Package ‘ComplexHeatmap’

November 21, 2016

Type Package
Title Making Complex Heatmaps
Version 1.12.0
Date 2016-10-14
Author Zuguang Gu
Maintainer Zuguang Gu <z.gu@dkfz.de>
Depends R (>= 3.1.2), grid, graphics, stats, grDevices
Imports methods, circlize (>= 0.3.4), GetoptLong, colorspace, RColorBrewer, dendextend (>= 1.0.1), GlobalOptions (>= 0.0.10)
Suggests testthat (>= 0.3), knitr, markdown, cluster, MASS, pvclust, dendsort, HilbertCurve, Cairo, png, jpeg, tiff, fastcluster
VignetteBuilder knitr
Description Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential structures. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports self-defined annotation graphics.

biocViews Software, Visualization, Sequencing
URL https://github.com/jokergoo/ComplexHeatmap
License GPL (>= 2)
Repository Bioconductor
Date/Publication 2016-10-14 00:00:00
NeedsCompilation no

R topics documented:

ComplexHeatmap-package 4
+.AdditiveUnit .. 5
AdditiveUnit ... 6
AdditiveUnit-class 6
add_heatmap-dispatch 7
add_heatmap-Heatmap-method 7
add_heatmap-HeatmapAnnotation-method 8
add_heatmap-HeatmapList-method 9
annotation_legend_size-HeatmapList-method 10
R topics documented:

anno_barplot .. 11
anno_boxplot .. 12
anno_density ... 13
anno_histogram 14
anno_link .. 15
anno_oncoprint_barplot 16
anno_points .. 16
anno_text ... 17
ColorMapping .. 18
ColorMapping-class 19
color_mapping_legend-ColorMapping-method 20
columnAnnotation 22
column_anno_barplot 22
column_anno_boxplot 23
column_anno_density 24
column_anno_histogram 24
column_anno_link 25
column_anno_points 26
column_anno_text 26
column_dend-dispatch 27
column_dend-Heatmap-method 27
column_dend-HeatmapList-method 28
column_order-dispatch 29
column_order-Heatmap-method 29
column_order-HeatmapList-method 30
component_height-dispatch 30
component_height-Heatmap-method 31
component_height-HeatmapList-method 32
component_width-dispatch 32
component_width-Heatmap-method 33
component_width-HeatmapList-method 34
decorate_annotation 34
decorate_column_dend 35
decorate_column_names 36
decorate_column_title 36
decorate_dend ... 37
decorate_dimnames 38
decorate_heatmap_body 39
decorate_row_dend 40
decorate_row_names 41
decorate_row_title 41
decorate_title .. 42
densityHeatmap 43
dist2 ... 45
draw-dispatch .. 46
draw-Heatmap-method 46
draw-HeatmapAnnotation-method 47
draw-HeatmapList-method 48
draw-SingleAnnotation-method 50
draw_abbreviation-Heatmap-method 51
draw_abbreviation-HeatmapList-method 52
draw_dend-Heatmap-method 53
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw_dimnames-Heatmap-method</td>
<td>54</td>
</tr>
<tr>
<td>draw_heatmap_body-Heatmap-method</td>
<td>55</td>
</tr>
<tr>
<td>draw_heatmap_legend-HeatmapList-method</td>
<td>56</td>
</tr>
<tr>
<td>draw_heatmap_list-HeatmapList-method</td>
<td>56</td>
</tr>
<tr>
<td>draw_title-dispatch</td>
<td>57</td>
</tr>
<tr>
<td>draw_title-Heatmap-method</td>
<td>58</td>
</tr>
<tr>
<td>draw_title-HeatmapList-method</td>
<td>59</td>
</tr>
<tr>
<td>enhanced_basicplot</td>
<td>59</td>
</tr>
<tr>
<td>get_color_mapping_list-HeatmapAnnotation-method</td>
<td>61</td>
</tr>
<tr>
<td>get_color_mapping_param_list-HeatmapAnnotation-method</td>
<td>61</td>
</tr>
<tr>
<td>grid.dendrogram</td>
<td>62</td>
</tr>
<tr>
<td>Heatmap</td>
<td>63</td>
</tr>
<tr>
<td>Heatmap-class</td>
<td>69</td>
</tr>
<tr>
<td>HeatmapAnnotation</td>
<td>71</td>
</tr>
<tr>
<td>HeatmapAnnotation-class</td>
<td>73</td>
</tr>
<tr>
<td>HeatmapList</td>
<td>73</td>
</tr>
<tr>
<td>HeatmapList-class</td>
<td>74</td>
</tr>
<tr>
<td>heatmap_legend_size-HeatmapList-method</td>
<td>76</td>
</tr>
<tr>
<td>ht_global_opt</td>
<td>76</td>
</tr>
<tr>
<td>is.abs_unit</td>
<td>78</td>
</tr>
<tr>
<td>make_column_cluster-Heatmap-method</td>
<td>80</td>
</tr>
<tr>
<td>make_layout-dispatch</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-Heatmap-method</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-HeatmapList-method</td>
<td>82</td>
</tr>
<tr>
<td>make_row_cluster-Heatmap-method</td>
<td>84</td>
</tr>
<tr>
<td>map_to_colors-ColorMapping-method</td>
<td>85</td>
</tr>
<tr>
<td>max_text_height</td>
<td>86</td>
</tr>
<tr>
<td>max_text_width</td>
<td>87</td>
</tr>
<tr>
<td>oncoPrint</td>
<td>88</td>
</tr>
<tr>
<td>plotDataFrame</td>
<td>89</td>
</tr>
<tr>
<td>prepare-Heatmap-method</td>
<td>91</td>
</tr>
<tr>
<td>rowAnnotation</td>
<td>92</td>
</tr>
<tr>
<td>row_anno_barplot</td>
<td>92</td>
</tr>
<tr>
<td>row_anno_boxplot</td>
<td>93</td>
</tr>
<tr>
<td>row_anno_density</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_histogram</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_link</td>
<td>95</td>
</tr>
<tr>
<td>row_anno_points</td>
<td>96</td>
</tr>
<tr>
<td>row_anno_text</td>
<td>96</td>
</tr>
<tr>
<td>row_dend-dispatch</td>
<td>97</td>
</tr>
<tr>
<td>row_dend-Heatmap-method</td>
<td>97</td>
</tr>
<tr>
<td>row_dend-HeatmapList-method</td>
<td>98</td>
</tr>
<tr>
<td>row_order-dispatch</td>
<td>99</td>
</tr>
<tr>
<td>row_order-Heatmap-method</td>
<td>99</td>
</tr>
<tr>
<td>row_order-HeatmapList-method</td>
<td>100</td>
</tr>
<tr>
<td>selectArea</td>
<td>100</td>
</tr>
<tr>
<td>set_component_height-Heatmap-method</td>
<td>101</td>
</tr>
<tr>
<td>show-ColorMapping-method</td>
<td>102</td>
</tr>
<tr>
<td>show-dispatch</td>
<td>102</td>
</tr>
<tr>
<td>show-Heatmap-method</td>
<td>103</td>
</tr>
<tr>
<td>show-HeatmapAnnotation-method</td>
<td>104</td>
</tr>
</tbody>
</table>
Making complex heatmap

