificanceUsingCubicAlgorithm1b 8
CalculateSignificanceUsingQuarticAlgorithm 9
CalculateTotalWeightForAllContingencyTables 10
CalculateWeightGivenValuesInThreeByThreeContingencyTable 10
CheckPossibleValuesAreValid 11
CheckRowAndColumnSumValuesAreValid 11
R topics documented:

- CompareHypothesis
- ComputeFinalDistribution
- ComputePValueFromDistributionTable
- CreateCCG
- CreateCG
- CreateNetworkFromTable
- DetermineInteractionTypeOfPath
- FindApproximateValuesThatWillMaximiseDValue
- FindIdsOfConnectedNodesInSubgraph
- FindMaximumDValue
- GetAllPossibleRoundingCombinations
- GetApproximateMaximumDValueFromThreeByTwoContingencyTable
- GetApproximateMaximumDValueFromTwoByTwoContingencyTable
- GetCombinationsOfCorrectandIncorrectPredictions
- GetExplainedNodesOfCCG
- GetInteractionInformation
- GetMatrixOfCausalRelationships
- GetMaxDValueForAFamily
- GetMaxDValueForAThreeByTwoFamily
- GetMaximumDValueFromTwoByTwoContingencyTable
- GetNodeID
- GetNodeName
- GetNumberOfPositiveAndNegativeEntries
- GetPathsInSifFormat
- GetRegulatedNodes
- GetRowAndColumnSumValues
- GetScoreForNumbersOfCorrectandIncorrectPredictions
- GetScoresForSingleNode
- GetScoresWeightsMatrix
- GetScoresWeightsMatrixByCubicAlg
- GetSetOfDifferentiallyExpressedGenes
- GetSetOfSignificantPredictions
- GetShortestPathsFromCCG
- GetWeightForNumbersOfCorrectandIncorrectPredictions
- GetWeightsAboveHypothesisScoreAndTotalWeights
- GetWeightsAboveHypothesisScoreForAThreeByTwoTable
- GetWeightsFromInteractionInformation
- MakePredictions
- MakePredictionsFromCCG
- MakePredictionsFromCG
- OrderHypotheses
- PlotGraphWithNodeNames
- PopulateTheThreeByThreeContingencyTable
- PopulateTwoByTwoContingencyTable
- ProcessExperimentalData
- RankTheHypotheses
- ReadExperimentalData
- ReadSifFileToTable
- RemoveIDsNotInExperimentalData
- runRankHypothesis
- runSCANR
- ScoreHypothesis
CausalR-package

Description
Causal Reasoning algorithms for biological networks, including predictions, scoring, p-value calculation and ranking.

Details
The most important functions are:

- **CreateCCG**: read a computational causal graph from a .sif file
- **ReadExperimentalData**: read a experimental data from a .txt file
- **MakePredictions**: make causal reasoning predictions from a CCG
- **ScoreHypothesis**: score causal reasoning predictions
- **CalculateSignificance**: calculate statistical significance of a result
- **RankTheHypotheses**: compare different possible hypotheses on a single CCG

Author(s)
David Riley <david.riley@tessella.com>, Chirag Mistry, Mark Pipe

References

AddIDsToVertices

Description
Add the IDs as a vertex property to the vertices in the network. Used when creating sub-networks where the new nodes will retain the IDs from their original network.

Usage
AddIDsToVertices(network)
AnalyseExperimentalData

Arguments
 network the network to which the IDs are to be added

Value
 network with IDs added

AddWeightsToEdges add weights to edges

Description
 Adds weight information to the edges of given network (1 for activation and -1 for inhibition)

Usage
 AddWeightsToEdges(network, tableOfInteractions)

Arguments
 network an igraph constructed from the original .sif file
 tableOfInteractions a column of the corresponding .sif file indicating the direction of activation/interaction

Value
 an augmented network

AnalyseExperimentalData analyse experimental data

Description
 Returns the number of up- and down-regulated genes in the experimental data

Usage
 AnalyseExperimentalData(experimentalData)

Arguments
 experimentalData a dataframe containing a list of genes with corresponding direction of change (1 or -1)

Value
 up and down regulation statistics for the experimental data
AnalysePredictionsList

`analyse predictions list`

Description

Taking the list of predictions from a particular hypothesis, counts the number of positive and negative predictions in the list and the number of 0’s (from numPredictions).

Usage

`AnalysePredictionsList(predictionsList, numPredictions)`

Arguments

- `predictionsList`: list of predictions
- `numPredictions`: number of predictions

Value

prediction statistics

Examples

```r
network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg <- CreateCCG(network)
predictions <- MakePredictions('NodeA', +1, ccg, 2)
AnalysePredictionsList(predictions, 8)
```

CalculateEnrichmentPValue

`calculates an enrichment p-value`

Description

Calculate an enrichment p-value for a given hypothesis by comparing the corresponding predicted and observed gene changes.

Usage

`CalculateEnrichmentPValue(predictions, results)`

Arguments

- `predictions`: predictions of changes from the CCG for a particular hypothesis
- `results`: gene changes observed in the experimental data

Value

an enrichment p-value
CalculateSignificance

CalculateSignificance <- function(hypothesisScore, predictionListStats, experimentalResultStats, epsilon = 1e-05, useCubicAlgorithm = TRUE, use1bAlgorithm = TRUE) {
 # Implementation
}

Examples

predictions <- matrix(c(1,2,3,1,1,-1), ncol = 2)
results<- matrix(c(1,2,3,4,1,1,-1,1), ncol = 2)
CalculateEnrichmentPValue(predictions, results)

CalculateSignificance(hypothesisScore, predictionListStats, experimentalResultStats, epsilon = 1e-05, useCubicAlgorithm = TRUE, use1bAlgorithm = TRUE)

Arguments

- hypothesisScore: score for a particular hypothesis
- predictionListStats: numbers of predicted up-regulated, predicted down-regulated and ambiguous predictions predicted by the algorithm
- experimentalResultStats: numbers of up-regulated, down-regulated and not significantly changed transcripts in the experimental data
- epsilon: threshold that is used when calculating the p-value using the cubic algorithm
- useCubicAlgorithm: use the cubic algorithm, defaults to TRUE
- use1bAlgorithm: use the 1b version of the algorithm, defaults to TRUE used to calculate the p-value

Value

the resulting p-value

Examples

CalculateSignificance(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=TRUE)
CalculateSignificanceUsingQuarticAlgorithm(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=FALSE)
CalculateSignificance(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificance(5, c(7,4,19), c(6,6,18), epsilon=1e-5, useCubicAlgorithm=TRUE)
CalculateSignificanceUsingCubicAlgorithm(5, c(7,4,19), c(6,6,18), 1e-5)
Description

Calculates the p-value of a score given the hypothesis score and the distribution table (calculated using the cubic algorithm)

Usage

`CalculateSignificanceUsingCubicAlgorithm(hypothesisScore, predictionListStats, experimentalDataStats, epsilon)`

Arguments

- `hypothesisScore` - the score whose p-value we want to find.
- `predictionListStats` - numbers of predicted up-regulated, predicted down-regulated and ambiguous predictions.
- `experimentalDataStats` - numbers of up-regulated, down-regulated and not significantly changed transcripts in the experimental data.
- `epsilon` - an epsilon threshold that is used when calculating the p-value using the cubic algorithm. Defaults to 1e-5.

