Package ‘ComplexHeatmap’

April 25, 2017

Type Package
Title Making Complex Heatmaps
Version 1.14.0
Date 2017-2-15
Author Zuguang Gu
Maintainer Zuguang Gu <z.gu@dkfz.de>
Depends R (>= 3.1.2), grid, graphics, stats, grDevices
Imports methods, circlize (>= 0.3.4), RColorBrewer, dendextend (>= 1.0.1), GlobalOptions (>= 0.0.10)
Suggests testthat (>= 0.3), knitr, markdown, cluster, MASS, pvclust, dendsort, HilbertCurve, Cairo, png, jpeg, tiff, fastcluster

Description Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential structures. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports self-defined annotation graphics.

biocViews Software, Visualization, Sequencing

URL https://github.com/jokergoo/ComplexHeatmap
License GPL (>= 2)

Repository Bioconductor
Date/Publication 2017-2-15 00:00:00

NeedsCompilation no

R topics documented:

ComplexHeatmap-package .. 4
+.AdditiveUnit .. 5
AdditiveUnit ... 6
AdditiveUnit-class ... 6
add_heatmap-dispatch .. 7
add_heatmap-Heatmap-method 7
add_heatmap-HeatmapAnnotation-method 8
add_heatmap-HeatmapList-method 9
annotation_legend_size-HeatmapList-method 10
anno_barplot .. 11
anno_boxplot .. 12
anno_density .. 13
anno_histogram ... 14
anno_link .. 15
anno_oncoprint_barplot .. 16
anno_points ... 16
anno_text .. 17
ColorMapping .. 18
ColorMapping-class .. 19
color_mapping_legend-ColorMapping-method 20
columnAnnotation ... 22
column_anno_barplot .. 22
column_anno_boxplot .. 23
column_anno_density .. 24
column_anno_histogram .. 24
column_anno_link .. 25
column_anno_points .. 26
column_anno_text .. 26
column_dend-dispatch .. 27
column_dend-Heatmap-method 27
column_dend-HeatmapList-method 28
column_order-dispatch ... 29
column_order-Heatmap-method 29
column_order-HeatmapList-method 30
component_height-dispatch ... 30
component_height-Heatmap-method 31
component_height-HeatmapList-method 32
component_width-dispatch ... 32
component_width-Heatmap-method 33
component_width-HeatmapList-method 34
decorate_annotation ... 34
decorate_column_dend .. 35
decorate_column_names ... 36
decorate_column_title ... 37
decorate_dend .. 37
decorate_dimnames .. 38
decorate_heatmap_body ... 39
decorate_row_dend .. 40
decorate_row_names .. 41
decorate_row_title ... 42
decorate_title .. 42
densityHeatmap ... 43
dist2 ... 45
draw-dispatch .. 46
draw-Heatmap-method ... 47
draw-HeatmapAnnotation-method 48
draw-HeatmapList-method ... 49
draw-SingleAnnotation-method 51
draw_annotation-Heatmap-method 52
draw_annotation_legend-HeatmapList-method 53
draw_dend-Heatmap-method .. 53
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw_dimnames-Heatmap-method</td>
<td>54</td>
</tr>
<tr>
<td>draw_heatmap_body-Heatmap-method</td>
<td>55</td>
</tr>
<tr>
<td>draw_heatmap_legen-HeatmapList-method</td>
<td>56</td>
</tr>
<tr>
<td>draw_heatmap_list-HeatmapList-method</td>
<td>57</td>
</tr>
<tr>
<td>draw_title-dispatch</td>
<td>58</td>
</tr>
<tr>
<td>draw_title-Heatmap-method</td>
<td>58</td>
</tr>
<tr>
<td>draw_title-HeatmapList-method</td>
<td>59</td>
</tr>
<tr>
<td>enhanced_basicplot</td>
<td>60</td>
</tr>
<tr>
<td>get_color_mapping_list-HeatmapAnnotation-method</td>
<td>61</td>
</tr>
<tr>
<td>get_color_mapping_param_list-HeatmapAnnotation-method</td>
<td>62</td>
</tr>
<tr>
<td>grid.dendrogram</td>
<td>62</td>
</tr>
<tr>
<td>Heatmap</td>
<td>63</td>
</tr>
<tr>
<td>Heatmap-class</td>
<td>69</td>
</tr>
<tr>
<td>HeatmapAnnotation</td>
<td>71</td>
</tr>
<tr>
<td>HeatmapAnnotation-class</td>
<td>73</td>
</tr>
<tr>
<td>HeatmapList</td>
<td>74</td>
</tr>
<tr>
<td>HeatmapList-class</td>
<td>74</td>
</tr>
<tr>
<td>heatmap_legend_size-HeatmapList-method</td>
<td>76</td>
</tr>
<tr>
<td>ht_global_opt</td>
<td>77</td>
</tr>
<tr>
<td>is_abs_unit</td>
<td>78</td>
</tr>
<tr>
<td>Legend</td>
<td>79</td>
</tr>
<tr>
<td>make_column_cluster-Heatmap-method</td>
<td>80</td>
</tr>
<tr>
<td>make_layout-dispatch</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-Heatmap-method</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-HeatmapList-method</td>
<td>82</td>
</tr>
<tr>
<td>make_row_cluster-Heatmap-method</td>
<td>84</td>
</tr>
<tr>
<td>map_to_colors-ColorMapping-method</td>
<td>85</td>
</tr>
<tr>
<td>max_text_height</td>
<td>86</td>
</tr>
<tr>
<td>max_text_width</td>
<td>87</td>
</tr>
<tr>
<td>oncoPrint</td>
<td>88</td>
</tr>
<tr>
<td>packLegend</td>
<td>89</td>
</tr>
<tr>
<td>plotDataFrame</td>
<td>90</td>
</tr>
<tr>
<td>prepare-Heatmap-method</td>
<td>91</td>
</tr>
<tr>
<td>rowAnnotation</td>
<td>92</td>
</tr>
<tr>
<td>row_anno_barplot</td>
<td>93</td>
</tr>
<tr>
<td>row_anno_boxplot</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_density</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_histogram</td>
<td>95</td>
</tr>
<tr>
<td>row_anno_link</td>
<td>96</td>
</tr>
<tr>
<td>row_anno_points</td>
<td>96</td>
</tr>
<tr>
<td>row_anno_text</td>
<td>97</td>
</tr>
<tr>
<td>row_dend-dispatch</td>
<td>98</td>
</tr>
<tr>
<td>row_dend-Heatmap-method</td>
<td>98</td>
</tr>
<tr>
<td>row_dend-HeatmapList-method</td>
<td>99</td>
</tr>
<tr>
<td>row_order-dispatch</td>
<td>99</td>
</tr>
<tr>
<td>row_order-Heatmap-method</td>
<td>100</td>
</tr>
<tr>
<td>row_order-HeatmapList-method</td>
<td>100</td>
</tr>
<tr>
<td>selectArea</td>
<td>101</td>
</tr>
<tr>
<td>set_component_height-Heatmap-method</td>
<td>102</td>
</tr>
<tr>
<td>show-ColorMapping-method</td>
<td>102</td>
</tr>
<tr>
<td>show-dispatch</td>
<td>103</td>
</tr>
<tr>
<td>show-Heatmap-method</td>
<td>104</td>
</tr>
</tbody>
</table>
ComplexHeatmap-package

Making complex heatmap

Description

Making complex heatmap

Details

This package aims to provide a simple and flexible way to arrange multiple heatmaps as well as self-defining annotation graphics.

The package is implemented in an object-oriented way. Components of heatmap lists are abstracted into several classes.

- **Heatmap-class**: a single heatmap containing heatmap body, row/column names, titles, dendrograms and column annotations.
- **HeatmapList-class**: a list of heatmaps and row annotations.
- **HeatmapAnnotation-class**: a list of row annotations or column annotations.

There are also several internal classes:

- **SingleAnnotation-class**: a single row annotation or column annotation.
- **ColorMapping-class**: mapping from values to colors.

For plotting one single heatmap, please go to the documentation page of Heatmap. For plotting multiple heatmaps, please go to HeatmapList-class and +.AdditiveUnit.

The vignette provides detailed explanation of how to use this package.

Examples

There is no example
NULL
Description
Add heatmaps or row annotations to a heatmap list

Usage
S3 method for class AdditiveUnit
x + y

Arguments

x a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

y a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details
It is only a helper function. It actually calls add_heatmap,Heatmap-method, add_heatmap,HeatmapList-method or add_heatmap,HeatmapAnnotation-method depending on the class of the input objects.
The HeatmapAnnotation-class object to be added should only be row annotations.

Value
A HeatmapList-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = rowAnnotation(points = row_anno_points(1:12))
ht + ha
ht_list + ha
ha + ha + ht
AdditiveUnit-class

Description

Constructor method for AdditiveUnit class

Usage

`AdditiveUnit(...)`

Arguments

`...` black hole arguments.

Details

This method is not used in the package.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this function
NULL
```

AdditiveUnit-class

Description

An internal class

Details

This class is a super class for `Heatmap-class`, `HeatmapList-class` and `HeatmapAnnotation-class` classes. It is only designed for `+` generic method so that above three classes can be appended to each other.

Examples

```r
# no example
NULL
```
Description

Method dispatch page for `add_heatmap`.

Dispatch

`add_heatmap` can be dispatched on following classes:

- `add_heatmap,HeatmapAnnotation-method,HeatmapAnnotation-class` class method
- `add_heatmap,HeatmapList-method,HeatmapList-class` class method
- `add_heatmap,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```

add_heatmap-Heatmap-method

Add heatmaps or row annotations as a heatmap list

Description

Add heatmaps or row annotations as a heatmap list

Usage

```r
## S4 method for signature 'Heatmap'
add_heatmap(object, x)
```

Arguments

- `object` a `Heatmap-class` object.
- `x` a `Heatmap-class` object, a `HeatmapAnnotation-class` object or a `HeatmapList-class` object.

Details

There is a shortcut function `+.AdditiveUnit`.

Value

A `HeatmapList-class` object.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
add_heatmap(ht, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
which = "row")
add_heatmap(ht, ha)

Description
Add row annotations or heatmaps as a heatmap list

Usage

S4 method for signature 'HeatmapAnnotation'
add_heatmap(object, x)

Arguments

object a HeatmapAnnotation-class object.

x a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details
There is a shortcut function +.AdditiveUnit.

Value
A HeatmapList-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>
Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
                        which = "row")
add_heatmap(ha, ht)
```

add_heatmap-HeatmapList-method

Add heatmaps and row annotations to the heatmap list

Description

Add heatmaps and row annotations to the heatmap list

Usage

```r
## S4 method for signature 'HeatmapList'
add_heatmap(object, x)
```

Arguments

- **object** a `HeatmapList-class` object.
- **x** a `Heatmap-class` object or a `HeatmapAnnotation-class` object or a `HeatmapList-class` object.

Details

There is a shortcut function `+.AdditiveUnit`.

Value

A `HeatmapList-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht_list = ht + ht
```
add_heatmap(ht_list, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
add_heatmap(ht_list, ha)

annotation_legend_size-HeatmapList-method

Size of the annotation legend viewport

Description
Size of the annotation legend viewport

Usage

S4 method for signature 'HeatmapList'
annotation_legend_size(object, legend_list = list(), ...)

Arguments

object a HeatmapList-class object.
legend_list a list of self-defined legend, should be wrapped into grob objects.
... graphic parameters passed to color_mapping_legend,ColorMapping-method.

Details

Legends for all heatmaps or legends for all annotations will be put in one viewport. This function calculates the size of such viewport. Note graphic parameters for legends will affect the size.

This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
Using barplot as annotation

Arguments

- **x**: a vector of numeric values. If the value is a matrix, columns of the matrix will be represented as stacked barplots. Note for stacked barplots, each row in the matrix should only contain values with the same sign (either all positive or all negative).
- **baseline**: baseline for bars. The value should be "min" or "max", or a numeric value. It is enforced to be zero for stacked barplots.
- **which**: is the annotation a column annotation or a row annotation?
- **border**: whether show border of the annotation component
- **bar_width**: relative width of the bars, should less than one
- **gp**: graphic parameters. If it is the stacked barplots, the length of the graphic parameter should be same as the number of stacks.
- **ylim**: data ranges.
- **axis**: whether add axis
- **axis_side**: if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
- **axis_gp**: graphic parameters for axis
- **axis_direction**: if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?
- **...**: for future use.

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
f = anno_barplot(rnorm(10))
grid.newpage(); f(1:10)

f = anno_barplot(rnorm(10), which = "row")
grid.newpage(); f(1:10)
```
Using boxplot as annotation

Usage

anno_boxplot(x, which = c("column", "row"), border = TRUE, gp = gpar(fill = "#CCCCCC", ylim = NULL, outline = TRUE, pch = 16, size = unit(2, "mm"), axis = FALSE, axis_side = NULL, axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"))

Arguments

x a matrix or a list. If x is a matrix and if which is column, statistics for boxplot is calculated by columns, if which is row, the calculation is by rows.

which is the annotation a column annotation or a row annotation?

border whether show border of the annotation component

gp graphic parameters

ylim data ranges.

outline whether draw outliers

pch point type

size point size

axis whether add axis

axis_side if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".

axis_gp graphic parameters for axis

axis_direction if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?