Description

Making complex heatmap

Details

This package aims to provide a simple and flexible way to arrange multiple heatmaps as well as self-defining annotation graphics.

The package is implemented in an object-oriented way. Components of heatmap lists are abstracted into several classes.

Heatmap-class: a single heatmap containing heatmap body, row/column names, titles, dendrograms and column annotations.

HeatmapList-class: a list of heatmaps and row annotations.

HeatmapAnnotation-class: a list of row annotations or column annotations.

There are also several internal classes:

SingleAnnotation-class: a single row annotation or column annotation.

ColorMapping-class: mapping from values to colors.

For plotting one single heatmap, please go to the documentation page of Heatmap. For plotting multiple heatmaps, please go to HeatmapList-class and +.AdditiveUnit.

The vignette provides detailed explanation of how to use this package.

Examples

```r
# There is no example
NULL
```
Description
Add heatmaps or row annotations to a heatmap list

Usage
S3 method for class 'AdditiveUnit'
`x + y`

Arguments

- `x`
 a `Heatmap-class` object, a `HeatmapAnnotation-class` object or a `HeatmapList-class` object.

- `y`
 a `Heatmap-class` object, a `HeatmapAnnotation-class` object or a `HeatmapList-class` object.

Details
It is only a helper function. It actually calls `add_heatmap,Heatmap-method`, `add_heatmap,HeatmapList-method` or `add_heatmap,HeatmapAnnotation-method` depending on the class of the input objects.

The `HeatmapAnnotation-class` object to be added should only be row annotations.

Value
A `HeatmapList-class` object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = rowAnnotation(points = row_annos_points(1:12))
ht + ha
ht_list + ha
ha + ha + ht
```
AdditiveUnit-class

Description
Constructor method for AdditiveUnit class

Usage
AdditiveUnit(...)

Arguments
... black hole arguments.

Details
This method is not used in the package.

Value
No value is returned.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
no example for this function
NULL

AdditiveUnit-class

Description
An internal class

Details
This class is a super class for Heatmap-class, HeatmapList-class and HeatmapAnnotation-class classes. It is only designed for a generic method so that above three classes can be appended to each other.

Examples
no example
NULL
add_heatmap-dispatch

Method dispatch page for add_heatmap

Description
Method dispatch page for add_heatmap.

Dispatch
add_heatmap can be dispatched on following classes:

• add_heatmap, HeatmapAnnotation-method, HeatmapAnnotation-class class method
• add_heatmap, HeatmapList-method, HeatmapList-class class method
• add_heatmap, Heatmap-method, Heatmap-class class method

Examples
no example
NULL

add_heatmap-Heatmap-method
Add heatmaps or row annotations as a heatmap list

Description
Add heatmaps or row annotations as a heatmap list

Usage
S4 method for signature 'Heatmap'
add_heatmap(object, x)

Arguments

object a Heatmap-class object.

x a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details
There is a shortcut function +.AdditiveUnit.

Value
A HeatmapList-class object.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
add_heatmap(ht, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
add_heatmap(ht, ha)

Description
Add row annotations or heatmaps as a heatmap list

Value
A HeatmapList-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>
Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
                        which = "row")
add_heatmap(ha, ht)
```
add_heatmap(ht_list, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
add_heatmap(ht_list, ha)

Description

Size of the annotation legend viewport

Usage

```r
## S4 method for signature 'HeatmapList'
annotation_legend_size(object, legend_list = list(), ...)
```

Arguments

- **object**: a `HeatmapList-class` object.
- **legend_list**: a list of self-defined legend, should be wrapped into `grob` objects.
- **...**: graphic parameters passed to `color_mapping_legend,ColorMapping-method`

Details

Legends for all heatmaps or legends for all annotations will be put in one viewport. This function calculates the size of such viewport. Note graphic parameters for legends will affect the size.

This function is only for internal use.

Value

A `unit` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
anno_barplot

Using barplot as annotation

Description

Using barplot as annotation

Usage

anno_barplot(x, baseline = "min", which = c("column", "row"), border = TRUE, bar_width = 0.6, gp = gpar(fill = "#CCCCCC"), ylim = NULL, axis = FALSE, axis_side = NULL, axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"), ...)

Arguments

x a vector of numeric values. If the value is a matrix, columns of the matrix will be represented as stacked barplots. Note for stacked barplots, each row in the matrix should only contain values with same sign (either all positive or all negative).
baseline baseline for bars. The value should be "min" or "max", or a numeric value. It is enforced to be zero for stacked barplots.
which is the annotation a column annotation or a row annotation?
border whether show border of the annotation component
bar_width relative width of the bars, should less than one
gp graphic parameters. If it is the stacked barplots, the length of the graphic parameter should be same as the number of stacks.
ylim data ranges.
axis whether add axis
axis_side if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
gp graphic parameters for axis
axis_direction if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?