Value

- p-value

References

Examples

```
CalculateSignificance(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=TRUE)
CalculateSignificanceUsingQuarticAlgorithm(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=FALSE)
CalculateSignificance(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificance(5, c(7,4,19), c(6,6,18), epsilon=1e-5, useCubicAlgorithm=TRUE)
CalculateSignificanceUsingCubicAlgorithm(5, c(7,4,19), c(6,6,18), 1e-5)
```
CalculateSignificanceUsingCubicAlgorithm1b

Calculate Significance Using Cubic Algorithm

Description

Calculate the p-value of a score given the hypothesis score and the distribution table (calculated using the cubic algorithm 1b in Assessing statistical significance in causal graphs - Chindelevitch et al)

Usage

CalculateSignificanceUsingCubicAlgorithm1b(hypothesisScore, predictionListStats, experimentalDataStats, epsilon)

Arguments

hypothesisScore
The score whose p-value we want to find.

predictionListStats
Number of predicted up-regulated, predicted down-regulated and ambiguous predictions.

experimentalDataStats
Number of up-regulated, down-regulated and not significantly changed transcripts in the experimental data.

epsilon
The threshold that is used when calculating the p-value using the cubic algorithm. (Defaults to 1e-5, only used for the cubic algorithm, ignored if useCubicAlgorithm is FALSE.)

Value

p value

Examples

CalculateSignificance(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=TRUE)
CalculateSignificanceUsingQuarticAlgorithm(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=FALSE)
CalculateSignificance(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificance(5, c(7,4,19), c(6,6,18), epsilon=1e-5, useCubicAlgorithm=TRUE)
CalculateSignificanceUsingCubicAlgorithm1b(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificanceUsingQuarticAlgorithm

calculate significance using the quartic algorithm

Description

Computes the significance of a given hypothesis. For a detailed description of the algorithm see Causal reasoning on biological networks: interpreting transcriptional changes - Chindelevitch et al., section 2. from which the methods and notation is taken.

Usage

```r
CalculateSignificanceUsingQuarticAlgorithm(hypothesisScore, predictionListStats, experimentalDataStats)
```

Arguments

- **hypothesisScore**
 the score for which a p-value is required
- **predictionListStats**
 a vector containing the values q+, q- and q0 (the number of positive/negative/non-significant or contradictory) predictions
- **experimentalDataStats**
 a vector containing the values n+, n- and n0 (the number of positive/negative/non-significant (or contradictory) transcripts in the results) (or contradictory) transcripts in the results)

Value

the corresponding p-value

References

Examples

```r
CalculateSignificance(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=TRUE)
CalculateSignificanceUsingQuarticAlgorithm(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=FALSE)
CalculateSignificance(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificance(5, c(7,4,19), c(6,6,18), epsilon=1e-5, useCubicAlgorithm=TRUE)
CalculateSignificanceUsingCubicAlgorithm(5, c(7,4,19), c(6,6,18), 1e-5)
```
CalculateTotalWeightForAllContingencyTables

calculate total weight for all contingency tables

Description

Calculates the total weights or D-values for all possible contingency tables. This value can be used to calculate the p-value.

Usage

CalculateTotalWeightForAllContingencyTables(experimentalDataStats, returnlog = FALSE)

Arguments

- experimentalDataStats: a vector containing the values n+, n- and n0, the number of positive/negative/non-significant (or contradictory) transcripts in the results
- returnlog: whether the result should be returned as a log. Default is FALSE.

Value

a D-value or weight

CalculateWeightGivenValuesInThreeByThreeContingencyTable

calculate weight given values in three-by-three contingency table

Description

Given the values in the three by three contingency table and the values of the number of positive/negative/non-significant predictions (q+, q-, q0) this function calculates the D-value (or weight).

Usage

CalculateWeightGivenValuesInThreeByThreeContingencyTable(threeByThreeContingencyTable, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments

- threeByThreeContingencyTable: a 3x3 contingency table
- logOfFactorialOfPredictionListStats: log of Factorial of prediction statistics
- returnlog: should the result be returned as a log value. Default is FALSE.

Value

a D-value (or weight)
CheckPossibleValuesAreValid

check possible values are valid

Description
Checks if the given set of possible values for n++, n+-, n-+ and n– are agree with the predicted and experimental data

Usage
CheckPossibleValuesAreValid(predictionDataStats, experimentalDataStats, possibleValues)

Arguments
predictionDataStats
a vector of predicted results
experimentalDataStats
a vector of observed experimental results
possibleValues
a vector of possible values n++, n+-, n-+ and n–

Value
TRUE if and only if the given vector of possible values is valid

CheckRowAndColumnSumValuesAreValid
check row and column sum values are valid

Description
Checkes to see if the values of r+, r-, c+ and c- which are stored in rowAndColumnSumValues define a valid contingency table

Usage
CheckRowAndColumnSumValuesAreValid(rowAndColumnSumValues, predictionListStats, experimentalResultStats)

Arguments
rowAndColumnSumValues
a 4x1 vector containing the row and column sum values (r+, r-, c+, c-) for a 2x2 contingency table
predictionListStats
a vector containing the values q+, q- and q0
experimentalResultStats
A vector containing the values n+, n- and n0
ComputeFinalDistribution

Value
TRUE if the table is valid; otherwise FALSE

CompareHypothesis
compare hypothesis

Description
Compare the predictions from a hypothesis with the experimental data returning an matrix with columns for node ID, predictions, experimental results and the corresponding scores.

Usage

CompareHypothesis(matrixOfPredictions, matrixOfExperimentalData, ccg = NULL, sourceNode = NULL)

Arguments

matrixOfPredictions
a matrix of predictions

matrixOfExperimentalData
a matrix of experimental data

ccg
a CCG network (default=NULL)

sourceNode
A starting node (default=NULL)

Value

a matrix containing predictions, observations and scores.

Examples

predictions <- matrix(c(1,2,3,+1,0,-1),ncol=2)
experimentalData <- matrix(c(1,2,4,+1,+1,-1),ncol=2)
ScoreHypothesis(predictions,experimentalData)
CompareHypothesis(predictions,experimentalData)

ComputeFinalDistribution
compute final distribution

Description
Computes a final reference distribution of the score used to compute the final p-value.

