Package ‘ClusterSignificance’

March 22, 2017

Title The ClusterSignificance package provides tools to assess if
 clusters have a separation different from random or permuted
 data

Version 1.2.3

Author Jason T. Serviss and Jesper R. Gadin

Maintainer Jason T Serviss <jason.serviss@ki.se>

Description The ClusterSignificance package provides tools to assess
 if clusters have a separation different from random or permuted
 data. ClusterSignificance investigates clusters of two or more
 groups by first, projecting all points onto a one dimensional
 line. Cluster separations are then scored and the probability
 of the seen separation being due to chance is evaluated using a
 permutation method.

Depends R (>= 3.3.0)

Imports methods, pracma, princurve, scatterplot3d, RColorBrewer,
 grDevices, graphics, utils

License GPL-3

LazyData true

Suggests knitr, rmarkdown, testthat, BiocStyle, ggplot2, plsgenomics

VignetteBuilder knitr

biocViews Clustering, Classification, PrincipalComponent,
 StatisticalMethod

NeedsCompilation no

Collate 'ClusterSignificance-package.R'
 'All-classes.R'
 'classifier-methods.R'
 'initialize-methods.R'
 'mlpMatrix.R'
 'pcpMatrix.R'
 'permutation-methods.R'
 'plot-methods.R'
 'projection-methods.R'
 'show-methods.R'

RoxygenNote 5.0.1.9000

R topics documented:

 ClusterSignificance-package 2
 ClassifiedPoints-class 2
 Mlp-class .. 4
 mlpMatrix ... 6
The ClusterSignificance package provides tools to assess if clusters have a separation different from random or permuted data.

Details

Package: ClusterSignificance
Type: Package
Version: 1.0
Date: 2016-02-28
License: GPL-3

Author(s)

Author: Jason T. Serviss, Jesper R. Gadin

References

Reference to published application note (work in progress)

Classification of the one dimensional points in a Pcp or Mlp object.

Classification based on ROC params (TN TP FP FN).
Usage

S4 method for signature 'ClassifiedPoints'
ggetData(x, n = NULL)
classify(x, ...)

S4 method for signature 'Pcp'
classify(x, ...)

S4 method for signature 'Mlp'
classify(x, ...)

S4 method for signature 'ClassifiedPoints'
initialize(.Object, ..., scores,
 scores.points = scores.points, scores.index = scores.index, ROC,
 group.color)

S4 method for signature 'ClassifiedPoints,missing'
plot(x, y, comparison = "all",
 group.color = NULL, ...)

S4 method for signature 'ClassifiedPoints'
show(object)

Arguments

x Pcp or Mlp Object for the function classify otherwise it is a ClassifiedPoints object
n data to extract from ClassifiedPoints (NULL gives all)
... additional arguments to pass on
.Object internal object
scores final scores
scores.points sorted points
scores.index index of sorted points
ROC parameters (TN, TP, FN and FP)
group.color user assigned group coloring scheme
y default plot param, which should be set to NULL
comparison Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison.
object ClassifiedPoints Object

Details

Tests all possible discrimination lines and picks the one with highest score based on a score which is simply calculated by the formula (TP - FP) + (TN - FN).

The plot shows the distribution of scores for different discrimination lines. Each line is a separator that has a score for the separation of the two groups, and the height of the line marks the score for this separation.
The classify function returns an object of class ClassifiedPoints

Author(s)
Jesper R. Gadin and Jason T. Serviss

Examples

use demo data
data(pcpMatrix)
groups <- rownames(pcpMatrix)

run function
prj <- pcp(pcpMatrix, groups)
cl <- classify(prj)

getData accessor
data(cl)

getData accessor specific
data(cl, "scores")

plot result
plot(cl)

Mlp-class

Projection of points into one dimension.

Description
Project points onto the mean based line.

Usage

S4 method for signature 'Mlp'
getData(x, n = NULL)

S4 method for signature 'Mlp'
initialize(.Object, ..., groups, points.orig, line,
points.onedim, group.color)

S4 method for signature 'Mlp,missing'
plot(x, y, steps = "all", ...)

mlp(mat, ...)

S4 method for signature 'matrix'
mlp(mat, groups, group.color = NULL, ...)