Value

A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

f = anno_barplot(rnorm(10))
grid.newpage(); f(1:10)

f = anno_barplot(rnorm(10), which = "row")
grid.newpage(); f(1:10)
anno_boxplot

Description

Using boxplot as annotation

Usage

anno_boxplot(x, which = c("column", "row"), border = TRUE,
 gp = gpar(fill = "#CCCCCC", ylim = NULL, outline = TRUE,
 pch = 16, size = unit(2, "mm"), axis = FALSE, axis_side = NULL,
 axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"))

Arguments

x
a matrix or a list. If x is a matrix and if which is column, statistics for boxplot is calculated by columns, if which is row, the calculation is by rows.
which
is the annotation a column annotation or a row annotation?
border
whether show border of the annotation component
gp
graphic parameters
ylim
data ranges.
outline
whether draw outliers
pch
point type
size
point size
axis
whether add axis
axis_side
if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
axis_gp
graphic parameters for axis
axis_direction
if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(32), nrow = 4)
f = anno_boxplot(mat)
grid.newpage(); f(1:8)
```

```r
f = anno_boxplot(mat, which = "row")
grid.newpage(); f(1:4)
```
anno_density

\begin{verbatim}
lt = lapply(1:4, function(i) rnorm(8))
f = anno_boxplot(lt)
grid.newpage(); f(1:4)
\end{verbatim}

Using kernel density as annotation

Description

Using kernel density as annotation

Usage

```
anno_density(x, which = c("column", "row"), gp = gpar(fill = "CCCCCC"),
type = c("lines", "violin", "heatmap"), ...)
```

Arguments

- `x` a matrix or a list. If `x` is a matrix and if `which` is `column`, statistics for density is calculated by columns, if `which` is `row`, the calculation is by rows.
- `which` is the annotation a column annotation or a row annotation?
- `gp` graphic parameters. Note it is ignored if `type` equals to `heatmap`.
- `type` which type of graphics is used to represent density distribution.
- `...` pass to `density`

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
mat = matrix(rnorm(32), nrow = 4)
f = anno_density(mat)
grid.newpage(); f(1:8)

f = anno_density(mat, which = "row", type = "violin")
grid.newpage(); f(1:4)

lt = lapply(1:4, function(i) rnorm(8))
f = anno_density(lt, type = "heatmap")
grid.newpage(); f(1:4)
```
anno_histogram

Using histogram as annotation

Description

Using histogram as annotation

Usage

`anno_histogram(x, which = c("column", "row"), gp = gpar(fill = "#CCCCCC"), ...)`

Arguments

- `x`: a matrix or a list. If `x` is a matrix and if `which` is `column`, statistics for histogram is calculated by columns, if `which` is `row`, the calculation is by rows.
- `which`: is the annotation a column annotation or a row annotation?
- `gp`: graphic parameters
- `...`: pass to `hist`

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(32), nrow = 4)
f = anno_histogram(mat)
grid.newpage(); f(1:8)

f = anno_histogram(mat, which = "row")
grid.newpage(); f(1:4)

tl = lapply(1:4, function(i) rnorm(8))
f = anno_histogram(lt)
grid.newpage(); f(1:4)
```
anno_link

Link annotation with labels

Description

Link annotation with labels

Usage

anno_link(at, labels, which = c("column", "row"), side = ifelse(which == "column", "top", "right"),
 lines_gp = gpar(), labels_gp = gpar(), padding = 0.25, link_width = NULL)

Arguments

- **at**: numeric index in the original matrix
- **labels**: corresponding labels
- **which**: column annotation or row annotation
- **side**: side of the labels. If it is a column annotation, permitted values are "top" and "bottom"; If it is a row annotation, permitted values are "left" and "right".
- **lines_gp**: graphic settings for the segments
- **labels_gp**: graphic settings for the labels
- **padding**: padding between labels if they are attached to each other
- **link_width**: width of the segments.

Details

Sometimes there are many rows or columns in the heatmap and we want to mark some of the rows. This annotation function is used to mark these rows and connect labels and corresponding rows with links.

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(10000), nr = 1000)
labels = sample(letters, 20, replace = TRUE)
Heatmap(mat, show_row_dend = FALSE, show_column_dend = FALSE) +
rowAnnotation(link = row_anno_link(at = sample(1000, 20), labels = labels),
              width = unit(1, "cm") + max_text_width(labels))
```
anno_oncoprint_barplot

Column barplot annotation for oncoPrint

Description

Column barplot annotation for oncoPrint

Usage

anno_oncoprint_barplot()

Details

This function is only used for column annotation

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

anno_points

Using points as annotation

Description

Using points as annotation

Usage

anno_points(x, which = c("column", "row"), border = TRUE, gp = gpar(), pch = 16, size = unit(2, "mm"), ylim = NULL, axis = FALSE, axis_side = NULL, axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"), ...)

Arguments

- `x` a vector of numeric values.
- `which` is the annotation a column annotation or a row annotation?
- `border` whether show border of the annotation component
- `gp` graphic parameters.
- `pch` point type.
- `size` point size.
- `ylim` data ranges.
anno_text

axis
whether add axis.

axis_side
if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".

axis_gp
graphic parameters for axis

axis_direction
if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?

... for future use.

Value
A graphic function which can be set in HeatmapAnnotation constructor method.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

f = anno_points(rnorm(10))
ggrid.newpage(); f(1:10)

anno_text

Using text as annotation

Description
Using text as annotation

Usage

anno_text(x, which = c("column", "row"), gp = gpar(), rot = 0,
 just = NULL, offset = unit(0.5, "npc"))

Arguments

x
a vector of text

which
is the annotation a column annotation or a row annotation?

gp
graphic parameters.

rot
rotation of text

just
justification of text, pass to grid.text

offset
if it is a row annotation, offset corresponds to the x-coordinates of text. and if it is a column annotation, offset corresponds to the y-coordinates of text. The value should be a unit object.

Value
A graphic function which can be set in HeatmapAnnotation constructor method.
Examples

```r
mat = matrix(rnorm(100), 10)
colnames(mat) = letters[1:10]
rownames(mat) = LETTERS[1:10]
long_cn = do.call("paste0", rep(list(colnames(mat)), 4)) # just to construct long text
ha_rot_cn = HeatmapAnnotation(text = anno_text(long_cn, rot = 45, offset = unit(5, "mm")))
Heatmap(mat, name = "foo", top_annotation = ha_rot_cn, top_annotation_height = unit(1.2, "cm"))
```

ColorMapping

Constructor methods for ColorMapping class

Description

Constructor methods for ColorMapping class

Usage

```r
ColorMapping(name, colors = NULL, levels = NULL,
col_fun = NULL, breaks = NULL, na_col = "#FFFFFF")
```

Arguments

- `name` name for this color mapping. The name is automatically generated if it is not specified.
- `colors` discrete colors.
- `levels` levels that correspond to `colors`. If `colors` is name indexed, `levels` can be ignored.
- `col_fun` color mapping function that maps continuous values to colors.
- `breaks` breaks for the continuous color mapping. If `col_fun` is generated by `colorRamp2`, `breaks` can be ignored.
- `na_col` colors for `NA` values.