Usage

ComputeFinalDistribution(resultsMatrix)
ComputePValueFromDistributionTable

Arguments

- `resultsMatrix` a matrix containing the scores and weights from which the distribution is to be calculated

Value

- `distributionMatrix` a matrix containing the reference distribution for the score

Description

Computes the p-value of the score of an hypothesis, based on a distribution table

Usage

```plaintext
ComputePValueFromDistributionTable(scoreOfHypothesis, distributionMatrix, totalWeights)
```

Arguments

- `scoreOfHypothesis` a score of hypothesis
- `distributionMatrix` a distribution table presented as a matrix
- `totalWeights` a matrix of total weights

Value

- a p-value

CreateCCG

create a Computational Causal Graph (CCG)

Description

Creates a computational causal graph from a network file.

Usage

```plaintext
CreateCCG(filename)
```

Arguments

- `filename` file name of the network file (in .sif file format)
CreateCG

Value

an igraph object containing the CCG.

Note

CreateCG and CreateCCG create causal and computational causal graphs respectively.

References

Examples

get path to example .sif file
network <- system.file(package="CausalR", 'extdata', 'testNetwork.sif')
create ccg
ccg = CreateCCG(network)

CreateCG
create a Computational Graph (CG)

Description

Creates a CG network from a .sif file. Takes in a .sif file output from Cytoscape, and creates an 'igraph' representing the network. The edges will be annotated with the type of interaction and a weight (1 for activation and -1 for inhibition).

Usage

CreateCG(sifFile)

Arguments

sifFile
the path of the .sif file that contains all the information about the network Load in .sif file

Value

a CG network

Examples

get path to example .sif file
network <- system.file(package="CausalR", 'extdata', 'testNetwork.sif')
create cg
cg = CreateCG(network)
CreateNetworkFromTable

create network from table

Description

Creates a network from an internal data table created from a .sif file: this function converts the data read in from the .sif file into an igraph in R.

Usage

CreateNetworkFromTable(dataTable)

Arguments

- dataTable: the data table containing the information read in from the .sif file representing the network.

Value

an igraph network

DetermineInteractionTypeOfPath

determine interaction type of path

Description

Determines the sign of a given path. Given a path and through the network, this function will determine if the path results in activation or inhibition. Activation is indicated by 1, inhibition by -1

Usage

DetermineInteractionTypeOfPath(network, nodesInPath)

Arguments

- network: an igraph representing the network
- nodesInPath: an ordered list of the nodes visited on the path - note that these contain numbers which use R’s internal reference to the edges

Value

a signed integer representing the paths sign
FindApproximateValuesThatWillMaximiseDValue

Find approximate values that will maximise D value

Description

Finds an approximate table values to maximise D. Given the values of q+, q-, q0, n+, n- and n0 this function will produce the approximate values of n++, n+, n- and n-- that will maximise the D value. See Assessing statistical significance of causal graphs, page 6. The values are approximate since they need to be rounded, although the direction of rounding is not clear at this stage.

Usage

FindApproximateValuesThatWillMaximiseDValue(predictionListStats, experimentalDataStats)

Arguments

predictionListStats
a vector containing the values q+, q- and q0: numbers of positive, negative and non-significant/contradictory predictions

experimentalDataStats
a vector containing the values n+, n- and n0: numbers of positive, negative and non-significant/contradictory predictions

Value

a 2x2 contingency table which approximately maximises D

References

FindIdsOfConnectedNodesInSubgraph

find Ids of connected nodes in subgraph

Description

Adds the IDs of the connected nodes in a subgraph to an existing list. Given the IDs of connected nodes in the full network, this function will find the corresponding IDs in the subgraph.

Usage

FindIdsOfConnectedNodesInSubgraph(idsOfConnectedNodes, subgraphOfConnectedNodes)
FindMaximumDValue

Arguments

- **idsOfConnectedNodes**
 a list of connected nodes in the full graph

- **subgraphOfConnectedNodes**
 a subgraph

Value

- a list of connected nodes in the subgraph

FindMaximumDValue

find maximum D value

Description

computes the maximum possible D-value for given values q+, q-, q0 and n+, n-, n0.

Usage

```r
FindMaximumDValue(predictionListStats, experimentalDataStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)
```

Arguments

- **predictionListStats**
 a vector containing the predicted values q+, q-, q0: numbers of positive, negative and non-significant/contradictory predictions

- **experimentalDataStats**
 A vector containing the observed values n+, n-, n0: numbers of positive, negative and non-significant/contradictory observations

- **logOfFactorialOfPredictionListStats**
 a vector containing the log of the factorial value for each entry in predictionListStats

- **returnlog**
 should the result be returned as a log; default FALSE

Value

the maximum possible D value
GetAllPossibleRoundingCombinations

get score for numbers of correct and incorrect predictions

Description
Returns all possible rounding combinations of a 2x2 table. Given the values of n++, n+, n- and n– (stored in twoByTwoContingencyTable) this function will compute all possibilities of rounding each value up or down.

Usage
GetAllPossibleRoundingCombinations(twoByTwoContingencyTable)

Arguments
twoByTwoContingencyTable
Approximate values of n++, n+, n- and n–, these values are calculated to optimise the D-value (see page 6 of Assessing statistical significance of causal graphs)

Value
a matrix of rounding combinations

GetApproximateMaximumDValueFromThreeByTwoContingencyTable

returns approximate maximum D value or weight for a 3x2 superfamily

Description
Computes an approximate maximum D value (or weight) for a superfamily (3x2 table). The result is only approximate as only the first valid D value that is return. This has been done to speed up the overall algorithm.

Usage
GetApproximateMaximumDValueFromThreeByTwoContingencyTable(threeByTwoContingencyTable, predictionListStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments
threeByTwoContingencyTable
approximate values of n++, n+, n-, n0+ and n0-, these values are calculated to optimise the D-value (see page 6 of Assessing statistical significance of causal graphs)
GetApproximateMaximumDValueFromTwoByTwoContingencyTable

Computes an approximate maximum D value (or weight). The calculation is approximate since only the first valid D value that is round. This has been done to speed up the overall algorithm - to get the exact answer use GetMaximumDValueFromTwoByTwoContingencyTable.