S4 method for signature 'Mlp'
show(object)
Mlp-class

Arguments

- **x**: matrix object for the function mlp otherwise it is a Mlp object
- **n**: data to extract from Mlp (NULL gives all)
- **.Object**: internal object
- **...**: additional arguments to pass on
- **groups**: vector in same order as rows in matrix
- **points.orig**: multidimensional points describing the original data
- **line**: multidimensional points describing a line
- **points.onedim**: a vector of points
- **group.color**: user assigned group coloring scheme
- **y**: default plot param, which should be set to NULL (default: NULL)
- **steps**: 1,2,3,4,5,6 or "all"
- **mat**: matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
- **object**: Mlp object

Details

Projection of the points onto a line between the mean of two groups. Mlp is the abbreviation for 'mean line projection'. The function accepts, at the moment, only two groups and two PCs at a time.

An object containing results from a mean line projection reduction to one dimension.

The group and the one dimensional points are the most important information to carry out a classification using the classify() function. As a help to illustrate the details of the dimension reduction, the information from some critical steps are stored in the object. To visually explore these there is a dedicated plot method for Mlp objects, use plot().

Value

The mlp function returns an object of class Mlp

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

```r
#use demo data
data(mlpMatrix)
groups <- rownames(mlpMatrix)

#run function
prj <- mlp(mlpMatrix, groups)

#getData accessor
getdata(prj)

#getData accessor specific
```
getData(prj, "line")

#plot result
plot(prj)

mlpMatrix

Simulated data used to demonstrate the Mlp method.

Description

Mlp demonstration matrix.

Usage

mlpMatrix

Format

Matrix

rownames Groups
colnames dimension number

Value

simulated matrix

Examples

mlpMatrix

Pcp-class

Projection of points into one dimension.

Description

Project points onto a principal curve.

Usage

getData(x, ...)

S4 method for signature 'Pcp'
getData(x, n = NULL)

S4 method for signature 'Pcp'
initialize(.Object, ..., groups, points.orig, line,
points.onedim, index, group.color)
S4 method for signature 'Pcp,missing'
plot(x, y, steps = "all", group.color = NULL, ...)

pcp(mat, ...)

S4 method for signature 'matrix'
pcp(mat, groups, df = NULL, group.color = NULL, ...)

S4 method for signature 'Pcp'
show(object)

Arguments

- **x**: matrix object for the function pcp otherwise it is a Pcp object
- **...**: additional arguments to pass on
- **n**: data to extract from Pcp (NULL gives all)
- **.Object**: internal object
- **groups**: vector in same order as rows in matrix
- **points.orig**: multidimensional points describing the original data
- **line**: multidimensional points describing a line
- **points.onedim**: a vector of points
- **index**: internal index from the projection
- **group.color**: user assigned group coloring scheme
- **y**: default plot param, which should be set to NULL
- **steps**: 1,2,3,4,5,6 or "all"
- **mat**: matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
- **df**: degrees of freedom, passed to smooth.spline
- **object**: Pcp object

Details

The resulting Pcp object containing results from a principal curve reduction to one dimension. The group and the one dimensional points will be the information needed to carry out a classification using the classify() function. As a help to illustrate the details of the dimension reduction, the information from some critical steps is stored in the object. To visually explore these there is a dedicated plot method for Pcp objects, use plot().

Value

The pcp function returns an object of class Pcp

Author(s)

Jesper R. Gadin and Jason T. Serviss
Examples

```r
# use demo data
data(pcpMatrix)
groups <- rownames(pcpMatrix)

# run function
prj <- pcp(pcpMatrix, groups)

# getData accessor
getData(prj)

# getData accessor specific
getData(prj, "line")

# plot the result (if dim > 2, then plot in 3d)
plot(prj)

# plot the result (if dim = 2, then plot in 2d)
prj2 <- pcp(pcpMatrix[,1:2], groups)
plot(prj2)
```

pcpMatrix

Simulated data used to demonstrate the Pcp method.

Description

Pcp demonstration matrix.

Usage

pcpMatrix

Format

Matrix

rownames Groups

colnames dimension number

Value

simulated matrix

Examples

pcpMatrix
PermutationResults-class

Permutation test

Description

Test how the classification performs compared to random (eg. permuted) data.

Usage

```r
## S4 method for signature 'PermutationResults'
getData(x, n = NULL)

## S4 method for signature 'PermutationResults'
c(x, ..., recursive = FALSE)

pvalue(x, ...)

## S4 method for signature 'PermutationResults'
pvalue(x, ...)

## S4 method for signature 'PermutationResults'
initialize(.Object, ..., scores.real, scores.vec)

permute(mat, ...)

## S4 method for signature 'matrix'
permute(mat, groups, projmethod = "pcp", iter = 100,
       user.permutations = NULL, seed = 3, df = NULL, verbose = TRUE, ...)

## S4 method for signature 'PermutationResults,missing'
plot(x, y, comparison = "all", ...)

## S4 method for signature 'PermutationResults'
show(object)
```