Details

`colors` and `levels` are used for discrete color mapping, `col_fun` and `breaks` are used for continuous color mapping.

Value

A `ColorMapping-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))

ColorMapping-class
Class to map values to colors

Description

Class to map values to colors

Details

The ColorMapping-class handles color mapping with both discrete values and continuous values. Discrete values are mapped by setting a vector of colors and continuous values are mapped by setting a color mapping function.

Methods

The ColorMapping-class provides following methods:

- *ColorMapping*: constructor methods.
- *map_to_colors,ColorMapping-method*: mapping values to colors.
- *color_mapping_legend,ColorMapping-method*: draw legend or get legend as a grob object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

for examples, please go to `ColorMapping` method page
NULL
Description

Draw legend based on color mapping

Usage

```r
## S4 method for signature 'ColorMapping'

color_mapping_legend(object, ..., 
plot = TRUE, 
title = object@name, 
title_gp = gpar(fontsize = 10, fontface = "bold"),
title_position = c("topleft", "topcenter", "leftcenter", "lefttop"),
color_bar = c("discrete", "continuous"),
grid_height = unit(4, "mm"),
grid_width = unit(4, "mm"),
grid_border = NULL,
at = object@levels,
labels = at,
labels_gp = gpar(fontsize = 10),
nrow = NULL,
col = 1,
legend_height = NULL, legend_width = NULL,
legend_direction = c("vertical", "horizontal"),
param = NULL)
```

Arguments

- `object` - a `ColorMapping-class` object.
- `plot` - whether to plot or just return the size of the legend viewport.
- `title` - title of the legend, by default it is the name of the legend
- `title_gp` - graphical parameters for legend title
- `title_position` - position of the title
- `color_bar` - if the mapping is continuous, whether show the legend as discrete color bar or continuous color bar
- `grid_height` - height of each legend grid.
- `grid_width` - width of each legend grid.
- `grid_border` - color for legend grid borders.
- `at` - break values of the legend
- `labels` - labels corresponding to break values
- `labels_gp` - graphical parameters for legend labels
- `nrow` - if there are too many legend grids, they can be put as an array, this controls number of rows
ncol if there are too many legend grids, they can be put as an array, this controls number of columns

legend_height height of the legend, only works when color_bar is continuous and direction is vertical

legend_width width of the legend, only works when color_bar is continuous and direction is horizontal

legend_direction when color_bar is continuous, should the legend be vertical or horizontal?

param will be parsed if the parameters are specified as a list

... pass to viewport.

Details

A viewport is created which contains a legend title, legend grids and corresponding labels.
This function will be improved in the future to support more types of legends.

Value

A grob object which contains the legend

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))
grid.newpage()
color_mapping_legend(cm)

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))
grid.newpage()
color_mapping_legend(cm)

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
grid.newpage()
color_mapping_legend(cm, title_gp = gpar(fontsize = 16))
Description

Construct column annotations

Usage

columnAnnotation(...)

Arguments

... pass to HeatmapAnnotation

Details

The function is identical to

HeatmapAnnotation(..., which = "column")

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

dl = data.frame(type = c("a", "a", "a", "b", "b", "b"))
hl = rowAnnotation(df = dl)

column_anno_barplot

Description

Column annotation which is represented as barplots

Usage

column_anno_barplot(...)
Description
Column annotation which is represented as boxplots

Usage
column_anno_boxplot(...)

Arguments
... pass to anno_boxplot

Details
A wrapper of anno_boxplot with pre-defined which to column.

Value
See help page of anno_boxplot

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
There is no example
NULL
column_anno_density
Column annotation which is represented as density plot

Description

Column annotation which is represented as density plot

Usage

```r
column_anno_density(...)```

**Arguments**

...  pass to `anno_density`

**Details**

A wrapper of `anno_density` with pre-defined which to column.

**Value**

See help page of `anno_density`

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL```

column_anno_histogram
Column annotation which is represented as histogram

Description

Column annotation which is represented as histogram

Usage

```r
column_anno_histogram(...)```

**Arguments**

...  pass to `anno_histogram`

**Details**

A wrapper of `anno_histogram` with pre-defined which to column.
**column_anno_link**

**Value**
See help page of `anno_histogram`

**Author(s)**
Zuguang Gu <z.gu@dkfz.de>

**Examples**
```r
There is no example
NULL
```

---

| column_anno_link | Column annotation which is represented as links |

**Description**
Column annotation which is represented as links

**Usage**
`column_anno_link(...)`

**Arguments**
```r
... pass to anno_link
```

**Details**
A wrapper of `anno_link` with pre-defined which to column.

**Value**
See help page of `anno_link`

**Author(s)**
Zuguang Gu <z.gu@dkfz.de>

**Examples**
```
There is no example
NULL
```
**column_anno_points**  
*Column annotation which is represented as points*

**Description**

Column annotation which is represented as points

**Usage**

```r
column_anno_points(...)```

Arguments

```r
...  pass to anno_points```

**Details**

A wrapper of `anno_points` with pre-defined `which` to `column`.

**Value**

See help page of `anno_points`

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL```
Value

See help page of \texttt{anno_text}

Author(s)

Zuguang Gu \texttt{<z.gu@dkfz.de>}

Examples

\begin{verbatim}
There is no example
NULL
\end{verbatim}

\section*{Description}

Method dispatch page for \texttt{column_dend}.