Usage

GetApproximateMaximumDValueFromTwoByTwoContingencyTable(n_pp, n_pm, n_mp, n_mm, predictionListStats, experimentalDataStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments

- **n_pp**: the count n++ from the prediction-observation contingency matrix
- **n_pm**: the count n+- from the prediction-observation contingency matrix
- **n_mp**: the count n-+ from the prediction-observation contingency matrix
- **n_mm**: the count n– from the prediction-observation contingency matrix
- **predictionListStats**: a vector containing the values q+, q- and q0: the number of positive, negative, non-significant/contradictory predictions
- **experimentalDataStats**: a vector containing the values n+, n- and n0: the number of positive, negative, non-significant/contradictory observations
- **logOfFactorialOfPredictionListStats**: a vector containing the log of the factorial value for each entry in predictionListStats
- **returnlog**: return the result as a log, default is FALSE

Value

an approximate maximum D value or weight
GetCombinationsOfCorrectandIncorrectPredictions
returns table of correct and incorrect predictions

Description
Returns the numbers of correct and incorrect positive and negative predictions

Usage
GetCombinationsOfCorrectandIncorrectPredictions(predictionDataStats, experimentalDataStats)

Arguments
predictionDataStats prediction data statistics table
experimentalDataStats Experimental data statistics table

Value
a matrix the numbers of correct and incorrect positive and negative prediction

GetExplainedNodesOfCCG
Get explained nodes of CCG

Description
Returns a table of node names and values for explained nodes, i.e. nodes that appear in both network and data with the same sign. The table contain the name in column 1 and the value (1 or -1) in column 2

Usage
GetExplainedNodesOfCCG(hypothesisnode, signOfHypothesis, network, data, delta)

Arguments
hypothesisnode a hypothesis node
signOfHypothesis the direction of change of hypothesis node
network a computational causal graph
data a data file
delta the number of edges across which the hypothesis should be followed

Value
vector of explained nodes
GetInteractionInformation

returns interaction information from input data

Description

Gets the interaction information from the input data

Usage

GetInteractionInformation(dataTable)

Arguments

dataTable a data table containing the information read in from the .sif file representing the network.

Value

a vector of interaction information

GetMatrixOfCausalRelationships

compute causal relationships matrix

Description

Get a matrix of causal relationships from the network and the IDs of connected nodes

Usage

GetMatrixOfCausalRelationships(hypothesis, network, idsOfConnectedNodesFromSubgraph)

Arguments

hypothesis a hypothesis node
network a CCG network
idsOfConnectedNodesFromSubgraph a list of connected nodes in the subgraph of interest

Value

causal relationships matrix
GetMaxDValueForAFamily

get maximum D value for a family

Description
Computes the maximum D value for a particular family - denoted as D_fam on page 6 of Assessing Statistical Significance of Causal Graphs

Usage
GetMaxDValueForAFamily(r_p, r_m, c_p, predictionListStats, experimentalDataStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments
- r_p: row sum r+
- r_m: row sum r-
- c_p: column sum c+
- predictionListStats: approximate values of n++, n+, n- and n–
- experimentalDataStats: a vector containing the values q+, q- and q0: number of positive, negative, non-significant/contradictory predictions
- logOfFactorialOfPredictionListStats: a vector containing the values n+, n- and n0: number of positive, negative, non-significant/contradictory observations
- returnlog: return result as log, default value is FALSE

Value
the maximum DFam Value

References
GetMaxDValueForAThreeByTwoFamily

get maximum D value for three-by-two a family

Description

Returns the maximum D value for a particular family as described as D_fam on pages 6 and 7 of Assessing Statistical Significance of Causal Graphs in Assessing Statistical Significance of Causal Graphs

Usage

GetMaxDValueForAThreeByTwoFamily(r_p, r_m, r_z, n_p, n_m, predictionListStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments

r_p a r+ row sum from the prediction-observation matrix
r_m a r- row sum from the prediction-observation matrix
r_z a r0 row sum from the prediction-observation matrix
n_p a number of predicted increases from the prediction-observation matrix
n_m a number of predicted decreases from the prediction-observation matrix
predictionListStats a vector contain the number of postive, negative and non-significant/contradictory predictions: q+, q- and q0.
logOfFactorialOfPredictionListStats a vector containing the log of the factorial for each element in the predictionListStats object
returnlog whether or not the maximum D value should be returned as a log (TRUE). Otherwise a non-logged value is returned.

Value

Maximum D_fam Value

References

GetMaximumDValueFromTwoByTwoContingencyTable

get maximum D value from two-by-two contingency table

Description

Computes the maximum D value (or weight) given approximate values of n_{++}, n_{+-}, n_{-+} and n_{--}. These values are approximate and in general are non-integer values; they are found by using an approximation detailed in the paper Assessing statistical significance in causal graphs on page 6 i.e. n_{ab} is approximately equal to $q_a n_b / t$ where a and b are either $+$, $-$ or 0. The value is an approximation since the direction in which the number should be rounded is not clear and hence this function runs through all possible combinations of rounding before concluding the maximum D-value.

Usage

GetMaximumDValueFromTwoByTwoContingencyTable(twoByTwoContingencyTable, predictionListStats, experimentalDataStats, logOfFactorialOfPredictionListStats, returnlog = FALSE)

Arguments

twoByTwoContingencyTable
 approximate values of n_{++}, n_{+-}, n_{-+} and n_{--}, these values are calculated to optimise the D-value

predictionListStats
 a vector containing the values q_+, q_- and q_0 the number of positive/negative/non-significant (or contradictory) predictions

experimentalDataStats
 a vector containing the values n_+, n_- and n_0 (the number of positive/negative/non-significant (or contradictory) transcripts in the results)

logOfFactorialOfPredictionListStats
 a vector containing the log of the factorial value for each entry in predictionListStats

returnlog
 whether or not the value should be returned as a log (TRUE) or not (FALSE)

Value

the maximal D-value

References

GetNodeID

get CCG node ID

Description

Returns the CCG node ID from a node name or a vector of node names and a given direction of regulation.

Usage

GetNodeID(network, nodename, direction = 1)

Arguments

- network: a CCG object
- nodename: the node name, or names, for which the ID is required
- direction: the direction of regulation of the required node or nodes. Maybe +1 (default) or -1.

Value

a scalar or vector containing the node ID or IDs requested

GetNodeName

get node name

Description

Returns the node name from one or more node IDs, or substitute node names for node IDs, given in first column of a matrix typically of predictions or experimental data

Usage

GetNodeName(network, nodeID, signed = FALSE)

Arguments

- network: Built from igraph
- nodeID: a node ID or a matrix containing node IDs in its first column
- signed: whether or not the node name should be signed. Setting this value to TRUE gives a signed name indicating whether the gene is up or down regulated in the network

Value

a node name or a vector of node names depending if the input is an matrix.
GetPathsInSifFormat

Get paths in Sif format

Description
Converts network paths into Simple interaction file (.sif) format for importing into Cytoscape

Usage
GetPathsInSifFormat(arrayOfPaths)

Arguments
arrayOfPaths an array of paths (in the format outputted by GetShortestPathsFromCCG) to be converted to .sif format

Value
network visualisation

Examples

```r
network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg = CreateCCG(network)
nodeID <- 10
GetNodeName(ccg, nodeID)
```

GetNumberOfPositiveAndNegativeEntries

counts the number of positive and negative entries

Description
Counts the number of entries in the in the second column of an input table that are +1 or -1.

Usage

GetNumberOfPositiveAndNegativeEntries(dataList)

Arguments
dataList an array or dataframe in which the second column is numeric

Value
a vector of two components, the first of which giving the number of +1 entries, the second the number of -1's.