Value

A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(32), nrow = 4)
f = anno_boxplot(mat)
grid.newpage(); f(1:8)

f = anno_boxplot(mat, which = "row")
grid.newpage(); f(1:4)
anno_density

lt = lapply(1:4, function(i) rnorm(8))
f = anno_boxplot(lt)
grid.newpage(); f(1:4)

anno_density

Using kernel density as annotation

Description

Using kernel density as annotation

Usage

anno_density(x, which = c("column", "row"), gp = gpar(fill = "#CCCCCC"),
 type = c("lines", "violin", "heatmap"), ...)

Arguments

x

a matrix or a list. If x is a matrix and if which is column, statistics for density is calculated by columns, if which is row, the calculation is by rows.

which

is the annotation a column annotation or a row annotation?

gp

graphic parameters. Note it is ignored if type equals to heatmap.

type

which type of graphics is used to represent density distribution.

...

pass to density

Value

A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(32), nrow = 4)
f = anno_density(mat)
grid.newpage(); f(1:8)

f = anno_density(mat, which = "row", type = "violin")
grid.newpage(); f(1:4)

lt = lapply(1:4, function(i) rnorm(8))
f = anno_density(lt, type = "heatmap")
grid.newpage(); f(1:4)
Using histogram as annotation

Description

Using histogram as annotation

Usage

```r
anno_histogram(x, which = c("column", "row"), gp = gpar(fill = "CCCCCC"), ...)```

**Arguments**

- `x`: a matrix or a list. If `x` is a matrix and if `which` is `column`, statistics for histogram is calculated by columns, if `which` is `row`, the calculation is by rows.
- `which`: is the annotation a column annotation or a row annotation?
- `gp`: graphic parameters
- `...`: pass to `hist`

**Value**

A graphic function which can be set in `HeatmapAnnotation` constructor method.

**Author(s)**

Zuguang Gu `<z.gu@dkfz.de>`

**Examples**

```r
mat = matrix(rnorm(32), nrow = 4)
f = anno_histogram(mat)
grid.newpage(); f(1:8)

f = anno_histogram(mat, which = "row")
grid.newpage(); f(1:4)

lt = lapply(1:4, function(i) rnorm(8))
f = anno_histogram(lt)
grid.newpage(); f(1:4)
```
anno_link

Link annotation with labels

Description
Link annotation with labels

Usage
anno_link(at, labels, which = c("column", "row"), side = ifelse(which == "column", "top", "right"),
lines_gp = gpar(), labels_gp = gpar(), padding = 0.25, link_width = NULL, extend = 0)

Arguments
- at: numeric index in the original matrix
- labels: corresponding labels
- which: column annotation or row annotation
- side: side of the labels. If it is a column annotation, permitted values are "top" and "bottom"; If it is a row annotation, permitted values are "left" and "right".
- lines_gp: graphic settings for the segments
- labels_gp: graphic settings for the labels
- padding: padding between labels if they are attached to each other
- link_width: width of the segments.
- extend: by default, the region for the labels has the same width (if it is a column annotation) or same height (if it is a row annotation) as the heatmap. The size can be extended by this options. The value can be a proportion number or a unit object. The length can be either one or two.

Details
Sometimes there are many rows or columns in the heatmap and we want to mark some of the rows. This annotation function is used to mark these rows and connect labels and corresponding rows with links.

Value
A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(10000), nr = 1000)
labels = sample(letters, 20, replace = TRUE)
Heatmap(mat, show_row_dend = FALSE, show_column_dend = FALSE) +
rowAnnotation(link = row_anno_link(at = sample(1000, 20), labels = labels),
width = unit(1, "cm") + max_text_width(labels))
anno_oncoprint_barplot

Column barplot annotation for oncoPrint

Description

Column barplot annotation for oncoPrint

Usage

anno_oncoprint_barplot()

Details

This function is only used for column annotation

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

anno_points

Using points as annotation

Description

Using points as annotation

Usage

anno_points(x, which = c("column", "row"), border = TRUE, gp = gpar(), pch = 16,
            size = unit(2, "mm"), ylim = NULL, axis = FALSE, axis_side = NULL,
            axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"), ...)

Arguments

x a vector of numeric values.
which is the annotation a column annotation or a row annotation?
border whether show border of the annotation component
gp graphic parameters.
pch point type.
size point size.
ylim data ranges.
anno_text

axis whether add axis.
axis_side if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
axis_gp graphic parameters for axis
axis_direction if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?
... for future use.

Value
A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
f = anno_points(rnorm(10))
ggrid.newpage(); f(1:10)

anno_text Using text as annotation

Description
Using text as annotation

Usage
anno_text(x, which = c("column", "row"), gp = gpar(), rot = 0, just = NULL, offset = unit(0.5, "npc"))

Arguments
x a vector of text
which is the annotation a column annotation or a row annotation?
gp graphic parameters.
rot rotation of text
just justification of text, pass to grid.text
offset if it is a row annotation, offset corresponds to the x-coordinates of text. and if it is a column annotation, offset corresponds to the y-coordinates of text. The value should be a unit object.

Value
A graphic function which can be set in HeatmapAnnotation constructor method.
ColorMapping

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
colnames(mat) = letters[1:10]
rownames(mat) = LETTERS[1:10]
long_cn = do.call("paste0", rep(list(colnames(mat)), 4))  # just to construct long text
ha_rot_cn = HeatmapAnnotation(text = anno_text(long_cn, rot = 45, offset = unit(5, "mm")))
Heatmap(mat, name = "foo", top_annotation = ha_rot_cn, top_annotation_height = unit(1.2, "cm"))

ColorMapping

Constructor methods for ColorMapping class

Description
Constructor methods for ColorMapping class

Usage
ColorMapping(name, colors = NULL, levels = NULL,
col_fun = NULL, breaks = NULL, na_col = "#FFFFFF")

Arguments
name name for this color mapping. The name is automatically generated if it is not
specified.
colors discrete colors.
levels levels that correspond to colors. If colors is name indexed, levels can be
ignored.
col_fun color mapping function that maps continuous values to colors.
breaks breaks for the continuous color mapping. If col_fun is generated by colorRamp2,
breaks can be ignored.
na_col colors for NA values.

Details
colors and levels are used for discrete color mapping, col_fun and breaks are used for continuous color mapping.

Value
A ColorMapping-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>
Examples

# discrete color mapping for characters
cm = ColorMapping(name = "test",
    colors = c("blue", "white", "red"),
    levels = c("a", "b", "c"))

# discrete color mapping for numeric values
cm = ColorMapping(name = "test",
    colors = c("blue", "white", "red"),
    levels = c(1, 2, 3))

# continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
    col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))

ColorMapping-class  Class to map values to colors

Description

Class to map values to colors

Details

The ColorMapping-class handles color mapping with both discrete values and continuous values. Discrete values are mapped by setting a vector of colors and continuous values are mapped by setting a color mapping function.

Methods

The ColorMapping-class provides following methods:

• ColorMapping: constructor methods.
• map_to_colors,ColorMapping-method: mapping values to colors.
• color_mapping_legend,ColorMapping-method: draw legend or get legend as a grob object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# for examples, please go to 'ColorMapping' method page
NULL
color_mapping_legend-ColorMapping-method

Draw legend based on color mapping

Description

Draw legend based on color mapping

Usage

```r
S4 method for signature 'ColorMapping'
color_mapping_legend(object, ..., plot = TRUE,
plot = T
ncol if there are too many legend grids, they can be put as an array, this controls number of columns
legend_height height of the legend, only works when color_bar is continuous and direction is vertical
legend_width width of the legend, only works when color_bar is continuous and direction is horizontal
legend_direction when color_bar is continuous, should the legend be vertical or horizontal?
param will be parsed if the parameters are specified as a list
... pass to viewport.

Details
A viewport is created which contains a legend title, legend grids and corresponding labels.
This function will be improved in the future to support more types of legends.

Value
A grob object which contains the legend

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))
grid.newpage()
color_mapping_legend(cm)

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))
grid.newpage()
color_mapping_legend(cm)

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
grid.newpage()
color_mapping_legend(cm, title_gp = gpar(fontsize = 16))
columnAnnotation
Construct column annotations

Description
Construct column annotations

Usage
`columnAnnotation(...)`

Arguments
`...`
pass to `HeatmapAnnotation`

Details
The function is identical to
`HeatmapAnnotation(..., which = "column")`

Value
A `HeatmapAnnotation-class` object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```r  
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))  
ha = rowAnnotation(df = df)  
```

column_anno_barplot
Column annotation which is represented as barplots

Description
Column annotation which is represented as barplots

Usage
`column_anno_barplot(...)`

Arguments
`...`
pass to `anno_barplot`
Details

A wrapper of `anno_barplot` with pre-defined which to column.

Value

See help page of `anno_barplot`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

Description

Column annotation which is represented as boxplots

Usage

```r
column_anno_boxplot(...)
```

Arguments

```r
...
```

Details

A wrapper of `anno_boxplot` with pre-defined which to column.

Value

See help page of `anno_boxplot`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```
column_anno_density
Column annotation which is represented as density plot

Description
Column annotation which is represented as density plot

Usage
`column_anno_density(...)`

Arguments
... pass to `anno_density`

Details
A wrapper of `anno_density` with pre-defined `which` to `column`.

Value
See help page of `anno_density`

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```r
# There is no example
NULL
```

column_anno_histogram
Column annotation which is represented as histogram

Description
Column annotation which is represented as histogram

Usage
`column_anno_histogram(...)`

Arguments
... pass to `anno_histogram`

Details
A wrapper of `anno_histogram` with pre-defined `which` to `column`.
column_anno_link

Value

See help page of `anno_histogram`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

Description

Column annotation which is represented as links

Usage

`column_anno_link(...)`

Arguments

```r
... 
```

pass to `anno_link`

Details

A wrapper of `anno_link` with pre-defined `which` to `column`.

Value

See help page of `anno_link`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```
column_anno_points

Column annotation which is represented as points

Description

Column annotation which is represented as points

Usage

column_anno_points(...)

Arguments

... pass to anno_points

Details

A wrapper of anno_points with pre-defined which to column.

Value

See help page of anno_points

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

column_anno_text

Column annotation which is represented as text

Description

Column annotation which is represented as text

Usage

column_anno_text(...)

Arguments

... pass to anno_text

Details

A wrapper of anno_text with pre-defined which to column.
Value

See help page of anno_text

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

column_dend-dispatch

Method dispatch page for column_dend

Description

Method dispatch page for column_dend.

Dispatch

column_dend can be dispatched on following classes:

- column_dend,HeatmapList-method,HeatmapList-class class method
- column_dend,Heatmap-method,Heatmap-class class method

Examples

no example
NULL

column_dend-Heatmap-method

Get column dendrograms from a heatmap

Description

Get column dendrograms from a heatmap

Usage

S4 method for signature 'Heatmap'
column_dend(object)

Arguments

object a Heatmap-class object
Value

A dendrogram object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
column_dend(ht)
ht = Heatmap(mat, km = 2)
column_dend(ht)

Description

Get column dendrograms from a heatmap list

Usage

S4 method for signature 'HeatmapList'
column_dend(object)

Arguments

object a HeatmapList-class object

Value

A list of dendrograms for which dendrogram corresponds to each matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
column_dend(ht_list)
ht_list = Heatmap(mat, km = 2) + Heatmap(mat)
column_dend(ht_list)
Method dispatch page for `column_order`

Description

Method dispatch page for `column_order`.

Dispatch

`column_order` can be dispatched on following classes:

- `column_order,HeatmapList-method,HeatmapList-class` class method
- `column_order,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```

Get column order from a heatmap list

Description

Get column order from a heatmap list

Usage

```r
## S4 method for signature 'Heatmap'
column_order(object)
```

Arguments

- `object` a `Heatmap-class` object

Value

A vector containing column orders

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
column_order(ht)
ht = Heatmap(mat, km = 2)
column_order(ht)
```
column_order-HeatmapList-method

Get column order from a heatmap list

Description

Get column order from a heatmap list

Usage

```r
## S4 method for signature 'HeatmapList'
column_order(object)
```

Arguments

- `object` a `HeatmapList-class` object

Value

A list contains column orders which correspond every matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
column_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
column_order(ht_list)
```

component_height-dispatch

Method dispatch page for component_height

Description

Method dispatch page for `component_height`.

Dispatch

`component_height` can be dispatched on following classes:

- `component_height,HeatmapList-method,HeatmapList-class` class method
- `component_height,Heatmap-method,Heatmap-class` class method
Examples

```r
# no example
NULL
```

Description

Height of each heatmap component

Usage

```r
## S4 method for signature 'Heatmap'
component_height(object, k = 1:9)
```

Arguments

- `object`: a `Heatmap-class` object.
- `k`: which component in the heatmap, see `Heatmap-class`.

Details

This function is only for internal use.

Value

A `unit` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
```
component_height-HeatmapList-method

Height of each heatmap list component

Description

Height of each heatmap list component

Usage

```r
## S4 method for signature 'HeatmapList'
component_height(object, k = 1:7)
```

Arguments

- `object` a `HeatmapList-class` object.
- `k` which component in the heatmap list, see `HeatmapList-class`.

Value

A `unit` object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
```

component_width-dispatch

Method dispatch page for component_width

Description

Method dispatch page for component_width.