Arguments

- **x**: matrix for the function permute, otherwise it is a PermutationResults object
- **n**: data to extract from ClassifiedPoints (NULL gives all)
- **...**: arguments to pass on
- **recursive**: dont use (belongs to default generic of combine 'c()')
- **.Object**: internal object
- **scores.real**: the real score
- **scores.vec**: all permuted scores
- **mat**: matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
- **groups**: vector in same order as rows in matrix
PermutationResults-class

projmethod | 'pcp' or 'mlp'
iter | integer number of iterations to be performed.
user.permutations | user defined permutation matrix
seed | random seed to be used by the internal permutation
df | degrees of freedom, passed to smooth.spline
verbose | makes function more talkative
y | default plot param, which should be set to NULL
comparison | Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison.
oneobject | ClassifiedPoints Object

Details

This is a test suit and will return a summarized object. The default of the parameter 'iter' is set quite low, and in principle the more iterations the better, or until the pvalue converges to a specific value. If no pre-permuted data has been supplied by the user, then the internal permutation method will perform a sampling without replacement within each dimension.

Value

The permute function returns an object of class PermutationResults

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

#use pcp method
data(pcpMatrix)
groups <- rownames(pcpMatrix)

#run function
iterations <- 10
pe <- permute(
 mat=pcpMatrix,
 groups=groups,
 iter=iterations,
 projmethod="pcp"
)

#use mlp method
data(mlpMatrix)
groups <- rownames(mlpMatrix)
pe <- permute(
 mat=mlpMatrix,
 groups=groups,
 iter=iterations,
 projmethod="mlp"
)
#getData accessor
getData(pe)

#getData accessor specific
getData(pe, "scores.vec")

#get pvalue
pvalue(pe)

#plot result
plot(pe)

#combine three (parallel) jobs on the same matrix
pe2 <- c(pe, pe, pe)
Index

*Topic **classification**
 ClassifiedPoints-class, 2

*Topic **package**
 ClusterSignificance-package, 2

*Topic **permutation**
 PermutationResults-class, 9

*Topic **projection**
 Mlp-class, 4
 Pcp-class, 6
 .ClassifiedPoints
 (ClassifiedPoints-class), 2
 .Mlp (Mlp-class), 4
 .Pcp (Pcp-class), 6
 .PermutationResults
 (PermutationResults-class), 9

 c,PermutationResults-method
 (PermutationResults-class), 9
 ClassifiedPoints
 (ClassifiedPoints-class), 2
 ClassifiedPoints-class, 2
 classify (ClassifiedPoints-class), 2
 classify,Mlp-method
 (ClassifiedPoints-class), 2
 classify,Pcp-method
 (ClassifiedPoints-class), 2
 ClusterSignificance
 (ClusterSignificance-package), 2

 ClusterSignificance-package, 2

 getData (Pcp-class), 6
 getData,ClassifiedPoints-method
 (ClassifiedPoints-class), 2
 getData,Mlp-method (Mlp-class), 4
 getData,Pcp-method (Pcp-class), 6
 getData,PermutationResults-method
 (PermutationResults-class), 9

 initialize,ClassifiedPoints-method
 (ClassifiedPoints-class), 2
 initialize,Mlp-method (Mlp-class), 4
 initialize,Pcp-method (Pcp-class), 6
 initialize,PermutationResults-method
 (PermutationResults-class), 9

 Mlp (Mlp-class), 4
 mlp (Mlp-class), 4
 mlp,matrix-method (Mlp-class), 4
 Mlp-class, 4
 mlpMatrix, 6

 Pcp (Pcp-class), 6
 pcp (Pcp-class), 6
 pcp,matrix-method (Pcp-class), 6
 Pcp-class, 6
 pcpMatrix, 8
 PermutationResults-class, 9
 permute (PermutationResults-class), 9
 permute,matrix-method
 (PermutationResults-class), 9
 plot,ClassifiedPoints, missing-method
 (ClassifiedPoints-class), 2
 plot,Mlp, missing-method (Mlp-class), 4
 plot,Pcp, missing-method (Pcp-class), 6
 plot,PermutationResults, missing-method
 (PermutationResults-class), 9
 pvalue (PermutationResults-class), 9
 pvalue, PermutationResults-method
 (PermutationResults-class), 9

 show,ClassifiedPoints-method
 (ClassifiedPoints-class), 2
 show,Mlp-method (Mlp-class), 4
 show,Pcp-method (Pcp-class), 6
 show,PermutationResults-method
 (PermutationResults-class), 9

12