Examples

```r
expData<-read.table(system.file(package='CausalR', 'extdata', 'testData.txt'))
GetNumberOfPositiveAndNegativeEntries(expData)
```

GetRegulatedNodes

Description
This function will compute the nodes regulated by the given hypothesis gene and write the results to a file.

Usage
GetRegulatedNodes(PPInet, Expressiondata, delta, hypothesisGene = "", signOfHypothesis = 1, outputfile = "")

Arguments
- PPInet: a protein-protein interaction network
- Expressiondata: a table of observed gene expression data
- delta: the number of edges to follow along the network. This should typically be between 1 and 5 dependent on network size/topology
- hypothesisGene: the name of the hypothesis gene
- signOfHypothesis: the sign of action expected from the hypothesis, +1 for up regulation, -1 for down
- outputfile: the file to which the results should be written

Value
Nodes regulated by hypothesis gene

GetRowAndColumnSumValues

generate row and column sum values

Description
Returns the possible values of r+, r-, c+ and c- (the column and row sum values) following page 6 of Assessing statistical significance in causal graphs (Chindelevitch et. al)

Usage
GetRowAndColumnSumValues(predictionListStats, experimentalResultStats)

Arguments
- predictionListStats: a vector containing the number of positive, negative, or non-significant/contradictory predictions (q+, q- and q0)
- experimentalResultStats: a vector containing the number of positive, negative, or non-significant/contradictory observations (n+, n- and n0)
GetScoresForSingleNode

Value

A matrix of row and sum values r^+, r^-, c^+ and c^-.

References

GetScoreForNumbersOfCorrectandIncorrectPredictions

Description

Returns the score based on the values of n^{++}, n^{+-}, n^{-+} and n^{--}.

Usage

GetScoreForNumbersOfCorrectandIncorrectPredictions(matrixRow)

Arguments

matrixRow a row of a matrix of correct and incorrect prediction scores

Value

The corresponding score for the given row.

GetScoresForSingleNode

Description

A helper function for RankTheHypotheses to calculate a line of the scoresMatrix table.

Usage

GetScoresForSingleNode(iNode, timeToRunSoFar, nodesToBeTested, network, delta, processedExperimentalData, numPredictions, epsilon, useCubicAlgorithm, use1bAlgorithm, symmetricCCG, correctPredictionsThreshold, experimentalDataStats, quiet)
GetScoresForSingleNode

Arguments

- **iNode**: this node
- **timeToRunSoFar**: the time to run so far
- **nodesToBeTested**: List of all nodes to be tested
- **network**: Computational Causal Graph, as an igraph.
- **delta**: Distance to search within the causal graph.
- **processedExperimentalData**: The processed experimental data
- **numPredictions**: The number of predictions
- **epsilon**: The threshold that is used when calculating the p-value using the cubic algorithm (see 'Assessing statistical significance in causal graphs').
- **useCubicAlgorithm**: An indicator specifying which algorithm will be used to calculate the p-value. The default is set as useCubicAlgorithm = TRUE which uses the cubic algorithm. If this value is set as FALSE, the algorithm will use the much slower quartic algorithm which does compute the exact answer, as opposed to using approximations like the cubic algorithm.
- **use1bAlgorithm**: An indicator specifying whether the 1a or 1b (default, faster) variant of the cubic algorithm described in Chindelevitch’s paper will be used to calculate the p-value.
- **symmetricCCG**: This flag specifies whether the CCG is assumed to be symmetric. The value is set as TRUE as a default. If this is the case the running time of the algorithm is reduced since the negative node values can be calculated using symmetry and the results of calculations performed for the positive node.
- **correctPredictionsThreshold**: A threshold on the number of correct predictions for a given hypothesis. If a hypothesis produces fewer correct predictions than predictionsThreshold then the algorithm will not calculate the two p-values. Instead 'NA' will be displayed in the final two columns of the corresponding row of the results table. As a default correctPredictionsThreshold is set as -Inf, so that the p-values are calculated for all specified hypotheses.
- **experimentalDataStats**: Stats from the experimental data
- **quiet**: a flag to supress progress output

Value

If symmetricCCG is false, this returns a single line of the scoreMatrix for the 'iNode’th node in nodesToBeTested. If symmetricCCG is true this returns two lines. The first of which corresponds to the positive node and the second the negative node.
GetScoresWeightsMatrix

get scores weight matrix

Description
Computes the score and weight for a network/set of experimental data based on the table containing possible values of n++, n+, n-+ and n–.

Usage
GetScoresWeightsMatrix(matrixOfPossibleValues, predictionDataStats, experimentalDataStats, logOfFactorialOfPredictionListStats)

Arguments
matrixOfPossibleValues
values of n++, n+, n-+ and n– that need to be assessed
predictionDataStats
a table of predictions
experimentalDataStats
a table of observed experimental data
logOfFactorialOfPredictionListStats
a vector containing the log of the factorial value for each entry in predictionListStats

Value
a matrix containing scores and logs of the weights

GetScoresWeightsMatrixByCubicAlg

generate scores weights matrix by the cubic algorithm

Description
Implements the cubic algorithm as described on pages 6 and 7 of Assessing statistical significance in causal graphs, Chindelevitch et al. 2012

Usage
GetScoresWeightsMatrixByCubicAlg(predictionListStats, experimentalDataStats, epsilon)

Arguments
predictionListStats
a vector containing the values q+, q- and q0
experimentalDataStats
a vector containing the values n+, n- and n0
epsilon
the algorithms tolerance epsilon
GetSetOfDifferentiallyExpressedGenes

Value

a matrix containing the ternary dot product distribution

References

GetSetOfSignificantPredictions

g et set of significant predictions

Description

Gets the set of positive and negative predictions, the combination of the sets Sh+ and Sh- in Causal reasoning on biological networks: Interpreting transcriptional changes, L Chindelevitch et al.

Usage

GetSetOfSignificantPredictions(predictions)

Arguments

predictions a table of predictions

Value

a matrix containing the ternary dot product distribution

References

GetShortestPathsFromCCG

Description

Gets the node names in the shortest path from one node in a CCG to another

Usage

GetShortestPathsFromCCG(network, hypothesisnode, targetnode,
showbothdirs = FALSE, display = TRUE)

Arguments

network built from iGraph
hypothesisnode hypothesis node ID
targetnode target node ID
showbothdirs where multiple paths from a positive and negative node, FALSE returns only the
shortest. Otherwise both are returned.
display if true, echo the resulting paths to the screen

Value

a list of vectors containing the nodes of individual paths

Examples

network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg = CreateCCG(network)
hypothesisnode = 1
targetnode = 10
GetShortestPathsFromCCG (ccg, hypothesisnode, targetnode)
GetWeightForNumbersOfCorrectandIncorrectPredictions

\[\text{get weight for numbers of correct and incorrect predictions} \]

Description

Gets the weight based on the values of \(n^{++}, n^{+-}, n^{-+} \) and \(n^{--} \).