Dispatch

component_width can be dispatched on following classes:

- `component_width,HeatmapList-method,HeatmapList-class` class method
- `component_width,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```
component_width-Heatmap-method

Width of each heatmap component

Description

Width of each heatmap component

Usage

```r
## S4 method for signature 'Heatmap'
component_width(object, k = 1:7)
```

Arguments

- `object` a `Heatmap-class` object.
- `k` which component in the heatmap, see `Heatmap-class`.

Details

This function is only for internal use.

Value

A `unit` object.

Details

This function is only for internal use.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
```
component_width-HeatmapList-method

Width of each heatmap list component

Description

Width of each heatmap list component

Usage

```r
## S4 method for signature 'HeatmapList'
component_width(object, k = 1:7)
```

Arguments

- `object`: a `HeatmapList-class` object.
- `k`: which component in the heatmap list, see `HeatmapList-class`.

Details

This function is only for internal use.

Value

A `unit` object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
```

decorate_annotation Decorate the heatmap annotation

Description

Decorate the heatmap annotation

Usage

```r
decorate_annotation( annotation, code, slice, envir = new.env(parent = parent.frame()) )
```
Arguments

- **annotation**: name of the annotation
- **code**: code that adds graphics in the selected heatmap body
- **slice**: index of row slices in the heatmap
- **envir**: where to look for variables inside code

Details

There is a viewport for every column annotation and row annotation. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
ha1 = HeatmapAnnotation(df = data.frame(type = rep(letters[1:2], 5)))
ha2 = rowAnnotation(point = anno_points(runif(10), which = "row"))
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2,
  top_annotation = ha1) + ha2
decorate_annotation("type", {
  grid.circle(x = unit(c(0.2, 0.4, 0.6, 0.8), "npc"),
    gp = gpar(fill = "#FF000080"))
})
decorate_annotation("point", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, slice = 2)
```

Description

Decorate heatmap dendrogram on columns

Usage

```r
decorate_column_dend(..., envir = new.env(parent = parent.frame()))
```

Arguments

- `...`: pass to `decorate_dend`
- `envir`: where to look for variables inside code
Details

This is a wrapper function which pre-defined which argument in `decorate_dend`.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# No example for this function
NULL
```

`decorate_column_names`
Decorate heatmap column names

Description

Decorate heatmap column names

Usage

```r
decorate_column_names(..., envir = new.env(parent = parent.frame()))
```

Arguments

- `...` pass to `decorate_dimnames`
- `envir` where to look for variables inside code

Details

This is a helper function which pre-defined which argument in `decorate_dimnames`.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# No example for this function
NULL
```
decorate_column_title \hspace{1cm} Decorate heatmap column title

Description

Decorate heatmap column title

Usage

\[
\text{decorate_column_title}(..., \text{envir} = \text{new.env(}\text{parent} = \text{parent.frame(\text{))))}
\]

Arguments

- \(...\) pass to **decorate_title**
- \(\text{envir}\) where to look for variables inside code

Details

This is a helper function which pre-defined which argument in **decorate_title**.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL

decorate_dend \hspace{1cm} Decorate the heatmap dendrogram

Description

Decorate the heatmap dendrogram

Usage

\[
\text{decorate_dend(heatmap, code, slice = 1, which = c(\text{"column", \"row\"}),}
\text{\hspace{1cm} envir = new.env(\text{parent} = \text{parent.frame(\text{))))}}
\]
Arguments

- **heatmap**: name of the heatmap
- **code**: code that adds graphics in the selected heatmap body
- **slice**: index of row slices in the heatmap
- **which**: on rows or on columns?
- **envir**: where to look for variables inside code

Details

There is a viewport for each dendrogram in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the number of leaves in the dendrogram, it is simple to calculate the position of every leave in the dendrogram. E.g., for the column dendrogram, the i\(^{\text{th}}$ leave is located at:

```r
# assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_dend("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

Description

Decorate the heatmap dimension names

Usage

```r
decorate_dimnames(heatmap, code, slice = 1, which = c("column", "row"),
  envir = new.env(parent = parent.frame()))
```

Arguments

- **heatmap**: name of the heatmap
- **code**: code that adds graphics in the selected heatmap body
- **slice**: index of row slices in the heatmap
- **which**: on rows or on columns?
- **envir**: where to look for variables inside code
Details

There is a viewport for row names and column names in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the dimensions of the matrix, it is simple to calculate the position of every row name or column name in the heatmap. E.g., for the column column, the i\(^{th}\) name is located at:

```r
# assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
mat = matrix(rnorm(100), 10)
ownames(mat) = letters[1:10]
colnames(mat) = LETTERS[1:10]
Heatmap(mat, name = "mat", km = 2)
decorate_dimnames("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

Description

Decorate the heatmap body

Usage

```r
decorate_heatmap_body(heatmap, code, slice = 1, envir = new.env(parent = parent.frame()))
```

Arguments

- `heatmap` name of the heatmap which is set as name option in `Heatmap` function
- `code` code that adds graphics in the selected heatmap body
- `slice` index of row slices in the heatmap if it is split by rows
- `envir` where to look for variables inside code
Details

There is a viewport for each row slice in each heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the number of rows and columns for that row slice, it is simple to calculate the position of every small grid in the row slice. E.g., the position for the grid in \(i^{th}\) row and \(j^{th}\) column is:

```r
# assume nc is the number of columns
# and nr is the number of rows in that row slice
unit((i-0.5)/nc, "npc")
unit((j-0.5)/nr, "npc")

# the width is
unit(1/nc, "npc")

# the height is
unit(1/nr, "npc")
```

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat")
decorate_heatmap_body("mat", {
    grid.circle(gp = gpar(fill = "#FF000080"))
})
```

`decorate_row_dend`
Decorate heatmap dendrogram on rows

Description

Decorate heatmap dendrogram on rows

Usage

```
decorate_row_dend(..., envir = new.env(parent = parent.frame()))
```

Arguments

- `...` pass to `decorate_dend`
- `envir` where to look for variables inside code

Details

This is a helper function which pre-defined which argument in `decorate_dend`.
Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL

__decorate_row_names__
Decorate heatmap row names

Description

Decorate heatmap row names

Usage

decorate_row_names(..., envir = new.env(parent = parent.frame()))

Arguments

... pass to `decorate_dimnames`

envir where to look for variables inside code

Details

This is a helper function which pre-defined which argument in `decorate_dimnames`.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL
decorate_row_title
Decorate heatmap row title

Description
Decorate heatmap row title

Usage
```r  
decorate_row_title(..., envir = new.env(parent = parent.frame()))  
```

Arguments
- `...`: pass to `decorate_title`
- `envir`: where to look for variables inside code

Details
This is a helper function which pre-defined which argument in `decorate_title`.

Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```r  
# No example for this function  
NULL  
```

decorate_title
Decorate the heatmap title

Description
Decorate the heatmap title

Usage
```r  
decorate_title(heatmap, code, slice = 1, which = c("column", "row"),  
envir = new.env(parent = parent.frame()))  
```
Arguments

heatmap name of the heatmap
code code that adds graphics in the selected heatmap body
slice index of row slices in the heatmap
which on rows or on columns?
envir where to look for variables inside code

Details

There is a viewport for row titles and column title in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_title("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

Description

Use colors to represent density distribution

Usage

densityHeatmap(data,
 col = rev(brewer.pal(11, "Spectral")),
 color_space = "LAB",
 anno = NULL,
 ylab = deparse(substitute(data)),
 title = paste0("Density heatmap of ", deparse(substitute(data))),
 range = c(-Inf, Inf),
 cluster_columns = FALSE,
 clustering_distance_columns = "euclidean",
 clustering_method_columns = "complete",
 column_dend_side = "top",
 column_dend_height = unit(10, "mm"),
 show_column_dend = FALSE,
)

column_dend_gp = gpar(),
column_dend_reorder = TRUE,
column_names_side = c("bottom", "top"),
show_column_names = TRUE,
column_names_max_height = unit(4, "cm"),
column_names_gp = gpar(fontsize = 12),
column_order = NULL,
...

Arguments

data a matrix or a list. If it is a matrix, density will be calculated by columns.
col a list of colors that density values are mapped to.
color_space the color space in which colors are interpolated. Pass to colorRamp2.
anno annotation for the matrix columns or the list. The value should be a vector or a data frame and colors for annotations are randomly assigned. If you want to customize the annotation colors, use a HeatmapAnnotation-class object directly.
ylab label on y-axis in the plot
title title of the plot
range ranges on the y-axis. By default the range is between 1th quantile and 99th quantile of the data.

cluster_columns whether cluster columns (here cluster by density distributions)
clustering_distance_columns pass to Heatmap
clustering_method_columns pass to Heatmap
column_dend_side pass to Heatmap
column_dend_height pass to Heatmap
show_column_dend pass to Heatmap
column_dend_gp pass to Heatmap
column_dend_reorder pass to Heatmap
column_names_side pass to Heatmap
show_column_names pass to Heatmap
column_names_max_height pass to Heatmap
column_names_gp pass to Heatmap
column_order order of columns
... pass to draw,HeatmapList-method
Details

To visualize data distribution in a matrix or in a list, sometimes we use boxplot or beanplot. Here we use colors to map the density values and visualize distribution of values in each column (or each vector in the list) through a heatmap. It is useful if you have huge number of columns in data to visualize.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
densityHeatmap(matrix, anno = rep(c("A", "B"), each = 5))
densityHeatmap(matrix, col = c("white", "red"), anno = rep(c("A", "B"), each = 5))

ha = HeatmapAnnotation(points = anno_points(runif(10)),
                        anno = rep(c("A", "B"), each = 5),
                        col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, anno = ha)

lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)
```

dist2

Calculate pairwise distance from a matrix

Description

Calculate pairwise distance from a matrix

Usage

```r
dist2(mat, pairwise_fun = function(x, y) sqrt(sum((x - y)^2)), ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mat</td>
<td>a matrix. The distance is calculated by rows.</td>
</tr>
<tr>
<td>pairwise_fun</td>
<td>a function which calculates distance between two vectors.</td>
</tr>
<tr>
<td>...</td>
<td>pass to <code>as.dist</code>.</td>
</tr>
</tbody>
</table>

Details

You can construct any type of distance measurements by defining a pair-wise distance function. The function is implemented by two nested for loops, so the efficiency may not be so good.

Value

A `dist` object.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(40), nr = 4, ncol = 10)
rownames(mat) = letters[1:4]
colnames(mat) = letters[1:10]

d2 = dist2(mat)
d2 = dist2(mat, pairwise_fun = function(x, y) 1 - cor(x, y))
distance only calculated within 10 and 90 quantile of each vector
d2 = dist2(mat, pairwise_fun = function(x, y) {
 q1 = quantile(x, c(0.1, 0.9))
 q2 = quantile(y, c(0.1, 0.9))
 sqrt(sum((x[l] - y[l])^2))
})
draw-Heatmap-method

Draw a single heatmap

Description

Draw a single heatmap

Usage

```r
## S4 method for signature 'Heatmap'
draw(object, internal = FALSE, test = FALSE, ...)
```

Arguments

- `object`: a `Heatmap-class` object.
- `internal`: only used inside the calling of `draw,HeatmapList-method`. Only heatmap without legends will be drawn.
- `test`: only for testing
- `...`: pass to `draw,HeatmapList-method`.

Details

The function creates a `HeatmapList-class` object which only contains a single heatmap and call `draw,HeatmapList-method` to make the final heatmap.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
draw(ht, heatmap_legend_side = "left")
```
draw-HeatmapAnnotation-method

Draw the heatmap annotations

Description

Draw the heatmap annotations

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
draw(object, index, k = NULL, n = NULL, align_to = "bottom", ...)
```

Arguments

- `object`: a `HeatmapAnnotation-class` object.
- `index`: a vector of order.
- `k`: if row annotation is splitted, the value identifies which row slice.
- `n`: total number of row slices.
- `align_to`: if the allocated space is more than than the column annotation itself, should the viewport be aligned to the top or bottom?
- `...`: pass to `viewport` which contains all annotations.

Details

A viewport is created. Mostly, this method is used inside `draw,HeatmapList-method`.

Value

No value is returned.

Author(s)

Zuguang Gu `<z.gu@dkfz.de>`

Examples

```r
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)
grid.newpage(); draw(ha, 1:6)
grid.newpage(); draw(ha, 6:1)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")), which = "row")
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(points = anno_points(1:6))
grid.newpage(); draw(ha, 1:6)
```
Draw a list of heatmaps

Usage