\section*{Dispatch}

\texttt{column_dend} can be dispatched on following classes:

\begin{itemize}
 \item \texttt{column_dend,HeatmapList-method,HeatmapList-class} class method
 \item \texttt{column_dend,Heatmap-method,Heatmap-class} class method
\end{itemize}

Examples

\begin{verbatim}
no example
NULL
\end{verbatim}

\section*{column_dend-Heatmap-method}

\textit{Get column dendrograms from a heatmap}

\section*{Description}

Get column dendrograms from a heatmap

\section*{Usage}

\begin{verbatim}
S4 method for signature 'Heatmap'
column_dend(object)
\end{verbatim}

\section*{Arguments}

\begin{verbatim}
object \hspace{1cm} \texttt{a Heatmap-class object}
\end{verbatim}
column_dend-HeatmapList-method

Value
A dendrogram object

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
h = Heatmap(mat)
column_dend(h)
h = Heatmap(mat, km = 2)
column_dend(h)

column_dend-HeatmapList-method

Get column dendrograms from a heatmap list

Description
Get column dendrograms from a heatmap list

Usage
S4 method for signature 'HeatmapList'
column_dend(object)

Arguments
object a HeatmapList-class object

Value
A list of dendrograms for which dendrogram corresponds to each matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
h_list = Heatmap(mat) + Heatmap(mat)
column_dend(h_list)
h_list = Heatmap(mat, km = 2) + Heatmap(mat)
column_dend(h_list)
Method dispatch page for column_order

Description
Method dispatch page for column_order.

Dispatch
column_order can be dispatched on following classes:
- column_order,HeatmapList-method,HeatmapList-class class method
- column_order,Heatmap-method,Heatmap-class class method

Examples
no example
NULL

Get column order from a heatmap list

Description
Get column order from a heatmap list

Usage
S4 method for signature 'Heatmap'
column_order(object)

Arguments
object a Heatmap-class object

Value
A vector containing column orders

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
column_order(ht)
ht = Heatmap(mat, km = 2)
column_order(ht)
column_order-HeatmapList-method

Get column order from a heatmap list

Description
Get column order from a heatmap list

Usage
S4 method for signature 'HeatmapList'
column_order(object)

Arguments
object a HeatmapList-class object

Value
A list contains column orders which correspond every matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
column_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
column_order(ht_list)

component_height-dispatch

Method dispatch page for component_height

Description
Method dispatch page for component_height.

Dispatch
component_height can be dispatched on following classes:

- component_height,HeatmapList-method,HeatmapList-class class method
- component_height,Heatmap-method,Heatmap-class class method
component_height-Heatmap-method

Examples

no example
NULL

Description

Height of each heatmap component

Usage

S4 method for signature 'Heatmap'
component_height(object, k = 1:9)

Arguments

object a Heatmap-class object.
k which component in the heatmap, see Heatmap-class.

Details

This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
component_height-HeatmapList-method

Height of each heatmap list component

Description

Height of each heatmap list component

Usage

```r
## S4 method for signature 'HeatmapList'
component_height(object, k = 1:7)
```

Arguments

- `object`: a `HeatmapList-class` object.
- `k`: which component in the heatmap list, see `HeatmapList-class`.

Value

A unit object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method

component_width-dispatch

Method dispatch page for component_width

Description

Method dispatch page for component_width.

Dispatch

component_width can be dispatched on following classes:

- `component_width,HeatmapList-method,HeatmapList-class` class method
- `component_width,Heatmap-method,Heatmap-class` class method

Examples

no example
NULL
component_width-Heatmap-method

Width of each heatmap component

Description

Width of each heatmap component

Usage

```r
## S4 method for signature 'Heatmap'
component_width(object, k = 1:7)
```

Arguments

- **object**: a `Heatmap-class` object.
- **k**: which component in the heatmap, see `Heatmap-class`.

Details

This function is only for internal use.

Value

A `unit` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# no example for this internal method
```
component_width-HeatmapList-method

Width of each heatmap list component

decorate_annotation

Description

Decorate the heatmap annotation

Usage

decorate_annotation(annotation, code, slice)

Arguments

annotation name of the annotation
code code that adds graphics in the selected heatmap body
slice index of row slices in the heatmap
There is a viewport for every column annotation and row annotation. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

The function returns no value.

Zuguang Gu <z.gu@dkfz.de>

```
set.seed(123)
ha1 = HeatmapAnnotation(df = data.frame(type = rep(letters[1:2], 5)))
ha2 = rowAnnotation(point = anno_points(runif(10), which = "row"))
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2,
    top_annotation = ha1) + ha2
decorate_annotation("type", {
    grid.circle(x = unit(c(0.2, 0.4, 0.6, 0.8), "npc"),
        gp = gpar(fill = "#FF000080"))
  })
decorate_annotation("point", {
    grid.rect(gp = gpar(fill = "#FF000080"))
  }, slice = 2)
```
decorate_column_names
Decorate heatmap column names

Description
Decorate heatmap column names

Usage
`decorate_column_names(...)`

Arguments
`...`
pass to `decorate_dimnames`

Details
This is a helper function which pre-defined which argument in `decorate_dimnames`.

Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
No example for this function
`NULL`

decorate_column_title
Decorate heatmap column title

Description
Decorate heatmap column title

Usage
`decorate_column_title(...)`

Arguments
`...`
pass to `decorate_title`
Details

This is a helper function which pre-defined which argument in decorate_title.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL

decorate_dend

Decorate the heatmap dendrogram

Description

Decorate the heatmap dendrogram

Usage

decorate_dend(heatmap, code, slice = 1, which = c("column", "row"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>heatmap</td>
<td>name of the heatmap</td>
</tr>
<tr>
<td>code</td>
<td>code that adds graphics in the selected heatmap body</td>
</tr>
<tr>
<td>slice</td>
<td>index of row slices in the heatmap</td>
</tr>
<tr>
<td>which</td>
<td>on rows or on columns?</td>
</tr>
</tbody>
</table>

Details

There is a viewport for each dendrogram in the heatmap. This function constructs the name of the viewport, goes to the viewport by **seekViewport** and applies code to that viewport.

If you know the number of leaves in the dendrogram, it is simple to calculate the position of every leave in the dendrogram. E.g., for the column dendrogram, the i^th leave is located at:

```r
# assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
default(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_dend("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

decorate_dimnames

Decorate the heatmap dimension names

Description

Decorate the heatmap dimension names

Usage

```r
decorate_dimnames(heatmap, code, slice = 1, which = c("column", "row"))
```

Arguments

- `heatmap` name of the heatmap
- `code` code that adds graphics in the selected heatmap body
- `slice` index of row slices in the heatmap
- `which` on rows or on columns?