Usage

\[
\text{GetWeightForNumbersOfCorrectandIncorrectPredictions}(n_pp, n_pm, n_mp, n_mm, \\
predictionDataStats, experimentalDataStats, \\
\logOfFactorialOfPredictionListStats, returnlog = \text{FALSE})
\]

Arguments

- \(n_pp \): the contingency table entry \(n^{++} \)
- \(n_pm \): the contingency table entry \(n^{+-} \)
- \(n_mp \): the contingency table entry \(n^{-+} \)
- \(n_mm \): the contingency table entry \(n^{--} \)
- predictionDataStats: prediction data statistics
- experimentalDataStats: experimental data statistics
- logOfFactorialOfPredictionListStats: log of factorial of prediction list stats
- returnlog: true if the result should be returned as a log

Value

none

GetWeightsAboveHypothesisScoreAndTotalWeights

\[\text{get weights above hypothesis score and total weights} \]

Description

Gets the score based on the values of \(n^{++}, n^{+-}, n^{-+} \) and \(n^{--} \). Used as part of a p-value calculation.

Usage

\[
\text{GetWeightsAboveHypothesisScoreAndTotalWeights}(r_p, r_m, c_p, \\
predictionListStats, experimentalDataStats, \\
\logOfFactorialOfPredictionListStats, hypothesisScore, logepsDMax, logDMax)
\]
GetWeightsAboveHypothesisScoreForAThreeByTwoTable

Arguments

- `r_p` the row sum r^+
- `r_m` the row sum r^-
- `c_p` the column sum c^+
- `predictionListStats` statistics for the prediction list
- `experimentalDataStats` statistics for the experimental data
- `logOfFactorialOfPredictionListStats` log of factorial of prediction list stats
- `hypothesisScore` the hypothesis score to be considered
- `logepsDMax` Exponential of logD Maximum value
- `logDMax` A logD Maximum value

Value

score data

GetWeightsAboveHypothesisScoreForAThreeByTwoTable

updates weights for contingency table and produce values for p-value calculation

Description

Finds the D-Values (weights) from any 3x2 contingency tables that have a score above and including the hypothesis score. It also calculates the total weight, and returns a 2x1 vector of the two values. The ratio of these values is the p-value.

Usage

GetWeightsAboveHypothesisScoreForAThreeByTwoTable(weights, r_p, r_m, r_z, n_p, n_m, predictionListStats, experimentalDataStats, logOfFactorialOfPredictionListStats, hypothesisScore, logepsDMax, logDMax)

Arguments

- `weights` Weights
- `r_p` the row sum r^+
- `r_m` the row sum r^-
- `r_z` the row sum r_0
- `n_p` the column sum n^+
- `n_m` the column sum n^-
- `predictionListStats` a list of prediction statistics
GetWeightsFromInteractionInformation

get weights from interaction information

Description
Returns a matrix of weights (-1,0,+1) indicating the direction of regulation from the interaction information.

Usage
GetWeightsFromInteractionInformation(interactionInfo)

Arguments
interactionInfo
a central column of the .sif file, giving the type of edge interaction

Value
a matrix of weights corresponding the the direction of regulation

MakePredictions
make predictions

Description
Creates a matrix of predictions for a particular hypothesis. The output is an array containing the relationship between each node and the hypothesis. The hypothesis provided will be the vertex id of one of the nodes in the network (as an integer node ID or name, including + or - for up/down regulation in the case of a CCG). The signOfHypothesis variable should be a 1 or -1, indicating up/down regulation.

Usage
MakePredictions(hypothesisnode, signOfHypothesis, network, delta, nodesInExperimentalData = NULL)
Arguments

hypothesisnode the node in the causal graph from which predictions should be made. Can be either a (numerical) node ID or a (string) node name.

signOfHypothesis whether the hypothesis node is up- or down-regulated. Should be +1 or -1.

network a (Computational) Causal Graph, as an igraph.

delta the distance to search within the causal graph.

nodesInExperimentalData optional. Nodes to include in the output. Should be a list of node IDs.

Value

a matrix of predictions for the given particular hypothesis

Examples

```r
network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg <- CreateCCG(network)
predictions <- MakePredictions('NodeA', +1, ccg, 2)
```

Description

Create a matrix of predictions for a particular hypothesis starting from a network with separate nodes for up- and down-regulation (+ve and -ve). The output is an array containing the relationship between each node and the hypothesis. The hypothesis provided will be the vertex id of one of the nodes in the network (as an integer or name including + or - for up/down regulation). The signOfHypothesis variable should be a 1 or -1, indicating up/down regulation. (It generally shouldn’t be necessary to reverse the sign of a node when working from a CCG, but this facility is included for consistency with MakePredictionsFromCG)

Usage

```r
MakePredictionsFromCCG(hypothesisnode, signOfHypothesis, network, delta, nodesInExperimentalData = NULL)
```

Arguments

hypothesisnode a hypothesis node

signOfHypothesis the direction of change of hypothesis node

network a computational causal graph

delta the number of edges across which the hypothesis should be followed

nodesInExperimentalData the number of nodes in experimental data
MakePredictionsFromCG

Value

an matrix containing the relationship between each node and the hypothesis

Examples

```r
network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg <- CreateCCG(network)
MakePredictionsFromCCG('NodeA', +1, ccg, 2)
```

Description

Create a matrix of predictions for a particular hypothesis - the output is a matrix containing the relationship between each node and the hypothesis. The hypothesis provided will be the vertex id of one of the nodes in the network (as an integer). The signOfHypothesis variable should be a 1 or -1, indicating up/down regulation

Usage

```r
MakePredictionsFromCG(hypothesisnode, signOfHypothesis, network, delta,
          nodesInExperimentalData = NULL)
```

Arguments

- **hypothesisnode** a hypothesis node
- **signOfHypothesis** the direction of change of hypothesis node
- **network** a computational causal graph
- **delta** the number of edges across which the hypothesis should be followed
- **nodesInExperimentalData** the number of nodes in experimental data

Value

an matrix containing the relationship between each node and the hypothesis
PlotGraphWithNodeNames

Description

Plots an igraph with the node names. Plots a igraph to the screen displaying the names of the nodes input rather than R’s internal numbering.

Usage

PlotGraphWithNodeNames(igraph)

Arguments

igraph
internal an igraph representation of an interaction network

Value

network visualisation

Examples

network <- system.file(package='CausalR', 'extdata', 'testNetwork.sif')
ccg <- CreateCCG(network)
PlotGraphWithNodeNames(ccg)

OrderHypotheses order hypotheses

Description

Ranks the hypotheses. Takes a matrix containing the scores for each node of the network, and ranks them placing the hypothesis with the most correct predictions is at the top

Usage

OrderHypotheses(scoresMatrix)

Arguments

scoresMatrix
a matrix containing the scores for each node of the network

Value

a ranked table of hypotheses
Description

Populates 3x3 signed contingency table of expected versus observed changes. Given the values of n++, n+-, n-+ and n–, calculates n0+, n0-, n+0, n-0 and n00. Notation from Chindelevitch et al. Causal reasoning on biological networks Bioinformatics (2012) paper.