```r
## S4 method for signature 'HeatmapList'
draw(object,
    padding = unit(c(2, 2, 2, 2), "mm"),
    newpage = TRUE,
    row_title = character(0),
    row_title_side = c("left", "right"),
    row_title_gp = gpar(fontsize = 14),
    column_title = character(0),
    column_title_side = c("top", "bottom"),
    column_title_gp = gpar(fontsize = 14),
    heatmap_legend_side = c("right", "left", "bottom", "top"),
    show_heatmap_legend = TRUE,
    heatmap_legend_list = list(),
    annotation_legend_side = c("right", "left", "bottom", "top"),
    show_annotation_legend = TRUE,
    annotation_legend_list = list(),
    gap = unit(3, "mm"),
    main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
    row_dend_side = c("original", "left", "right"),
    row_sub_title_side = c("original", "left", "right"), ...
)
```

Arguments

- **object** a `HeatmapList-class` object
- **padding** padding of the plot. Elements correspond to bottom, left, top, right paddings.
- **newpage** whether create a new page for the graphics.
- **row_title** title on the row.
- **row_title_side** will the title be put on the left or right of the heatmap.
- **row_title_gp** graphic parameters for drawing text.
- **column_title** title on the column.
column_title_side
 will the title be put on the top or bottom of the heatmap.
column_title_gp
 graphic parameters for drawing text.
heatmap_legend_side
 side of the heatmap legend.
show_heatmap_legend
 whether show heatmap legend.
heatmap_legend_list
 a list of self-defined legend, should be wrapped into grob objects.
annotation_legend_side
 side of annotation legend.
show_annotation_legend
 whether show annotation legend.
annotation_legend_list
 a list of self-defined legend, should be wrapped into grob objects.
gap
 gap between heatmaps, should be a unit object.
main_heatmap
 name or index for the main heatmap
row_dend_side
 if auto adjust, where to put the row dendrograms for the main heatmap
row_sub_title_side
 if auto adjust, where to put sub row titles for the main heatmap
...
 pass to make_layout,HeatmapList-method

Details

The function first calls make_layout,HeatmapList-method to calculate the layout of the heatmap list and the layout of every single heatmap, then makes the plot by re-calling the graphic functions which are already recorded in the layout.

Value

This function returns a list of row dendrograms and column dendrogram.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht_list = ht + ht
draw(ht_list)
draw(ht_list, row_title = "row title", column_title = "column title",
 heatmap_legend_side = "top")
Description

Draw the single annotation

Usage

S4 method for signature 'SingleAnnotation'
draw(object, index, k = NULL, n = NULL)

Arguments

object
a SingleAnnotation-class object.
index
a vector of orders
k
if row annotation is splitted, the value identifies which row slice. It is only used for the names of the viewport which contains the annotation graphics.
n
total number of row slices

Details

A viewport is created.

The graphics would be different depending the annotation is a row annotation or a column annotation.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

anno = SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
col = c("a" = "red", "b" = "blue"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
col = c("a" = "red", "b" = "blue"), which = "row")
grid.newpage(); draw(anno, 1:5)

anno = SingleAnnotation(value = 1:10)
grid.newpage(); draw(anno, 1:10)
require(circlize)
anno = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
grid.newpage(); draw(anno, 1:10)

anno = SingleAnnotation(fun = anno_points(1:10))
grid.newpage(); draw(anno, 1:10)

draw_annotation-Heatmap-method

Draw column annotations

Description

Draw column annotations

Usage

S4 method for signature 'Heatmap'
draw_annotation(object, which = c("top", "bottom"))

Arguments

object a Heatmap-class object.
which are the annotations put on the top or bottom of the heatmap?

Details

A viewport is created which contains column annotations.
Since the column annotations is a HeatmapAnnotation-class object, the function calls draw,HeatmapAnnotation-method to draw the annotations.
This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
draw_annotation_legend-HeatmapList-method

Draw legends for all column annotations

Description

Draw legends for all column annotations

Usage

S4 method for signature 'HeatmapList'
draw_annotation_legend(object, legend_list = list(), ...)

Arguments

- `object`: a `HeatmapList-class` object
- `legend_list`: a list of self-defined legend, should be wrapped into `grob` objects.
- `...`: graphic parameters passed to `color_mapping_legend,ColorMapping-method`

Details

A viewport is created which contains annotation legends.
This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

draw_dend-Heatmap-method

Draw dendrogram on row or column

Description

Draw dendrogram on row or column

Usage

S4 method for signature 'Heatmap'
draw_dend(object,
 which = c("row", "column"), k = 1, max_height = NULL, ...)

Arguments

object a Heatmap-class object.
which is dendrogram put on the row or on the column of the heatmap?
k a matrix may be splitted by rows, the value identifies which row-slice.
max_height maximum height of the dendrograms.
... pass to viewport, basically for defining the position of the viewport.

Details

If the matrix is split into several row slices, a list of dendrograms will be drawn by the heatmap that each dendrogram corresponds to its row slices. A viewport is created which contains dendrograms. This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

grid.dendrogram

Examples

There is no example
NULL
Arguments

- **object**: a `Heatmap-class` object.
- **which**: are names put on the row or on the column of the heatmap?
- **k**: a matrix may be split by rows, the value identifies which row-slice.
- **dimname_padding**: padding for the row/column names
- **...**: pass to `viewport`, basically for defining the position of the viewport.

Details

A viewport is created which contains row names or column names.
This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

Description

Draw the heatmap body

Usage

```r
## S4 method for signature 'Heatmap'
draw_heatmap_body(object, k = 1, ...)
```

Arguments

- **object**: a `Heatmap-class` object.
- **k**: a matrix may be split by rows, the value identifies which row-slice.
- **...**: pass to `viewport`, basically for defining the position of the viewport.
The matrix can be split into several parts by rows if \texttt{km} or \texttt{split} is specified when initializing the \texttt{Heatmap} object. If the matrix is split, there will be gaps between rows to identify different row-slice. A viewport is created which contains subset rows of the heatmap.

This function is only for internal use.

This function returns no value.

Zuguang Gu <z.gu@dkfz.de>

no example for this internal method
NULL
draw_heatmap_list-HeatmapList-method

Draw the list of heatmaps

Description

Draw the list of heatmaps

Usage

```r
## S4 method for signature 'HeatmapList'
draw_heatmap_list(object)
```

Arguments

- `object` a `HeatmapList-class` object

Details

A viewport is created which contains heatmaps.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
draw_title-Heatmap-method

Method dispatch page for draw_title

Description

Method dispatch page for `draw_title`.

Dispatch

`draw_title` can be dispatched on following classes:

- `draw_title,HeatmapList-method,HeatmapList-class` class method
- `draw_title,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```

draw_title-Heatmap-method

Draw heatmap title

Description

Draw heatmap title

Usage

```r
## S4 method for signature 'Heatmap'
draw_title(object,
           which = c("row", "column"),
           k = 1,
           ...)
```

Arguments

- `object` a `Heatmap-class` object.
- `which` is title put on the row or on the column of the heatmap?
- `k` a matrix may be split by rows, the value identifies which row-slice.
- `...` pass to `viewport`, basically for defining the position of the viewport.

Details

A viewport is created which contains heatmap title.

This function is only for internal use.

Value

This function returns no value.
draw_title-HeatmapList-method

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

Description

Draw heatmap list title

Usage

```r
## S4 method for signature 'HeatmapList'
draw_title(object, 
    which = c("column", "row"))
```

Arguments

- `object`: a `HeatmapList-class` object
- `which`: dendrogram on the row or on the column of the heatmap

Details

A viewport is created which contains heatmap list title.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
Enhanced version of basic barplot and boxplot

Usage

enhanced_basicplot(data, ..., ylim = NULL, ylab = deparse(substitute(data)), title = NULL, title_gp = gpar(fontsize = 14), type = c("boxplot", "barplot"), width = 0.8, gp = gpar(), pch = 1, size = unit(2, "mm"), axis_gp = gpar(fontsize = 8), padding = unit(c(2, 18, 2, 2), "mm"), heatmap_legend_list = list())

Arguments

data a matrix, a list or a simple numeric vector. If your data is a data frame please convert it to a matrix in the first place.

ylim ranges on y axis
ylab label on y axis
title title of the plot
title_gp graphic parameters for the title
type type of the plot
width relative width of the bar or box
gp graphic parameters for the bar or box
pch shape of outlier points in the boxplot
size size of the outlier points in the boxplot
axis_gp graphic parameters for the axis
padding padding of the plot
heatmap_legend_list a list of `grob` which contains legend. It can be generated by `color_mapping_legend`, `ColorMapping`.

Details

This function adds annotations to the barplot or boxplot.
This function is still quite experimental.

Value

No value is returned

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
mat = matrix(runif(100), 10)
enhanced_basicplot(mat)
ha = HeatmapAnnotation(char = sample(letters[1:2], 10, replace = TRUE),
                        num = runif(10))
enhanced_basicplot(mat, top_annotation = ha)
enhanced_basicplot(mat, type = "barplot", top_annotation = ha)
```

Description

Get a list of color mapping objects

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
get_color_mapping_list(object)
```

Arguments

- `object`: a `HeatmapAnnotation-class` object.

Details

Color mapping for visible simple annotations are only returned.
This function is only for internal use.

Value

A list of `ColorMapping-class` objects or an empty list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
get_color_mapping_param_list-HeatmapAnnotation-method

Get a list of color mapping parameters

Description
Get a list of color mapping parameters

Usage

S4 method for signature 'HeatmapAnnotation'
get_color_mapping_param_list(object)

Arguments

object a HeatmapAnnotation-class object.

Details
Color mapping parameters for visible simple annotations are only returned.
This function is only for internal use.

Value
A list.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

grid.dendrogram

Draw dendrogram under grid system

Description
Draw dendrogram under grid system

Usage

grid.dendrogram(dend, facing = c("bottom", "top", "left", "right"),
max_height = NULL, order = c("normal", "reverse"), ...)
Arguments

- **dend**: a `dendrogram` object.
- **facing**: facing of the dendrogram.
- **max_height**: maximum height of the dendrogram. It is useful to make dendrograms comparable if you want to plot more than one dendrograms. Height for each dendrogram can be obtained by `attr(dend, "height")`.
- **order**: should leaves of dendrogram be put in the normal order (1, ..., n) or reverse order (n, ..., 1)? It may matters for the dendrograms putting on left and right.
- ... pass to `viewport` which contains the dendrogram.

Details

The dendrogram can be rendered (e.g. by `dendextend` package).

A viewport is created which contains the dendrogram.

This function only plots the dendrogram without adding labels. The leaves of the dendrogram locates at `unit(c(0.5, 1.5, ...,(n-0.5))/n, "npc")`.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
hc = hclust(dist(USArrests[1:5, ]))
dend = as.dendrogram(hc)

grid.newpage()
layout = grid.layout(nrow = 2, ncol = 2)
pushViewport(viewport(layout = layout))
grid.dendrogram(dend, layout.pos.row = 1, layout.pos.col = 1)
grid.dendrogram(dend, facing = "top", layout.pos.row = 1, layout.pos.col = 2)
grid.dendrogram(dend, facing = "top", order = "reverse", layout.pos.row = 2,
               layout.pos.col = 1)
grid.dendrogram(dend, facing = "left", layout.pos.row = 2, layout.pos.col = 2)
upViewport()
```

Heatmap: Constructor method for Heatmap class

Description

Constructor method for Heatmap class
Heatmap(matrix, col, name,
na_col = "grey",
color_space = "LAB",
rect_gp = gpar(col = NA),
cell_fun = function(j, i, x, y, width, height, fill) NULL,
row_title = character(0),
row_title_side = c("left", "right"),
row_title_gp = gpar(fontsize = 14),
row_title_rot = switch(row_title_side[1], "left" = 90, "right" = 270),
column_title = character(0),
column_title_side = c("top", "bottom"),
column_title_gp = gpar(fontsize = 14),
column_title_rot = 0,
cluster_rows = TRUE,
clustering_distance_rows = "euclidean",
clustering_method_rows = "complete",
row_dend_side = c("left", "right"),
row_dend_width = unit(10, "mm"),
show_row_dend = TRUE,
row_dend_reorder = TRUE,
row_dend_gp = gpar(),
row_hclust_side = row_dend_side,
row_hclust_width = row_dend_width,
show_row_hclust = show_row_dend,
row_hclust_reorder = row_dend_reorder,
row_hclust_gp = row_dend_gp,
cluster_columns = TRUE,
clustering_distance_columns = "euclidean",
clustering_method_columns = "complete",
column_dend_side = c("top", "bottom"),
column_dend_height = unit(10, "mm"),
show_column_dend = TRUE,
column_dend_gp = gpar(),
column_dend_reorder = TRUE,
column_hclust_side = column_dend_side,
column_hclust_height = column_dend_height,
show_column_hclust = show_column_dend,
column_hclust_gp = column_dend_gp,
column_hclust_reorder = column_dend_reorder,
row_order = NULL,
col_order = NULL,
row_names_side = c("right", "left"),
show_row_names = TRUE,
row_names_max_width = unit(4, "cm"),
row_names_gp = gpar(fontsize = 12),
column_names_side = c("bottom", "top"),
show_column_names = TRUE,
column_names_max_height = unit(4, "cm"),
column_names_gp = gpar(fontsize = 12),
top_annotation = new("HeatmapAnnotation"),
top_annotation_height = top_annotation@size,
Heatmap

bottom_annotation = new("HeatmapAnnotation"),
bottom_annotation_height = bottom_annotation@size,
km = 1,
km_title = "cluster%i",
split = NULL,
gap = unit(1, "mm"),
combined_name_fun = function(x) paste(x, collapse = "/"),
width = NULL,
show_heatmap_legend = TRUE,
heatmap_legend_param = list(title = name, color_bar = "discrete"),
use_raster = FALSE,
raster_device = c("png", "jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF"),
raster_quality = 1,
raster_device_param = list())