Details

There is a viewport for row names and column names in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the dimensions of the matrix, it is simple to calculate the position of every row name or column name in the heatmap. E.g., for the column column, the i\(^{th}\) name is located at:

```r
# assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
set.seed(123)
mat = matrix(rnorm(100), 10)
rownames(mat) = letters[1:10]
colnames(mat) = LETTERS[1:10]
Heatmap(mat, name = "mat", km = 2)

decorate_dimnames("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

Description

Decorate the heatmap body

Usage

```r
decorate_heatmap_body(heatmap, code, slice = 1)
```

Arguments

- `heatmap`: name of the heatmap which is set as name option in `Heatmap` function
- `code`: code that adds graphics in the selected heatmap body
- `slice`: index of row slices in the heatmap if it is split by rows

Details

There is a viewport for each row slice in each heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the number of rows and columns for that row slice, it is simple to calculate the position of every small grid in the row slice. E.g., the position for the grid in i'th row and j'th column is:

```r
# assume nc is the number of columns
# and nr is the number of rows in that row slice
unit((i-0.5)/nc, "npc")
unit((j-0.5)/nr, "npc")
```

the width is
unit(1/nc, "npc")

the height is
unit(1/nr, "npc")

Value

This function returns no value.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat")
decorate_heatmap_body("mat", {
 grid.circle(gp = gpar(fill = "#FF000080"))
})

decorate_row_dend Decorate heatmap dendrogram on rows

Description
Decorate heatmap dendrogram on rows

Usage
decorate_row_dend(...)

Arguments
...

Details
This is a helper function which pre-defined which argument in `decorate_dend`.

Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
No example for this function
NULL
decorate_row_names

Decorate heatmap row names

Description

Decorate heatmap row names

Usage

decorate_row_names(...)

Arguments

... pass to decorate_dimnames

Details

This is a helper function which pre-defined which argument in decorate_dimnames.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL

decorate_row_title

Decorate heatmap row title

Description

Decorate heatmap row title

Usage

decorate_row_title(...)

Arguments

... pass to decorate_title

Details

This is a helper function which pre-defined which argument in decorate_title.
Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
No example for this function
NULL

decorate_title

Decorate the heatmap title

Description
Decorate the heatmap title

Usage

```r
decorate_title(heatmap, code, slice = 1, which = c("column", "row"))
```

Arguments

- `heatmap` name of the heatmap
- `code` code that adds graphics in the selected heatmap body
- `slice` index of row slices in the heatmap
- `which` on rows or on columns?

Details
There is a viewport for row titles and column title in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_title("mat", {
    grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```
densityHeatmap

Use colors to represent density distribution

Description

Use colors to represent density distribution

Usage

densityHeatmap(data,
 col = rev(brewer.pal(11, "Spectral")),
 color_space = "LAB",
 anno = NULL,
 ylab = deparse(substitute(data)),
 title = paste0("Density heatmap of ", deparse(substitute(data))),
 range = c(-Inf, Inf),
 cluster_columns = FALSE,
 clustering_distance_columns = "euclidean",
 clustering_method_columns = "complete",
 column_dend_side = "top",
 column_dend_height = unit(10, "mm"),
 show_column_dend = FALSE,
 column_dend_gp = gpar(),
 column_dend_reorder = TRUE,
 column_names_side = c("bottom", "top"),
 show_column_names = TRUE,
 column_names_max_height = unit(4, "cm"),
 column_names_gp = gpar(fontsize = 12),
 column_order = NULL,
 ...
)

Arguments

data # a matrix or a list. If it is a matrix, density will be calculated by columns.
col # a list of colors that density values are mapped to.
color_space # the color space in which colors are interpolated. Pass to colorRamp2.
anno # annotation for the matrix columns or the list. The value should be a vector or a data frame and colors for annotations are randomly assigned. If you want to customize the annotation colors, use a HeatmapAnnotation-class object directly.
ylab # label on y-axis in the plot
title # title of the plot
range # ranges on the y-axis. By default the range is between 1th quantile and 99th quantile of the data.
cluster_columns # whether cluster columns (here cluster by density distributions)
clustering_distance_columns # pass to Heatmap
densityHeatmap

clustering_method_columns
 pass to Heatmap
column_dend_side
 pass to Heatmap
column_dend_height
 pass to Heatmap
show_column_dend
 pass to Heatmap
column_dend_gp
 pass to Heatmap
column_dend_reorder
 pass to Heatmap
column_names_side
 pass to Heatmap
show_column_names
 pass to Heatmap
column_names_max_height
 pass to Heatmap
column_names_gp
 pass to Heatmap
column_order
 order of columns
 pass to draw,HeatmapList-method

Details

To visualize data distribution in a matrix or in a list, sometimes we use boxplot or beanplot. Here we use colors to map the density values and visualize distribution of values in each column (or each vector in the list) through a heatmap. It is useful if you have huge number of columns in data to visualize.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
densityHeatmap(matrix, anno = rep(c("A", "B"), each = 5))
densityHeatmap(matrix, col = c("white", "red"), anno = rep(c("A", "B"), each = 5))

ha = HeatmapAnnotation(points = anno_points(runif(10)),
  anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, anno = ha)

lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)
```
dist2

Calculate pairwise distance from a matrix

Description

Calculate pairwise distance from a matrix

Usage

dist2(mat, pairwise_fun = function(x, y) sqrt(sum((x - y)^2)), ...)

Arguments

mat
a matrix. The distance is calculated by rows.

pairwise_fun
a function which calculates distance between two vectors.

... pass to as.dist.

Details

You can construct any type of distance measurements by defining a pair-wise distance function. The function is implemented by two nested for loops, so the efficiency may not be so good.

Value

A dist object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(40), nr = 4, ncol = 10)
rownames(mat) = letters[1:4]
colnames(mat) = letters[1:10]

d2 = dist2(mat)
d2 = dist2(mat, pairwise_fun = function(x, y) 1 - cor(x, y))
distance only calculated within 10 and 90 quantile of each vector
d2 = dist2(mat, pairwise_fun = function(x, y) {
 q1 = quantile(x, c(0.1, 0.9))
 q2 = quantile(y, c(0.1, 0.9))
 sqrt(sum((x[l] - y[l])^2))
})
draw-dispatch

Method dispatch page for draw

Description

Method dispatch page for draw.