Usage

PopulateTheThreeByThreeContingencyTable(n_pp, n_pm, n_mp, n_mm, predictionDataStats, experimentalDataStats)

Arguments

n_pp n++ contingency table entry
n_pm n+- contingency table entry
n_mp n-+ contingency table entry
n_mm n– contingency table entry
predictionDataStats a prediction data table.
experimentalDataStats an experimental data table

Value

Vector of calculated values for n0+, n0-, n+0, n-0 and n00 - See: Chindelevitch et al. Bioinformatics (2012).

Description

Calculates a 2x2 contingency table. Given the value of n++ and the row and column sums (r+, r-, c+, c-). Calculates the remaining values in the 2x2 contingency table i.e. n+-, n-+, and n–. See Chindelevitch et al. BMC Bioinformatics (2012) paper ‘Assessing Statistical significance of causal graphs’ for clarification on notation.

Usage

PopulateTwoByTwoContingencyTable(rowAndColumnSumValues, n_pp)
ProcessExperimentalData

Arguments

rowAndColumnSumValues
the row and column sums (r+, r-, c+, c-).

n_pp
the value of n++.

Value
the completed 2x2 contingency table: n++, n+-, n-, n–

References

Description
Processes experimental data to get it into the correct form for scoring. The node names that are read in as strings acquire an internal id when the network is created. This function will replace the node name with its id.

Usage
ProcessExperimentalData(experimentalData, network)

Arguments
experimentalData
input experimental data.

network
an input interaction network.

Value
processed experimental data formatted ready for scoring
RankTheHypotheses *rank the hypotheses*

Description

Rank the hypotheses in the causal network. This function can be run with parallelisation using the doParallel flag.

Usage

```r
RankTheHypotheses(network, experimentalData, delta, epsilon = 1e-05,
                   useCubicAlgorithm = TRUE, use1bAlgorithm = TRUE, symmetricCCG = TRUE,
                   listOfNodes = NULL, correctPredictionsThreshold = -Inf, quiet = FALSE,
                   doParallel = FALSE, numCores = NULL)
```

Arguments

- `network`: Computational Causal Graph, as an igraph.
- `experimentalData`: The experimental data read in using ReadExperimentalData. The results is an n x 2 matrix; where the first column contains the node ids of the nodes in the network that the results refer to. The second column contains values indicating the direction of regulation in the results - (+)1 for up, -1 for down and 0 for insignificant amounts of regulation.
- `delta`: Distance to search within the causal graph.
- `epsilon`: The threshold that is used when calculating the p-value using the cubic algorithm (see 'Assessing statistical significance in causal graphs').
- `useCubicAlgorithm`: An indicator specifying which algorithm will be used to calculate the p-value. The default is set as useCubicAlgorithm = TRUE which uses the cubic algorithm. If this value is set as FALSE, the algorithm will use the much slower quartic algorithm which does compute the exact answer, as opposed to using approximations like the cubic algorithm.
- `use1bAlgorithm`: An indicator specifying whether the 1a or 1b (default, faster) variant of the cubic algorithm described in Chindelevitch’s paper will be used to calculate the p-value.
- `symmetricCCG`: This flag specifies whether the CCG is assumed to be symmetric. The value is set as TRUE as a default. If this is the case the running time of the algorithm is reduced since the bottom half of the table can be filled in using the results of calculations performed earlier.
- `listOfNodes`: A list of nodes specified by the user. The algorithm will only calculate and store the results for the nodes in the specified list. The default value is NULL; here the algorithm will calculate and store results for all the nodes in the network.
- `correctPredictionsThreshold`: A threshold on the number of correct predictions for a given hypothesis. If a hypothesis produces fewer correct predictions than predictionsThreshold then the algorithm will not calculate the two p-values. Instead ‘NA’ will be displayed in the final two columns of the corresponding row of the results table. As a default correctPredictionsThreshold is set as -Inf, so that the p-values are calculated for all specified hypotheses.
quiet a flag to supress progress output. FALSE by default.
doParallel A flag for running RankTheHypothesis in parallel mode.
umCores Number of cores to use if using parallel mode. If the default value of NULL is used, it will attempt to detect the number of cores available and use all of them bar one.

Value
A data frame containing the results of the algorithm.

References

Examples
#get path to example network file
get_system <- system.file(package="CausalR", 'extdata', 'testNetwork.sif')
#create ccg
get_network <- CreateCCG(get_system)
#get path to example experimental data
get_fileName <- system.file(package="CausalR", 'extdata', 'testData.txt')
#read in experimental data
get_expData <- ReadExperimentalData(fileName, get_network)
#run in single threaded mode
RankTheHypotheses(get_network, get_expData, 2)
#run in parallel mode
RankTheHypotheses(get_network, get_expData, 2, doParallel=TRUE, numCores=2)
(n x 2) matrix of nodes and direction of regulation. The first column of the matrix contains the node IDs from the network, and the second contains the experimental values.

Examples

```r
# get path to example network file
network <- system.file(package="CausalR", extdata, "testNetwork.sif")
## create ccg
ccg <- CreateCCG(network)
# get path to example experimental data
fileName <- system.file(package="CausalR", extdata, "testData.txt")
ReadExperimentalData(fileName, ccg)
```
runRankHypothesis

Description
A top level function that used to run CausalR

Usage
```r
runRankHypothesis(PPInet, Expressiondata, delta, correctPredictionsThreshold)
```

Arguments
- **PPInet**: PPInet is the PPI interaction file
- **Expressiondata**: observed gene expression data
- **delta**: the number of links to follow from any hypothesis no. Depending on network size/topology, this value typically ranges between 1 and 5
- **correctPredictionsThreshold**: Minimal score for p-values calculation. Hypotheses with scores below this value will get NAs for p-value and enrichment p-value. The usual default is -inf within the RankTheHypotheses function, where it is employed.

Value
rankedHypothesis table of results produced by the algorithm

runSCANR

Description
This function will return nodes regulated by the given hypothesisGene

Usage
```r
runSCANR(network, experimentalData, NumberOfDeltaToScan = 5, topNumGenes = 150, correctPredictionsThreshold = 1, doParallel = FALSE, numCores = NULL)
```
ScoreHypothesis

Arguments

network Computational Causal Graph, as an igraph.
experimentalData The experimental data read in using ReadExperimentalData. The results is an n x 2 matrix; where the first column contains the node ids of the nodes in the network that the results refer to. The second column contains values indicating the direction of regulation in the results - (+)1 for up, -1 for down and 0 for insignificant amounts of regulation.