Arguments

matrix a matrix. Either numeric or character. If it is a simple vector, it will be converted to a one-column matrix.
col a vector of colors if the color mapping is discrete or a color mapping function if the matrix is continuous numbers (should be generated by colorRamp2). If the matrix is continuous, the value can also be a vector of colors so that colors will be interpolated. Pass to ColorMapping.
name name of the heatmap. The name is used as the title of the heatmap legend.
na_col color for NA values.
rect_gp graphic parameters for drawing rectangles (for heatmap body).
color_space the color space in which colors are interpolated. Only used if matrix is numeric and col is a vector of colors. Pass to colorRamp2.
cell_fun self-defined function to add graphics on each cell. Seven parameters will be passed into this function: i, j, x, y, width, height, fill which are row index, column index in matrix, coordinate of the middle points in the heatmap body viewport, the width and height of the cell and the filled color. x, y, width and height are all unit objects.
row_title title on row.
row_title_side will the title be put on the left or right of the heatmap?
row_title_gp graphic parameters for drawing text.
row_title_rot rotation of row titles. Only 0, 90, 270 are allowed to set.
column_title title on column.
column_title_side will the title be put on the top or bottom of the heatmap?
column_title_gp graphic parameters for drawing text.
column_title_rot rotation of column titles. Only 0, 90, 270 are allowed to set.
cluster_rows If the value is a logical, it means whether make cluster on rows. The value can also be a hclust or a dendrogram that already contains clustering information. This means you can use any type of clustering methods and render the dendrogram object with self-defined graphic settings.
Heatmap

clustering_distance_rows
 it can be a pre-defined character which is in ("euclidean", "maximum", "man-
 hattan", "canberra", "binary", "minkowski", "pearson", "spearman", "kendall").
 It can also be a function. If the function has one argument, the input argument
 should be a matrix and the returned value should be a dist object. If the func-
 tion has two arguments, the input arguments are two vectors and the function
 calculates distance between these two vectors.

clustering_method_rows
 method to make cluster, pass to hclust.

row_dend_side
 should the row cluster be put on the left or right of the heatmap?

row_dend_width
 width of the row cluster, should be a unit object.

show_row_dend
 whether show row clusters.

row_dend_gp
 graphics parameters for drawing lines. If users already provide a dendrogram
 object with edges rendered, this argument will be ignored.

row_dend_reorder
 apply reordering on rows. The value can be a logical value or a vector which
 contains weight which is used to reorder rows

row_hclust_side
 deprecated, use row_dend_side instead

row_hclust_width
 deprecated, use row_dend_width instead

show_row_hclust
 deprecated, use row_dend_side instead

row_hclust_gp
 deprecated, use row_dend_gp instead

row_hclust_reorder
 deprecated, use row_dend_reorder instead

cluster_columns
 whether make cluster on columns. Same settings as cluster_rows.

clustering_distance_columns
 same setting as clustering_distance_rows.

clustering_method_columns
 method to make cluster, pass to hclust.

column_dend_side
 should the column cluster be put on the top or bottom of the heatmap?

column_dend_height
 height of the column cluster, should be a unit object.

show_column_dend
 whether show column clusters.

column_dend_gp
 graphic parameters for drawing lines. Same settings as row_dend_gp.

column_dend_reorder
 apply reordering on columns. The value can be a logical value or a vector which
 contains weight which is used to reorder columns

column_hclust_side
 deprecated, use column_dend_side instead

column_hclust_height
 deprecated, use column_dend_height instead

show_column_hclust
 deprecated, use show_column_dend instead
Heatmap

column_hclust_gp
 deprecated, use column_dend_gp instead

column_hclust_reorder
 deprecated, use column_dend_reorder instead

row_order
 order of rows. It makes it easy to adjust row order for a list of heatmaps if this heatmap is selected as the main heatmap. Manually setting row order should turn off clustering

column_order
 order of column. It makes it easy to adjust column order for both matrix and column annotations.

row_names_side
 should the row names be put on the left or right of the heatmap?
show_row_names
 whether show row names.
row_names_max_width
 maximum width of row names viewport. Because some times row names can be very long, it is not reasonable to show them all.
row_names_gp
 graphic parameters for drawing text.

column_names_side
 should the column names be put on the top or bottom of the heatmap?
column_names_max_height
 maximum height of column names viewport.
show_column_names
 whether show column names.
column_names_gp
 graphic parameters for drawing text.

top_annotation
 a HeatmapAnnotation object which contains a list of annotations.
top_annotation_height
 total height of the column annotations on the top.

bottom_annotation
 a HeatmapAnnotation object.
bottom_annotation_height
 total height of the column annotations on the bottom.

km
 do k-means clustering on rows. If the value is larger than 1, the heatmap will be split by rows according to the k-means clustering. For each row-clusters, hierarchical clustering is still applied with parameters above.
km_title
 row title for each cluster when km is set. It must a text with format of "*%i*" where "%i" is replaced by the index of the cluster.

split
 a vector or a data frame by which the rows are split. But if cluster_rows is a clustering object, split can be a single number indicating rows are to be split according to the split on the tree.
gap
 gap between row-slices if the heatmap is split by rows, should be unit object. If it is a vector, the order corresponds to top to bottom in the heatmap

combined_name_fun
 if the heatmap is split by rows, how to make a combined row title for each slice? The input parameter for this function is a vector which contains level names under each column in split.

width
 the width of the single heatmap, should be a fixed unit object. It is used for the layout when the heatmap is appended to a list of heatmaps.

show_heatmap_legend
 whether show heatmap legend?
Heatmap

Heatmap_legends_param

- a list contains parameters for the heatmap legend. See color_mapping_legends, ColorMapping-method for all available parameters.

use_raster

- whether render the heatmap body as a raster image. It helps to reduce file size when the matrix is huge.

raster_device

- graphic device which is used to generate the raster image

raster_quality

- a value set to larger than 1 will improve the quality of the raster image.

raster_device_param

- a list of further parameters for the selected graphic device

Details

The initialization function only applies parameter checking and fill values to each slot with proper ones. Then it will be ready for clustering and layout.

Following methods can be applied on the Heatmap-class object:

- `show,Heatmap-method`: draw a single heatmap with default parameters
- `draw,Heatmap-method`: draw a single heatmap.
- `add_heatmap,Heatmap-method`: append heatmaps and row annotations to a list of heatmaps.

The constructor function pretends to be a high-level graphic function because the show method of the Heatmap-class object actually plots the graphics.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]
require(circlize)
Heatmap(mat)
Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
Heatmap(mat, name = "test")
Heatmap(mat, column_title = "blablabla")
Heatmap(mat, row_title = "blablabla")
Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, fontface = "bold"))
Heatmap(mat, cluster_rows = FALSE)
Heatmap(mat, clustering_distance_rows = "pearson")
Heatmap(mat, clustering_distance_rows = function(x) dist(x))
Heatmap(mat, clustering_distance_rows = function(x, y) 1 - cor(x, y))
Heatmap(mat, clustering_method_rows = "single")
Heatmap(mat, row_dend_side = "right")
```
Heatmap-class

Class for a single heatmap

Heatmap(mat, row_dend_width = unit(1, "cm"))
Heatmap(mat, row_names_side = "left", row_dend_side = "right",
 column_names_side = "top", column_dend_side = "bottom")
Heatmap(mat, show_row_names = FALSE)

mat2 = mat
colnames(mat2) = NULL
Heatmap(mat2)

Heatmap(mat, row_names_gp = gpar(fontsize = 20))
Heatmap(mat, km = 2)
Heatmap(mat, split = rep(c("A", "B"), 6))
Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)))
Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)),
 combined_name_fun = function(x) paste(x, collapse = "\n"))

annotation = HeatmapAnnotation(df = data.frame(type = c(rep("A", 6), rep("B", 6)))))
Heatmap(mat, top_annotation = annotation)

annotation = HeatmapAnnotation(df = data.frame(type1 = rep(c("A", "B"), 6),
 type2 = rep(c("C", "D"), each = 6)))
Heatmap(mat, bottom_annotation = annotation)

annotation = data.frame(value = rnorm(10))
annotation = HeatmapAnnotation(df = annotation)
Heatmap(mat, top_annotation = annotation)

value = 1:10
ha = HeatmapAnnotation(df = annotation, points = anno_points(value),
 annotation_height = c(1, 2))
Heatmap(mat, top_annotation = ha, top_annotation_height = unit(2, "cm"),
 bottom_annotation = ha)

character matrix
mat3 = matrix(sample(letters[1:6], 100, replace = TRUE), 10, 10)
rownames(mat3) = (x = letters[1:10]; x[1] = "aaaaaaaaaaaaaaaaaaaaaaaaa"; x)
Heatmap(mat3, rect_gp = gpar(col = "white"))

mat = matrix(1:9, 3, 3)
rownames(mat) = letters[1:3]
colnames(mat) = letters[1:3]

Heatmap(mat, rect_gp = gpar(col = "white"),
 cell_fun = function(i, j, x, y, width, height, fill) {
 grid.text(mat[i, j], x = x, y = y)
 },
 cluster_rows = FALSE, cluster_columns = FALSE, row_names_side = "left",
 column_names_side = "top")
Description

Class for a single heatmap

Details

The components for a single heatmap are placed into a 9 x 7 layout:

```
+------+ (1)
+------+ (2)
+------+ (3)
+------+ (4)
+------------------------
|1|2|3| 4(5) |5|6|7|
+------------------------
+------+ (6)
+------+ (7)
+------+ (8)
+------+ (9)
```

From top to bottom in column 4, the regions are:

- title which is put on the top of the heatmap, graphics are drawn by `draw_title,Heatmap-method`.
- column cluster on the top, graphics are drawn by `draw_dend,Heatmap-method`.
- column annotation on the top, graphics are drawn by `draw_annotation,Heatmap-method`.
- column names on the top, graphics are drawn by `draw_dimnames,Heatmap-method`.
- heatmap body, graphics are drawn by `draw_heatmap_body,Heatmap-method`.
- column names on the bottom, graphics are drawn by `draw_dimnames,Heatmap-method`.
- column annotation on the bottom, graphics are drawn by `draw_annotation,Heatmap-method`.
- column cluster on the bottom, graphics are drawn by `draw_dend,Heatmap-method`.
- title on the bottom, graphics are drawn by `draw_title,Heatmap-method`.

From left to right in row 5, the regions are:

- title which is put in the left of the heatmap, graphics are drawn by `draw_title,Heatmap-method`.
- row cluster on the left, graphics are drawn by `draw_dend,Heatmap-method`.
- row names on the left, graphics are drawn by `draw_dimnames,Heatmap-method`.
- heatmap body
- row names on the right, graphics are drawn by `draw_dimnames,Heatmap-method`.
- row cluster on the right, graphics are drawn by `draw_dend,Heatmap-method`.
- title on the right, graphics are drawn by `draw_title,Heatmap-method`.

The **Heatmap-class** is not responsible for heatmap legend and annotation legends. The `draw,Heatmap-method` method will construct a **HeatmapList-class** object which only contains one single heatmap and call `draw,HeatmapList-method` to make a complete heatmap.
Methods

The Heatmap-class provides following methods:

- **Heatmap**: constructor method.
- **draw,Heatmap-method**: draw a single heatmap.
- **add_heatmap,Heatmap-method**: append heatmaps and row annotations to a list of heatmaps.
- **row_order,HeatmapList-method**: get order of rows
- **column_order,HeatmapList-method**: get order of columns
- **row_dend,HeatmapList-method**: get row dendrograms
- **column_dend,HeatmapList-method**: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# for examples, please go to `Heatmap` method page
NULL
```

HeatmapAnnotation

Constructor method for HeatmapAnnotation class

Description

Constructor method for HeatmapAnnotation class

Usage

```r
HeatmapAnnotation(df, name, col, na_col = "grey",
annotation_legend_param = list(),
show_legend = TRUE,
..., which = c("column", "row"),
anotation_height = 1,
anotation_width = 1,
height = calc_anno_size(),
width = calc_anno_size(),
gp = gpar(col = NA),
gap = unit(0, "mm"),
show_annotation_name = FALSE,
anotation_name_gp = gpar(),
anotation_name_offset = unit(2, "mm"),
anotation_name_side = ifelse(which == "column", "right", "bottom"),
anotation_name_rot = ifelse(which == "column", 0, 90))
```
Arguments

- **df**: a data frame. Each column will be treated as a simple annotation. The data frame must have column names.
- **name**: name of the heatmap annotation, optional.
- **col**: a list of colors which contains color mapping to columns in df. See `SingleAnnotation` for how to set colors.
- **na_col**: color for NA values in simple annotations.
- **annotation_legend_param**: a list which contains parameters for annotation legends
- **show_legend**: whether show legend for each column in df.
- **...**: functions which define complex annotations or vectors of simple annotation. Values should be named arguments.
- **which**: are the annotations row annotations or column annotations?
- **annotation_height**: height of each annotation if annotations are column annotations.
- **annotation_width**: width of each annotation if annotations are row annotations.
- **height**: height of the column annotations, basically it is identical to `bottom_annotation_height` or `top_annotation_height` in `Heatmap` function.
- **width**: width of the whole heatmap annotations, only used for row annotation when appending to the list of heatmaps.
- **gp**: graphic parameters for simple annotations.
- **gap**: gap between each annotation
- **show_annotation_name**: whether show annotation names. For column annotation, annotation names are drawn either on the left or the right, and for row annotations, names are draw either on top to at bottom. The value can be a vector.
- **annotation_name_gp**: graphic parameters for annotation names. Graphic parameters can be vectors.
- **annotation_name_offset**: offset to the annotations, `unit` object. The value can be a vector.
- **annotation_name_side**: side of the annotation names.
- **annotation_name_rot**: rotation of the annotation names, can only take values in `c(00, 90, 180, 270)`. The value can be a vector.