Dispatch

draw can be dispatched on following classes:

- `draw,HeatmapAnnotation-method, HeatmapAnnotation-class` class method
- `draw,SingleAnnotation-method, SingleAnnotation-class` class method
- `draw,HeatmapList-method, HeatmapList-class` class method
- `draw,Heatmap-method, Heatmap-class` class method

Examples

no example
NULL

draw-Heatmap-method

Draw a single heatmap

Description

Draw a single heatmap

Usage

```r
## S4 method for signature 'Heatmap'
draw(object, internal = FALSE, test = FALSE, ...)
```

Arguments

- `object` a `Heatmap-class` object.
- `internal` only used inside the calling of `draw,HeatmapList-method`. Only heatmap without legends will be drawn.
- `test` only for testing
- `...` pass to `draw,HeatmapList-method`

Details

The function creates a `HeatmapList-class` object which only contains a single heatmap and call `draw,HeatmapList-method` to make the final heatmap.
Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
draw(ht, heatmap_legend_side = "left")
```

Description

Draw the heatmap annotations

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
draw(object, index, k = NULL, n = NULL, align_to = "bottom", ...)
```

Arguments

- `object` a `HeatmapAnnotation-class` object.
- `index` a vector of order.
- `k` if row annotation is splitted, the value identifies which row slice.
- `n` total number of row slices.
- `align_to` if the allocated space is more than than the column annotation itself, should the viewport be aligned to the top or bottom?
- `...` pass to `viewport` which contains all annotations.

Details

A viewport is created. Mostly, this method is used inside `draw,HeatmapList-method`.

Value

No value is returned.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

```r
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)
grid.newpage(); draw(ha, 1:6)
grid.newpage(); draw(ha, 6:1)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")),
which = "row")
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(points = anno_points(1:6))
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(histogram = anno_barplot(1:6))
grid.newpage(); draw(ha, 1:6)

mat = matrix(rnorm(36), 6)
ha = HeatmapAnnotation(boxplot = anno_boxplot(mat))
grid.newpage(); draw(ha, 1:6)
```

draw-HeatmapList-method

Draw a list of heatmaps

Description

Draw a list of heatmaps

Usage

```r
## S4 method for signature 'HeatmapList'
draw(object,
padding = unit(c(2, 2, 2, 2), "mm"),
newpage = TRUE,
row_title = character(0),
row_title_side = c("left", "right"),
row_title_gp = gpar(fontsize = 14),
column_title = character(0),
column_title_side = c("top", "bottom"),
column_title_gp = gpar(fontsize = 14),
heatmap_legend_side = c("right", "left", "bottom", "top"),
show_heatmap_legend = TRUE,
heatmap_legend_list = list(),
annotation_legend_side = c("right", "left", "bottom", "top"),
```
show.annotation.legend = TRUE,
annotation.legend.list = list(),
gap = unit(3, "mm"),
main.heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
row.dend.side = c("original", "left", "right"),
row.sub.title.side = c("original", "left", "right"), ...)

Arguments

- **object**: a `HeatmapList-class` object
- **padding**: padding of the plot. Elements correspond to bottom, left, top, right paddings.
- **newpage**: whether create a new page for the graphics.
- **row.title**: title on the row.
- **row.title.side**: will the title be put on the left or right of the heatmap.
- **row.title_gp**: graphic parameters for drawing text.
- **column.title**: title on the column.
- **column.title.side**: will the title be put on the top or bottom of the heatmap.
- **column.title_gp**: graphic parameters for drawing text.
- **heatmap.legend.side**: side of the heatmap legend.
- **show.heatmap.legend**: whether show heatmap legend.
- **heatmap.legend.list**: a list of self-defined legend, should be wrapped into `grob` objects.
- **annotation.legend.side**: side of annotation legend.
- **show.annotation.legend**: whether show annotation legend.
- **annotation.legend.list**: a list of self-defined legend, should be wrapped into `grob` objects.
- **gap**: gap between heatmaps, should be a `unit` object.
- **main.heatmap**: name or index for the main heatmap
- **row.dend.side**: if auto adjust, where to put the row dendrograms for the main heatmap
- **row.sub.title.side**: if auto adjust, where to put sub row titles for the main heatmap
- **...**: pass to `make_layout,HeatmapList-method`

Details

The function first calls `make_layout,HeatmapList-method` to calculate the layout of the heatmap list and the layout of every single heatmap, then makes the plot by re-calling the graphic functions which are already recorded in the layout.

Value

This function returns a list of row dendrograms and column dendrogram.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht_list = ht + ht
draw(ht_list)
draw(ht_list, row_title = "row title", column_title = "column title",
heatmap_legend_side = "top")
```

Description

Draw the single annotation

Usage

```r
## S4 method for signature 'SingleAnnotation'
draw(object, index, k = NULL, n = NULL)
```

Arguments

- `object`: a `SingleAnnotation-class` object.
- `index`: a vector of orders.
- `k`: if row annotation is splitted, the value identifies which row slice. It is only used for the names of the viewport which contains the annotation graphics.
- `n`: total number of row slices.

Details

A viewport is created.

The graphics would be different depending the annotation is a row annotation or a column annotation.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

anno = SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
 col = c("a" = "red", "b" = "blue"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
 col = c("a" = "red", "b" = "blue"), which = "row")
grid.newpage(); draw(anno, 1:5)

anno = SingleAnnotation(value = 1:10)
grid.newpage(); draw(anno, 1:10)

require(circlize)
anno = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
grid.newpage(); draw(anno, 1:10)

anno = SingleAnnotation(fun = anno_points(1:10))
grid.newpage(); draw(anno, 1:10)

draw_annotation-Heatmap-method

Draw column annotations

Description

Draw column annotations

Usage

S4 method for signature 'Heatmap'
draw_annotation(object, which = c("top", "bottom"))

Arguments

object a Heatmap-class object.
which are the annotations put on the top or bottom of the heatmap?

Details

A viewport is created which contains column annotations.

Since the column annotations is a HeatmapAnnotation-class object, the function calls draw,HeatmapAnnotation-method to draw the annotations.

This function is only for internal use.

Value

This function returns no value.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
no example for this internal method
NULL

draw_annotation_legend-HeatmapList-method
Draw legends for all column annotations

Description
Draw legends for all column annotations

Usage
S4 method for signature 'HeatmapList'
draw_annotation_legend(object, legend_list = list(), ...)

Arguments
object a HeatmapList-class object
legend_list a list of self-defined legend, should be wrapped into grob objects.
... graphic parameters passed to color_mapping_legend,ColorMapping-method.

Details
A viewport is created which contains annotation legends.
This function is only for internal use.

Value
This function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
no example for this internal method
NULL
Description

Draw dendrogram on row or column

Usage