NumberOfDeltaToScan Iteratively scan for 1 to NumberOfDeltaToScan delta values
topNumGenes A value to select top genes to report (typically top 100 genes)
correctPredictionsThreshold Minimal score for p-values calculation. Hypotheses with scores below this value will get NAs for p-value and enrichment p-value. The usual default is -inf within the RankTheHypotheses function, where it is employed.
doParallel A flag for running RankTheHypothesis in parallel mode.
umCores Number of cores to use if using parallel mode. If the default value of NULL is used, it will attempt to detect the number of cores available and use all of them bar one.

Value

returns list of genes from each delta scan run

Examples

NumberOfDeltaToScan <- 2
topNumGenes <- 4

#get path to example network file
testNetwork <- system.file(package = 'CausalR', 'extdata', 'testNetwork.sif')
#create ccg
ccg <- CreateCCG(network)

#get path to example experimental data
testData.txt <- system.file(package = 'CausalR', 'extdata', 'testData.txt')

#read in experimental data
expData <- ReadExperimentalData(testData.txt, ccg)

#run in single threaded mode
runSCANR(ccg, expData, NumberOfDeltaToScan, topNumGenes)

#run in parallel mode
runSCANR(ccg, expData, NumberOfDeltaToScan, topNumGenes,
doParallel = TRUE, numCores = 2)

ScoreHypothesis score hypothesis

Description

Score a single hypothesis, using the predictions from the network and the experimental data returning a vector of scoring statistics
Usage

ScoreHypothesis(matrixOfPredictions, matrixOfExperimentalData)

Arguments

matrixOfPredictions
 a matrix of predictions

matrixOfExperimentalData
 a matrix of experimental data

Value

scoreBreakdown a vector giving, in order, the overall score, and the numbers of correct, incorrect and ambiguous predictions

Examples

predictions <- matrix(c(1,2,3,+1,0,-1),ncol=2)
experimentalData <- matrix(c(1,2,4,+1,+1,-1),ncol=2)
ScoreHypothesis(predictions,experimentalData)
CompareHypothesis(predictions,experimentalData)

ValidateFormatOfDataTable
data table

validate format of the experimental data table

Description

Checks the format of the experimental data. This is expected to be two columns, the first containing the gene name and the second the direction of regulation, -1, 0 or 1. The function checks the number of columns and the values of the second column.

Usage

ValidateFormatOfDataTable(dataTable)

Arguments

dataTable the data table to be tested

Value

ture if the data table is valid
ValidateFormatOfTable validate format of table

Description
Checks the format of the loaded data. In particular expects a table with three columns (in order) a
initiating gene, an interaction ("Activates","Inhibits") and a responding gene and checks the number
of rows and the values of the middle column.

Usage
ValidateFormatOfTable(dataTable)

Arguments
dataTable the table to be tested

Value
true if the test is satisfied.

WriteExplainedNodesToSifFile Write explained nodes to Sif file

Description
Outputs a network of explained nodes in .sif file format for producing visualisations using Cy-
toscape

Usage
WriteExplainedNodesToSifFile(hypothesisnode, signOfHypothesis, network, data,
delta, file, display = TRUE)

Arguments
hypothesisnode a hypothesis node
signOfHypothesis the direction of change of hypothesis node
network a computational causal graph
data a data file
delta the number of edges across which the hypothesis should be followed
file a character string (without extension) that determines the names of the files cre-
ated. Extension is added automatically. Set to NA if not writing to file.
display determines if the output written to file is also displayed
Value

two files containing paths from hypothesis node to explained nodes in sif format

Examples

```r
hypothesisnode <- "Node0"
signOfHypothesis <- +1
network <- system.file(package="CausalR", "extdata", "testNetwork1.sif")
ccg <- CreateCCG(network)
data <- system.file(package="CausalR", "extdata", "testData1.txt")
delta <- 2
WriteExplainedNodesToSifFile(hypothesisnode, signOfHypothesis, ccg, data, delta, file=NA, display=TRUE)
```
Index

AddIDsToVertices, 3
AddWeightsToEdges, 4
AnalyseExperimentalData, 4
AnalysePredictionsList, 5
CalculateEnrichmentPValue, 5
CalculateSignificance, 3, 6
CalculateSignificanceUsingCubicAlgorithm, 7
CalculateSignificanceUsingCubicAlgorithm1b, 8
CalculateSignificanceUsingQuarticAlgorithm, 9
CalculateTotalWeightForAllContingencyTables, 10
CalculateWeightGivenValuesInThreeByThreeContingencyTable, 10
CausalR (CausalR-package), 3
CausalR-package, 3
CheckPossibleValuesAreValid, 11
CheckRowAndColumnSumValuesAreValid, 11
CompareHypothesis, 12
ComputeFinalDistribution, 12
ComputePValueFromDistributionTable, 13
CreateCCG, 3, 13
CreateCG, 14
CreateNetworkFromTable, 15
DetermineInteractionTypeOfPath, 15
FindApproximateValuesThatWillMaximiseDValue, 16
FindIdsOfConnectedNodesInSubgraph, 16
FindMaximumDValue, 17
GetAllPossibleRoundingCombinations, 18
GetApproximateMaximumDValueFromThreeByTwoContingencyTable, 18
GetApproximateMaximumDValueFromTwoByTwoContingencyTable, 19
GetCombinationsOfCorrectandIncorrectPredictions, 20
GetExplainedNodesOfCCG, 20
GetInteractionInformation, 21
GetMatrixOfCausalRelationships, 21
GetMaxDValueForAFamily, 22
GetMaxDValueForAThreeByTwoFamily, 23
GetMaximumDValueFromTwoByTwoContingencyTable, 24
GetNodeID, 25
GetNodeName, 25
GetNumberOfPositiveAndNegativeEntries, 26
GetPathsInSifFormat, 26
GetRegulatedNodes, 27
GetRowAndColumnSumValues, 27
GetScoresForNumbersOfCorrectandIncorrectPredictions, 28
GetScoresForSingleNode, 28
GetScoresWeightsMatrix, 30
GetScoresWeightsMatrixUsingCubicAlg, 30
GetSetOfDifferentiallyExpressedGenes, 31
GetSetOfSignificantPredictions, 31
GetShortestPathsFromCCG, 32
GetWeightsAboveHypothesisScoreAndTotalWeights, 33
GetWeightsAboveHypothesisScoreForAThreeByTwoTable, 34
GetWeightsFromInteractionInformation, 35
MakePredictions, 3, 35
MakePredictionsFromCCG, 36
MakePredictionsFromCG, 37
OrderHypotheses, 38
PopulateTheThreeByThreeContingencyTable, 38
PopulateTwoByTwoContingencyTable, 39
ProcessExperimentalData, 40
RankTheHypotheses, 3, 41
ReadExperimentalData, 3, 41, 42, 45
ReadSifFileToTable, 43
RemoveIDsNotInExperimentalData, 43
runRankHypothesis, 44
runSCANR, 44

ScoreHypothesis, 3, 45

ValidateFormatOfDataTable, 46
ValidateFormatOfTable, 47

WriteExplainedNodesToSifFile, 47