Details

The simple annotations are defined by df and col arguments. Complex annotations are defined by the function list. So you need to at least to define df or a annotation function.

Value

A `HeatmapAnnotation-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
HeatmapAnnotation-class

See Also

There are two shortcut functions: rowAnnotation and columnAnnotation.

Examples

df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
ha = HeatmapAnnotation(type = c("a", "a", "a", "b", "b", "b"),
 col = list(type = c("a" = "red", "b" = "blue")))

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")),
 which = "row")

ha = HeatmapAnnotation(points = anno_points(1:6))
ha = HeatmapAnnotation(histogram = anno_points(1:6))

mat = matrix(rnorm(36), 6)
ha = HeatmapAnnotation(boxplot = anno_boxplot(mat))

HeatmapAnnotation-class

Class for heatmap annotations

Description

Class for heatmap annotations

Details

A complex heatmap contains a list of annotations which are represented as different graphics placed on rows and columns. The HeatmapAnnotation-class contains a list of single annotations which are represented as a list of SingleAnnotation-class objects with same number of rows or columns.

Methods

The HeatmapAnnotation-class provides following methods:

- HeatmapAnnotation: constructor method
- draw, HeatmapAnnotation-method: draw the annotations

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

for examples, please go to `HeatmapAnnotation` method page
NULL
HeatmapList

Constructor method for HeatmapList class

Description

Constructor method for HeatmapList class

Usage

HeatmapList(...)

Arguments

... arguments

Details

There is no public constructor method for the HeatmapList-class.

Value

No value is returned.

Details

There is no public constructor method for the HeatmapList-class.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example
NULL
A heatmap list is defined as a list of heatmaps and row annotations. The components for the heatmap list are placed into a 7 x 7 layout:

```
+------+(1)  
+------+(2)  
+------+(3)  
+----------------+
|1|2|3| 4(4) |5|6|7|  
+----------------+
+------+(5)  
+------+(6)  
+------+(7)  
```

From top to bottom in column 4, the regions are:

- annotation legend on the top, graphics are drawn by `draw_annotation_legend`, `HeatmapList-method`
- heatmap legend on the top, graphics are drawn by `draw_heatmap_legend`, `HeatmapList-method`
- title for the heatmap list which is put on the top, graphics are drawn by `draw_title`, `HeatmapList-method`
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the bottom, graphics are drawn by `draw_title`, `HeatmapList-method`
- heatmap legend on the bottom, graphics are drawn by `draw_heatmap_legend`, `HeatmapList-method`
- annotation legend on the bottom, graphics are drawn by `draw_annotation_legend`, `HeatmapList-method`

From left to right in row 4, the regions are:

- annotation legend on the left, graphics are drawn by `draw_annotation_legend`, `HeatmapList-method`
- heatmap legend on the left, graphics are drawn by `draw_heatmap_legend`, `HeatmapList-method`
- title for the heatmap list which is put on the left, graphics are drawn by `draw_title`, `HeatmapList-method`
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the right, graphics are drawn by `draw_title`, `HeatmapList-method`
- heatmap legend on the right, graphics are drawn by `draw_heatmap_legend`, `HeatmapList-method`
- annotation legend on the right, graphics are drawn by `draw_annotation_legend`, `HeatmapList-method`

For the list of heatmaps which are placed at (5, 5) in the layout, the heatmaps and row annotations are placed one after the other.

Methods

The `HeatmapList-class` provides following methods:

- `draw`, `HeatmapList-method`: draw the list of heatmaps and row annotations.
- `add_heatmap`, `HeatmapList-method`: add heatmaps to the list of heatmaps.
- `row_order`, `HeatmapList-method`: get order of rows
- `column_order`, `HeatmapList-method`: get order of columns
- `row_dend`, `HeatmapList-method`: get row dendrograms
- `column_dend`, `HeatmapList-method`: get column dendrograms
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
ht + ha
ht_list + ha

heatmap_legend_size-HeatmapList-method

Size of the heatmap legend viewport

Description
Size of the heatmap legend viewport

Usage
S4 method for signature 'HeatmapList'
heatmap_legend_size(object, legend_list = list(), ...)

Arguments

object a HeatmapList-class object
legend_list a list of self-defined legend, should be wrapped into grob objects.
... graphic parameters passed to color_mapping_legend,ColorMapping-method.

Details
This function is only for internal use.

Value
A unit object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>
ht_global_opt

Examples

no example for this internal method
NULL

ht_global_opt Global graphic options for heatmaps

Description

Global graphic options for heatmaps

Usage

ht_global_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE)

Arguments

... options, see 'details' section
RESET reset all the option values
READ.ONLY TRUE means only to return read-only values, FALSE means only to return non-read-only values, NULL means to return both.
LOCAL switch local mode

Details

You can set some parameters for all heatmaps/annotations simultaneously by this global function. Please note you should put it before your heatmap code and reset all option values after drawing the heatmaps to get rid of affecting next heatmap plotting.

There are following parameters:

heatmap_row_names_gp set row_names_gp in Heatmap.
heatmap_column_names_gp set column_names_gp in Heatmap.
heatmap_row_title_gp set row_title_gp in Heatmap.
heatmap_column_title_gp set column_title_gp in Heatmap.
heatmap_legend_title_gp set title_gp element in heatmap_legend_param in Heatmap.
heatmap_legend_title_position set title_position element in heatmap_legend_param in Heatmap.
heatmap_legend_labels_gp set labels_gp element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_width set grid_width element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_height set grid_height element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_border set grid_border element in heatmap_legend_param in Heatmap.
heatmap_legend_title_gp set title_gp element in legend_param in SingleAnnotation.
heatmap_legend_title_position set title_position element in legend_param in SingleAnnotation.
heatmap_legend_labels_gp set labels_gp element in legend_param in SingleAnnotation.
heatmap_legend_grid_width set grid_width element in legend_param in SingleAnnotation.
heatmap_legend_grid_height set grid_height element in legend_param in SingleAnnotation.
is_abs_unit

heatmap_legend_grid_border: set grid_border element in legend_param in SingleAnnotation.

fast_hclust: whether use `hclust` to speed up clustering?

You can get or set option values by the traditional way (like `options`) or by `$` operator:

```
# to get option values
ht_global_opt("heatmap_row_names_gp")
ht_global_opt$heatmap_row_names_gp

# to set option values
ht_global_opt("heatmap_row_names_gp" = gpar(fontsize = 8))
ht_global_opt$heatmap_row_names_gp = gpar(fontsize = 8)
```

Value

Depends on the options users selected.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# no example for this function
NULL
```

is_abs_unit

Whether the unit object contains absolute unit

Description

Whether the unit object contains absolute unit

Usage

```
is_abs_unit(u)
```

Arguments

- `u`: a unit object

Details

Besides the normal absolute units (e.g. "mm", "inches"), this function simply treat `grob` objects as absolute units.

For a complex unit which is combination of different units, it is absolute only if all units included are absolute units.

Value

A logical value.
Legend

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

\[
\text{is_abs_unit(unit(1, "mm"))}
\]
\[
\text{is_abs_unit(unit(1, "npc"))}
\]
\[
\text{is_abs_unit(textGrob("foo"))}
\]
\[
\text{is_abs_unit(unit(1, "mm") + unit(1, "npc"))}
\]

Legend | Making legend grobs

Description

Making legend grobs

Usage

Legend(at, labels = at, nrow = NULL, ncol = 1, col_fun, grid_height = unit(4, "mm"), grid_width = unit(4, "mm"), gap = unit(2, "mm"), labels_gp = gpar(fontsize = 10), border = NULL, background = "#EEEEEE", type = "grid", legend_gp = gpar(), pch = 16, size = unit(2, "mm"), legend_height = NULL, legend_width = NULL, direction = c("vertical", "horizontal"), title = ", title_gp = gpar(fontsize = 10, fontface = "bold"), title_position = c("topleft", "topcenter", "leftcenter", "lefttop"))

Arguments

at | breaks, can be wither numeric or character
labels | labels corresponding to at
nrow | if there are too many legends, they can be positioned in an array, this controls number of rows
ncol | if there are too many legends, they can be positioned in an array, this controls number of columns. At a same time only one of nrow and ncol can be specified.
col_fun | a color mapping function which is used to make a continuous color bar
grid_height | height of legend grid
grid_width | width of legend grid
gap | when legends are put in multiple columns, this is the gap between neighbouring columns, measured as a unit object
labels_gp | graphic parameters for labels
border | color of legend borders, also for the ticks in the continuous legend
background | background colors
type | type of legends, can be grid, points and lines
make_column_cluster-Heatmap-method

- **legend_gp**: graphic parameters for the legend
- **pch**: type of points
- **size**: size of points
- **legend_height**: height of the whole legend, used when `col_fun` is specified and `direction` is set to `vertical`
- **legend_width**: width of the whole legend, used when `col_fun` is specified and `direction` is set to `horizontal`
- **direction**: direction of the continuous legend
- **title**: title of the legend
- **title_gp**: graphic parameters of title
- **title_position**: position of title according to the legend

Value

A `grob` object

See Also

`packLegend` packs multiple legends into one `grob` object

Examples

```r
# There is no example
NULL
```

Description

Make cluster on columns

Usage

```r
## S4 method for signature 'Heatmap'
make_column_cluster(object)
```

Arguments

- **object**: a `Heatmap-class` object.

Details

The function will fill or adjust `column_dend` and `column_order` slots.
This function is only for internal use.
Value

A `Heatmap-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

make_layout

Method dispatch page for `make_layout`.

Dispatch

`make_layout` can be dispatched on following classes:

- `make_layout,HeatmapList-method,HeatmapList-class` class method
- `make_layout,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```

`make_layout-Heatmap-method`

Make the layout of a single heatmap

Description

Make the layout of a single heatmap

Usage

```r
## S4 method for signature 'Heatmap'
make_layout(object)
```

Arguments

- `object` a `Heatmap-class` object.
Details

The layout of the single heatmap will be established by setting the size of each heatmap component. Also functions that make graphics for heatmap components will be recorded. Whether apply row clustering or column clustering affects the layout, so clustering should be applied first before making the layout.

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

make_layout-HeatmapList-method

Make layout for the complete plot

Description

Make layout for the complete plot

Usage

S4 method for signature 'HeatmapList'
make_layout(object, row_title = character(0),
 row_title_side = c("left", "right"),
 row_title_gp = gpar(fontsize = 14),
 column_title = character(0),
 column_title_side = c("top", "bottom"),
 column_title_gp = gpar(fontsize = 14),
 heatmap_legend_side = c("right", "left", "bottom", "top"),
 show_heatmap_legend = TRUE,
 heatmap_legend_list = list(),
 annotation_legend_side = c("right", "left", "bottom", "top"),
 show_annotation_legend = TRUE,
 annotation_legend_list = list(),
 gap = unit(3, "mm"),
 main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
 row_dend_side = c("original", "left", "right"),
 row_hclust_side = row_dend_side,
 row_sub_title_side = c("original", "left", "right"),
 cluster_rows = NULL,
 clustering_distance_rows = NULL,
make_layout-HeatmapList-method

clustering_method_rows = NULL,
row_dend_width = NULL,
show_row_dend = NULL,
row_dend_reorder = NULL,
row_dend_gp = NULL,
row_order = NULL,
km = NULL,
split = NULL)

Arguments

object a HeatmapList-class object.
row_title title on the row.
row_title_side will the title be put on the left or right of the heatmap.
row_title_gp graphic parameters for drawing text.
column_title title on the column.
column_title_side will the title be put on the top or bottom of the heatmap.
column_title_gp graphic parameters for drawing text.
heatmap_legend_side side of the heatmap legend.
show_heatmap_legend whether show heatmap legend.
heatmap_legend_list a list of self-defined legend, should be wrapped into grob objects.
annotation_legend_side side of annotation legend.
show_annotation_legend whether show annotation legend.
annotation_legend_list a list of self-defined legend, should be wrapped into grob objects.
gap gap between heatmaps, should be a unit object.
main_heatmap name or index for the main heatmap
row_dend_side if auto adjust, where to put the row dendrograms for the main heatmap
row_hclust_side deprecated, use row_dend_side instead
row_sub_title_side if auto adjust, where to put sub row titles for the main heatmap
cluster_rows same setting as in Heatmap, if it is specified, cluster_rows in main heatmap is ignored.
clustering_distance_rows same setting as in Heatmap, if it is specified, clustering_distance_rows in main heatmap is ignored.
clustering_method_rows same setting as in Heatmap, if it is specified, clustering_method_rows in main heatmap is ignored.
row_dend_width same setting as in Heatmap, if it is specified, row_dend_width in main heatmap is ignored.

show_row_dend same setting as in Heatmap, if it is specified, show_row_dend in main heatmap is ignored.

row_dend_reorder same setting as in Heatmap, if it is specified, row_dend_reorder in main heatmap is ignored.

row_dend_gp same setting as in Heatmap, if it is specified, row_dend_gp in main heatmap is ignored.

row_order same setting as in Heatmap, if it is specified, row_order in main heatmap is ignored.

km same setting as in Heatmap, if it is specified, km in main heatmap is ignored.

split same setting as in Heatmap, if it is specified, split in main heatmap is ignored.

Details

It sets the size of each component of the heatmap list and adjusts graphic parameters for each heatmap if necessary.

The layout for the heatmap list and layout for each heatmap are calculated when drawing the heatmap list.

This function is only for internal use.

Value

A HeatmapList-class object in which settings for each heatmap are adjusted.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
Arguments

object
a Heatmap-class object.

Details

The function will fill or adjust row_dend_list, row_order_list, row_title and matrix_param slots.

If order is defined, no clustering will be applied.

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

Description

Map values to colors

Usage

S4 method for signature 'ColorMapping'
map_to_colors(object, x)

Arguments

object
a ColorMapping-class object.

x
input values.

Details

It maps a vector of values to a vector of colors.

Value

A vector of colors.
Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))
map_to_colors(cm, "a")
map_to_colors(cm, c("a", "a", "b"))

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))
map_to_colors(cm, 1)
map_to_colors(cm, "1")
map_to_colors(cm, c(1, 1, 2, 2))

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
map_to_colors(cm, 0.2)
map_to_colors(cm, seq(0.2, 0.8, by = 0.1))

max_text_height

Maximum height of text

Description

Maximum height of text

Usage

max_text_height(text, ...)

Arguments

text a vector of text
...

Details

Simply calculate maximum height of a list of textGrobs.

Value

A unit object.
max_text_width

Author(s)
Zuguang Gu <z.gu@dkfz.de>

See Also
max_text_height is always used to calculate the size of viewport when there is text annotation (anno_text)

Examples
x = c("a", "b\nb", "c\nc\nc")
max_text_height(x, gp = gpar(fontsize = 10))

max_text_width

Maximum width of text

Description
Maximum width of text

Usage
max_text_width(text, ...)

Arguments
text a vector of text
... pass to textGrob

Details
Simply calculate maximum width of a list of textGrob objects.

Value
A unit object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

See Also
max_text_width is always used to calculate the size of viewport when there is text annotation (anno_text)

Examples
x = c("a", "bb", "ccc")
max_text_width(x, gp = gpar(fontsize = 10))
oncoPrint Make oncoPrint

Description
Make oncoPrint

Usage
oncoPrint(mat, get_type = function(x) x,
alter_fun = alter_fun_list, alter_fun_list = NULL, col,
row_order = oncoprint_row_order(),
column_order = oncoprint_column_order(),
show_column_names = FALSE,
show_pct = TRUE, pct_gp = gpar(), pct_digits = 0,
axis_gp = gpar(fontsize = 8),
show_row_barplot = TRUE,
row_barplot_width = unit(2, "cm"),
remove_empty_columns = FALSE,
heatmap_legend_param = list(title = "Alterations"),
top_annotation = HeatmapAnnotation(column_bar = anno_oncoprint_barplot(),
annotation_height = unit(2, "cm")),
barplot_ignore = NULL,
...)

Arguments
mat a character matrix which encodes multiple alterations or a list of matrix for which every matrix contains binary value representing the alteration is present or absent. When it is a list, the names represent alteration types. You can use unify_mat_list to make all matrix having same row names and column names.
get_type If different alterations are encoded in the matrix, this self-defined function determines how to extract them. Only work when mat is a matrix.
alter_fun a single function or a list of functions which define how to add graphics for different alterations. If it is a list, the names of the list should cover all alteration types.
alter_fun_list deprecated, use alter_run instead.
col a vector of color for which names correspond to alteration types.
row_order order of genes. By default it is sorted by frequency of alterations decreasingly. Set it to NULL if you don’t want to set the order.
column_order order of samples. By default the order is calculated by the ‘memo sort’ method which can visualize the mutual exclusivity across genes. Set it to NULL if you don’t want to set the order.
show_column_names whether show column names
show_pct whether show percent values on the left of the oncoprint
pct_gp graphic parameters for percent row annotation
pct_digits digits for percent values
Pack legends

Description
Pack legends

Usage
packLegend(..., gap = unit(4, "mm"), direction = c("vertical", "horizontal"))
Arguments

... objects returned by Legend
gap gap between two legends. The value is a unit object
direction how to arrange legends

Value

A grob object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

plotDataFrame

Quickly visualize a data frame

Description

Quickly visualize a data frame

Usage

plotDataFrame(df, overlap = 0.25, nlevel = 30, show_row_names = TRUE,
show_column_names = TRUE, group = NULL, group_names = names(group),
main_heatmap = NULL, km = 1, split = NULL, cluster_rows = TRUE,
cluster_columns = TRUE, row_order = NULL, ...)

Arguments

df a data frame.
overlap how to group numeric columns. If the overlapping rate between the ranges in
the current column and previous numeric column is larger than this value, the
two columns are treated as under same measurement and should be grouped.
nlevel If the number of levels of a character column is larger than this value, the column
will be excluded, because it doesn’t make any sense to visualize a character vec-
tor or matrix that contains huge number of unique elements through a heatmap.
show_row_names whether show row names after the last heatmap if there are row names.
show_column_names whether show column names for all heatmaps.
group a list of index that defines the grouping.
group_names names for each group.
main_heatmap which group is the main heatmap?
km a value larger than 1 means applying k-means clustering on rows for the main heatmap.
split one or multiple variables that split the rows.
cluster_rows whether perform clustering on rows of the main heatmap.
cluster_columns whether perform clustering on columns for all heatmaps.
row_order order of rows, remember to turn off cluster_rows
... pass to draw,HeatmapList-method or make_layout,HeatmapList-method

Details

The data frame contains heterogeneous information. The plotDataFrame function provides a simple and quick way to visualize information that are stored in a data frame.

There are only a few settings in this function, so the heatmap generated by this function may look ugly (in most of the time). However, users can customize the style of the heatmaps by manually constructing a HeatmapList object.

Value

A HeatmapList object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

df = data.frame(matrix(rnorm(40), nrow = 10, dimnames = list(letters[1:10], letters[1:4])),
 large = runif(10)*100,
 t1 = sample(letters[1:3], 10, replace = TRUE),
 matrix(runif(60), nrow = 10, dimnames = list(LETTERS[1:10], LETTERS[1:6])),
 t2 = sample(LETTERS[1:3], 10, replace = TRUE))
plotDataFrame(df)
plotDataFrame(df, group = list(1:4, 5, 6, 7:12, 13), group_names = c("mat1", "large", "t1", "mat2", "t2"),
 main_heatmap = 4, km = 2, column_title = "column title", row_title = "row title")

prepare-Heatmap-method

Description

Prepare the heatmap

Usage

S4 method for signature 'Heatmap'
prepare(object, process_rows = TRUE)
rowAnnotation

Arguments

object a Heatmap-class object.
process_rows whether process rows of the heatmap

Details

The preparation of the heatmap includes following steps:

- making clustering on rows if specified (by calling make_row_cluster,Heatmap-method)
- making clustering on columns if specified (by calling make_column_cluster,Heatmap-method)
- making the layout of the heatmap (by calling make_layout,Heatmap-method)

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

rowAnnotation Construct row annotations

Description

Construct row annotations

Usage

rowAnnotation(...)

Arguments

... pass to HeatmapAnnotation

Details

The function is identical to

HeatmapAnnotation(..., which = "row")

Value

A HeatmapAnnotation-class object.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = columnAnnotation(df = df)

Description

Row annotation which is represented as barplots

Usage

row_anno_barplot(...)

Arguments

... pass to anno_barplot

Details

A wrapper of anno_barplot with pre-defined which to row.

Value

See help page of anno_barplot

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
row_anno_boxplot
Row annotation which is represented as boxplots

Description
Row annotation which is represented as boxplots

Usage
row_anno_boxplot(...)

Arguments
...
pass to anno_boxplot

Details
A wrapper of anno_boxplot with pre-defined which to row.

Value
See help page of anno_boxplot

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
There is no example
NULL

row_anno_density
Row annotation which is represented as density plot

Description
Row annotation which is represented as density plot

Usage
row_anno_density(...)

Arguments
...
pass to anno_density

Details
A wrapper of anno_density with pre-defined which to row.
row_anno_histogram

Value

See help page of `anno_density`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

Description

Row annotation which is represented as histogram

Usage

```r
row_anno_histogram(...)
```

Arguments

```r
... pass to `anno_histogram`
```

Details

A wrapper of `anno_histogram` with pre-defined `which` to `row`.

Value

See help page of `anno_histogram`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```
row_anno_link

Description

Column annotation which is represented as links

Usage

```r
row_anno_link(...)`
```

Arguments

```r
...  pass to anno_link
```

Details

A wrapper of `anno_link` with pre-defined `which` to row.

Value

See help page of `anno_link`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

row_anno_points

Description

Row annotation which is represented as points

Usage

```r
row_anno_points(...)`
```

Arguments

```r
...  pass to anno_points
```

Details

A wrapper of `anno_points` with pre-defined `which` to row.
row_anno_text

Value

See help page of anno_points

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

Description

Row annotation which is represented as text

Usage

row_anno_text(...)

Arguments

... pass to anno_text

Details

A wrapper of anno_text with pre-defined which to row.

Value

See help page of anno_text

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
Description

Method dispatch page for row_dend.

Dispatch

row_dend can be dispatched on following classes:

• row_dend,HeatmapList-method,HeatmapList-class class method
• row_dend,Heatmap-method,Heatmap-class class method

Examples

no example
NULL

Description

Get row dendrograms from a heatmap

Usage

S4 method for signature 'Heatmap'
row_dend(object)

Arguments

object a Heatmap-class object

Value

A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_dend(ht)
ht = Heatmap(mat, km = 2)
row_dend(ht)
Description
Get row dendrograms from a heatmap list

Usage
S4 method for signature 'HeatmapList'
row_dend(object)

Arguments
object a HeatmapList-class object

Value
A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_dend(ht_list)
ht_list = Heatmap(mat, km = 2) + Heatmap(mat)
row_dend(ht_list)

Description
Method dispatch page for row_order.

Dispatch
row_order can be dispatched on following classes:
 • row_order,HeatmapList-method,HeatmapList-class class method
 • row_order,Heatmap-method,Heatmap-class class method

Examples
no example
NULL
row_order-Heatmap-method

Get row order from a heatmap

Description

Get row order from a heatmap

Usage

```r
## S4 method for signature 'Heatmap'
row_order(object)
```

Arguments

- `object` a `Heatmap-class` object

Value

A list contains row orders which correspond to the original matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_order(ht)
ht = Heatmap(mat, km = 2)
row_order(ht)
```

row_order-HeatmapList-method

Get row order from a heatmap list

Description

Get row order from a heatmap list

Usage

```r
## S4 method for signature 'HeatmapList'
row_order(object)
```

Arguments

- `object` a `HeatmapList-class` object
selectArea

Value

A list contains row orders which correspond to the original matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
row_order(ht_list)
```

selectArea

Select an area in the heatmap

Description

Select an area in the heatmap

Usage

```r
selectArea(mark = TRUE)
```

Arguments

- `mark` whether mark the selected area as a rectangle

Details

Users can use mouse to click two positions on the heatmap, the function will return the row index and column index for the selected region in the selected matrix.

This function only works under interactive graphical environment.

Value

A list containing row index and column index corresponding to the selected region.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# No example for this function
NULL
```
set_component_height-Heatmap-method

Set height of each heatmap component

Description
Set height of each heatmap component

Usage
```
## S4 method for signature 'Heatmap'
set_component_height(object, k, v)
```

Arguments
- `object`: a `Heatmap-class` object.
- `k`: which components, see `Heatmap-class`.
- `v`: height of the component, a `unit` object.

Details
This function is only for internal use.

Value
This function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```
# no example for this internal method
NULL
```

show-ColorMapping-method

Print ColorMapping object

Description
Print ColorMapping object

Usage
```
## S4 method for signature 'ColorMapping'
show(object)
```
Arguments

object a ColorMapping-class object.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

show-dispatch Method dispatch page for show

Description

Method dispatch page for show.

Dispatch

show can be dispatched on following classes:

- show,ColorMapping-method, ColorMapping-class class method
- show,HeatmapAnnotation-method, HeatmapAnnotation-class class method
- show,SingleAnnotation-method, SingleAnnotation-class class method
- show,HeatmapList-method, HeatmapList-class class method
- show,Heatmap-method, Heatmap-class class method

Examples

no example
NULL
show-Heatmap-method

Draw the single heatmap with default parameters

Description

Draw the single heatmap with default parameters

Usage

S4 method for signature 'Heatmap'
show(object)

Arguments

object a Heatmap-class object.

Details

Actually it calls draw,Heatmap-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw,Heatmap-method.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht
draw(ht, heatmap_legend_side = "left")

show-HeatmapAnnotation-method

Print the Heatmap Annotation object

Description

Print the Heatmap Annotation object
show-HeatmapList-method

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
show(object)
```

Arguments

- `object`: a `HeatmapAnnotation-class` object.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

show-HeatmapList-method

Draw a list of heatmaps with default parameters

Usage

```r
## S4 method for signature 'HeatmapList'
show(object)
```

Arguments

- `object`: a `HeatmapList-class` object.

Details

Actually it calls `draw,HeatmapList-method`, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to `draw,HeatmapList-method`.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

There is no example
NULL

Description

Print the SingleAnnotation object

Usage

S4 method for signature 'SingleAnnotation'
show(object)

Arguments

object a SingleAnnotation-class object.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

SingleAnnotation Constructor method for SingleAnnotation class

Description

Constructor method for SingleAnnotation class
Usage

SingleAnnotation(name, value, col, fun,
 na_col = "grey",
 which = c("column", "row"),
 show_legend = TRUE,
 gp = gpar(col = NA),
 legend_param = list(),
 show_name = FALSE,
 name_gp = gpar(fontsize = 12),
 name_offset = unit(2, "mm"),
 name_side = ifelse(which == "column", "right", "bottom"),
 name_rot = ifelse(which == "column", 0, 90))

Arguments

- **name**: name for this annotation. If it is not specified, an internal name is assigned.
- **value**: A vector of discrete or continuous annotation.
- **col**: colors corresponding to value. If the mapping is discrete mapping, the value of col should be a vector; If the mapping is continuous mapping, the value of col should be a color mapping function.
- **fun**: a self-defined function to add annotation graphics. The argument of this function should only be a vector of index that corresponds to rows or columns.
- **na_col**: color for NA values in simple annotations.
- **which**: is the annotation a row annotation or a column annotation?
- **show_legend**: if it is a simple annotation, whether show legend when making the complete heatmap.
- **gp**: Since simple annotation is represented as a row of grids. This argument controls graphic parameters for the simple annotation.
- **legend_param**: parameters for the legend. See `color_mapping_legend, ColorMapping-method` for options.
- **show_name**: whether show annotation name
- **name_gp**: graphic parameters for annotation name
- **name_offset**: offset to the annotation, a `unit` object
- **name_side**: ‘right’ and ‘left’ for column annotations and ‘top’ and ‘bottom’ for row annotations
- **name_rot**: rotation of the annotation name, can only take values in c(0, 90, 180, 270).

Details

The most simple annotation is one row or one column grids in which different colors represent different classes of the data. Here the function use `ColorMapping-class` to process such simple annotation. value and col arguments controls values and colors of the simple annotation and a `ColorMapping-class` object will be constructed based on value and col.

fun is used to construct a more complex annotation. Users can add any type of annotation graphics by implementing a function. The only input argument of fun is a index of rows or columns which is already adjusted by the clustering. In the package, there are already several annotation graphic function generators: `anno_points`, `anno_histogram` and `anno_boxplot`.
In the case that row annotations are splitted by rows, index corresponding to row orders in each row-slice and fun will be applied on each of the row slices.

One thing that users should be careful is the difference of coordinates when the annotation is a row annotation or a column annotation.

Value

A `SingleAnnotation-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are following built-in annotation functions that can be used to generate complex annotations:

- `anno_points`
- `anno_barplot`
- `anno_histogram`
- `anno_boxplot`
- `anno_density`
- `anno_text`
- `anno_link`

Examples

```r
# discrete character
SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"),
    which = "row")

# with defined colors
SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
    col = c("a" = "red", "b" = "blue"))

# continuous numbers
require(circlize)
SingleAnnotation(value = 1:10)
SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))

# self-defined graphic function
SingleAnnotation(fun = anno_points(1:10))
```

SingleAnnotation-class

Class for a single annotation

Description

Class for a single annotation
Details

A complex heatmap always has more than one annotations on rows and columns. Here the `SingleAnnotation-class` defines the basic unit of annotations. The most simple annotation is one row or one column grids in which different colors represent different classes of the data. The annotation can also be more complex graphics, such as a boxplot that shows data distribution in corresponding row or column. The `SingleAnnotation-class` is used for storing data for a single annotation and provides methods for drawing annotation graphics.

Methods

The `SingleAnnotation-class` provides following methods:

- `SingleAnnotation`: constructor method
- `draw,SingleAnnotation-method`: draw the single annotation.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

The `SingleAnnotation-class` is always used internally. The public `HeatmapAnnotation-class` contains a list of `SingleAnnotation-class` objects and is used to add annotation graphics on heatmaps.

Examples

```r
# for examples, please go to `SingleAnnotation` method page
NULL
```

unify_mat_list

Unify a list of matrix

Description

Unify a list of matrix

Usage

```r
unify_mat_list(mat_list, default = 0)
```

Arguments

- `mat_list`: a list of matrix, all of them should have dimension names
- `default`: default values for the newly added rows and columns

Details

All matrix will be unified to have same row names and column names
Value

A list of matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
Index

+.AdditiveUnit, 5
add_heatmap (add_heatmap-dispatch), 7
add_heatmap, Heatmap-method
 (add_heatmap-Heatmap-method), 7
add_heatmap, HeatmapAnnotation-method
 (add_heatmap-HeatmapAnnotation-method), 8
add_heatmap, HeatmapList-method
 (add_heatmap-HeatmapList-method), 9
add_heatmap-dispatch, 7
add_heatmap-Heatmap-method
 (add_heatmap-Heatmap-method), 7
add_heatmap-HeatmapAnnotation-method
 (add_heatmap-HeatmapAnnotation-method), 8
add_heatmap-HeatmapList-method
 (add_heatmap-HeatmapList-method), 9
AdditiveUnit, 6
AdditiveUnit-class, 6
anno_barplot, 11, 22, 23, 93, 108
anno_boxplot, 12, 23, 94, 107, 108
anno_density, 13, 24, 95, 108
anno_histogram, 14, 24, 25, 95, 107, 108
anno_link, 15, 25, 96, 108
anno_oncoprint_barplot, 16
anno_points, 16, 26, 96, 97, 107, 108
anno_text, 17, 26, 27, 87, 97, 108
annotation_legend_size
 (annotation_legend_size-HeatmapList-method), 10
annotation_legend_size, HeatmapList-method
 (annotation_legend_size-HeatmapList-method), 10
annotation_legend_size-HeatmapList-method
 (annotation_legend_size-HeatmapList-method), 10
as.dist, 45

ColorMapping, 18, 19, 65
ColorMapping-class, 19
colorRamp2, 18, 44, 65
column_anno_barplot, 22
column_anno_boxplot, 23
column_anno_density, 24
column_anno_histogram, 24
column_anno_link, 25
column_anno_points, 26
column_anno_text, 26
column_dend (column_dend-dispatch), 27
column_dend, Heatmap-method
 (column_dend-Heatmap-method), 27
column_dend, HeatmapList-method
 (column_dend-HeatmapList-method), 28
column_dend-dispatch, 27
column_dend-Heatmap-method, 27
column_dend-HeatmapList-method, 28
column_order (column_order-dispatch), 29
column_order, Heatmap-method
 (column_order-Heatmap-method), 29
column_order, HeatmapList-method
 (column_order-HeatmapList-method), 30
column_order-dispatch, 29
column_order-Heatmap-method, 29
column_order-HeatmapList-method, 30
columnAnnotation, 22, 73
ComplexHeatmap-package, 4
column_anno_barplot, 22, 73
component_height
 (component_height-dispatch), 30
component_height, Heatmap-method
 (component_height-Heatmap-method), 31
component_height, HeatmapList-method
 (component_height-HeatmapList-method), 32
component_height-dispatch, 30
column_anno_boxplot, 23
column_anno_density, 24
column_anno_histogram, 24
column_anno_link, 25
column_anno_points, 26
column_anno_text, 26
column_dend (column_dend-dispatch), 27
column_dend, Heatmap-method
 (column_dend-Heatmap-method), 27
column_dend, HeatmapList-method
 (column_dend-HeatmapList-method), 28
column_dend-dispatch, 27
column_dend-Heatmap-method, 27
column_dend-HeatmapList-method, 28
column_order (column_order-dispatch), 29
column_order, Heatmap-method
 (column_order-Heatmap-method), 29
column_order, HeatmapList-method
 (column_order-HeatmapList-method), 30
column_order-dispatch, 29
column_order-Heatmap-method, 29
column_order-HeatmapList-method, 30
columnAnnotation, 22, 73
ComplexHeatmap-package, 4
column_anno_barplot, 22, 73
component_height
 (component_height-dispatch), 30
component_height, Heatmap-method
 (component_height-Heatmap-method), 31
component_height, HeatmapList-method
 (component_height-HeatmapList-method), 32
component_height-dispatch, 30
draw_annotation_legend
(draw_annotationLegend-HeatmapList-method, 53)
draw_annotation_legend, HeatmapList-method
(draw_annotationLegend-HeatmapList-method, 53)
draw_annotation_legend-HeatmapList-method, 53
draw_dend (draw_dend-Heatmap-method, 53
draw_dend, Heatmap-method
(draw_dend-Heatmap-method, 53)
draw_dend-Heatmap-method, 53
draw_dimnames
(draw_dimnames-Heatmap-method, 54)
draw_dimnames, Heatmap-method
(draw_dimnames-Heatmap-method, 54)
draw_dimnames-Heatmap-method, 54
draw_heatmap_body
(draw_heatmap_body-Heatmap-method, 55)
draw_heatmap_body, Heatmap-method
(draw_heatmap_body-Heatmap-method, 55)
draw_heatmap_body-Heatmap-method, 55
draw_heatmap_legend
(draw_heatmapLegend-HeatmapList-method, 56)
draw_heatmap_legend, HeatmapList-method
(draw_heatmapLegend-HeatmapList-method, 56)
draw_heatmap_legend-HeatmapList-method, 56
draw_heatmap_list
(draw_heatmapList-HeatmapList-method, 57)
draw_heatmap_list, HeatmapList-method
(draw_heatmapList-HeatmapList-method, 57)
draw_heatmap_list-HeatmapList-method, 57
draw_title (draw_title-dispatch, 58
draw_title, Heatmap-method
(draw_title-Heatmap-method, 58)
draw_title, HeatmapList-method
(draw_title-HeatmapList-method, 59)
draw_title-dispatch, 58
draw_title-Heatmap-method, 58
draw_title-HeatmapList-method, 59
enhanced_basicplot, 60
INDEX

get_color_mapping_list (get_color_mapping_list-HeatmapAnnotation-method, 61, 61
get_color_mapping_list,HeatmapAnnotation-method (get_color_mapping_list-HeatmapAnnotation-method, 61, 61
get_color_mapping_list-HeatmapAnnotation-method 81

get_color_mapping_param_list (get_color_mapping_param_list-HeatmapAnnotation-method, 62, 62
get_color_mapping_param_list,HeatmapAnnotation-method (get_color_mapping_param_list-HeatmapAnnotation-method, 62, 62
get_color_mapping_param_list-HeatmapAnnotation-method 84

grid.dendrogram, 54, 62

grid.text, 17

grob, 10, 19, 21, 50, 53, 56, 60, 76, 78, 80, 83, 90

hclust, 65, 66, 78

Heatmap, 4, 39, 44, 56, 60, 63, 71, 72, 77, 83, 84, 89

Heatmap-class, 69

heatmap_legend_size (heatmap_legend_size-HeatmapList-method, 88

heatmap_legend_size,HeatmapList-method (heatmap_legend_size-HeatmapList-method, 76, 76

heatmap_legend_size-HeatmapList-method, 80

HeatmapAnnotation, 11–15, 17, 22, 67, 71, 73, 92

HeatmapAnnotation-class, 73

HeatmapList, 74, 91

HeatmapList-class, 74

hist, 14

ht_global_opt, 77

is_abs_unit, 78

Legend, 79, 90

make_column_cluster (make_column_cluster-Heatmap-method, 80, 80

make_column_cluster,Heatmap-method (make_column_cluster-Heatmap-method, 99, 99

make_column_cluster-Heatmap-method, 80, 80

make_layout (make_layout-dispatch, 81, 81

row_dend(row_dend-dispatch, 98, 98

row_dend,Heatmap-method (row_dend-Heatmap-method, 98, 98

row_dend,HeatmapList-method (row_dend-HeatmapList-method, 98, 98

row_dend-Heatmap-method, 98

row_dend-HeatmapList-method, 98

row_dend-HeatmapList-method, 99

row_order (row_order-dispatch, 99, 99
row_order,Heatmap-method
 (row_order-Heatmap-method), 100
row_order,HeatmapList-method
 (row_order-HeatmapList-method), 100
row_order-dispatch, 99
row_order-Heatmap-method, 100
row_order-HeatmapList-method, 100
rowAnnotation, 73, 92
seekViewport, 35, 38–40, 43
selectArea, 101
set_component_height
 (set_component_height-Heatmap-method), 102
set_component_height,Heatmap-method
 (set_component_height-Heatmap-method), 102
set_component_height-Heatmap-method, 102
show(show-dispatch), 103
show,ColorMapping-method
 (show-ColorMapping-method), 102
show,Heatmap-method
 (show-Heatmap-method), 104
show,HeatmapAnnotation-method
 (show-HeatmapAnnotation-method), 104
show,HeatmapList-method
 (show-HeatmapList-method), 105
show,SingleAnnotation-method
 (show-SingleAnnotation-method), 106
show-ColorMapping-method, 102
show-dispatch, 103
show-Heatmap-method, 104
show-HeatmapAnnotation-method, 104
show-HeatmapList-method, 105
show-SingleAnnotation-method, 106
SingleAnnotation, 72, 77, 78, 106, 109
SingleAnnotation-class, 108
textGrob, 86, 87
unify_mat_list, 88, 109
unit, 10, 13, 17, 31–34, 50, 65–67, 72, 76, 78,
 79, 83, 86, 87, 89, 90, 102, 107
viewport, 21, 48, 54, 55, 58, 63