```r
## S4 method for signature 'Heatmap'
draw_dend(object, 
    which = c("row", "column"), k = 1, max_height = NULL, ...)
```

Arguments

- `object`: a `Heatmap-class` object.
- `which`: is dendrogram put on the row or on the column of the heatmap?
- `k`: a matrix may be splitted by rows, the value identifies which row-slice.
- `max_height`: maximum height of the dendrograms.
- `...`: pass to `viewport`, basically for defining the position of the viewport.

Details

If the matrix is split into several row slices, a list of dendrograms will be drawn by the heatmap that each dendrogram corresponds to its row slices.

A viewport is created which contains dendrograms.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

- `grid.dendrogram`

Examples

```r
# There is no example
NULL
```
draw_dimnames-Heatmap-method

Draw row names or column names

Description

Draw row names or column names

Usage

```r
## S4 method for signature 'Heatmap'
draw_dimnames(object,
              which = c("row", "column"), k = 1, dimname_padding = unit(0, "mm"), ...)
```

Arguments

- `object`
 a *Heatmap-class* object.
- `which`
 are names put on the row or on the column of the heatmap?
- `k`
 a matrix may be split by rows, the value identifies which row-slice.
- `dimname_padding`
 padding for the row/column names
- `...`
 pass to `viewport`, basically for defining the position of the viewport.

Details

A viewport is created which contains row names or column names.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
Description

Draw the heatmap body

Usage

```r
## S4 method for signature 'Heatmap'
draw_heatmap_body(object, k = 1, ...)
```

Arguments

- `object` a `Heatmap-class` object.
- `k` a matrix may be split by rows, the value identifies which row-slice.
- `...` pass to `viewport`, basically for defining the position of the viewport.

Details

The matrix can be split into several parts by rows if `km` or `split` is specified when initializing the `Heatmap` object. If the matrix is split, there will be gaps between rows to identify different row-slice.

A viewport is created which contains subset rows of the heatmap.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
draw_heatmap_legend-HeatmapList-method

Draw legends for all heatmaps

Description

Draw legends for all heatmaps

Usage

```r
## S4 method for signature 'HeatmapList'
draw_heatmap_legend(object, legend_list = list(), ...)
```

Arguments

- `object`: a `HeatmapList-class` object
- `legend_list`: a list of self-defined legend, should be wrapped into `grob` objects.
- `...`: graphic parameters passed to `color_mapping_legend,ColorMapping-method`.

Details

A viewport is created which contains heatmap legends.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

draw_heatmap_list-HeatmapList-method

Draw the list of heatmaps

Description

Draw the list of heatmaps

Usage

```r
## S4 method for signature 'HeatmapList'
draw_heatmap_list(object)
```
Arguments

- **object** a `HeatmapList-class` object

Details

A viewport is created which contains heatmaps.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

Description

Method dispatch page for `draw_title`.

Dispatch

draw_title can be dispatched on following classes:

- `draw_title,HeatmapList-method,HeatmapList-class` class method
- `draw_title,Heatmap-method,Heatmap-class` class method

Examples

```r
# no example
NULL
```
draw_title-Heatmap-method

Draw heatmap title

Description

Draw heatmap title

Usage

```r
## S4 method for signature 'Heatmap'
draw_title(object,
    which = c("row", "column"), k = 1, ...)
```

Arguments

- `object`: a `Heatmap-class` object.
- `which`: is title put on the row or on the column of the heatmap?
- `k`: a matrix may be split by rows, the value identifies which row-slice.
- `...`: pass to `viewport`, basically for defining the position of the viewport.

Details

A viewport is created which contains heatmap title.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
draw_title-HeatmapList-method

Draw heatmap list title

Description

Draw heatmap list title

Usage

S4 method for signature 'HeatmapList'
draw_title(object,
 which = c("column", "row"))

Arguments

object: a HeatmapList-class object
which: dendrogram on the row or on the column of the heatmap

Details

A viewport is created which contains heatmap list title.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
Usage

enhanced_basicplot(data, ..., ylim = NULL, ylab = deparse(substitute(data)), title = NULL, title_gp = gpar(fontsize = 14), type = c("boxplot", "barplot"), width = 0.8, gp = gpar(), pch = 1, size = unit(2, "mm"), axis_gp = gpar(fontsize = 8), padding = unit(c(2, 18, 2, 2), "mm"), heatmap_legend_list = list())

Arguments

data a matrix, a list or a simple numeric vector. If your data is a data frame please convert it to a matrix in the first place.

... pass to Heatmap

ylim ranges on y axis

ylab label on y axis

title title of the plot

title_gp graphic parameters for the title

type type of the plot

width relative width of the bar or box

gp graphic parameters for the bar or box

pch shape of outlier points in the boxplot

size size of the outlier points in the boxplot

axis_gp graphic parameters for the axis

padding padding of the plot

heatmap_legend_list a list of grob which contains legend. It can be generated by color_mapping_legend, ColorMapping-

Details

This function adds annotations to the barplot or boxplot.

This function is still quite experimental.

Value

No value is returned

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(runif(100), 10)
enhanced_basicplot(mat)
ha = HeatmapAnnotation(char = sample(letters[1:2], 10, replace = TRUE), num = runif(10))
enhanced_basicplot(mat, top_annotation = ha)
enhanced_basicplot(mat, type = "barplot", top_annotation = ha)
Description

Get a list of color mapping objects

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
get_color_mapping_list(object)
```

Arguments

- `object`: a `HeatmapAnnotation-class` object.

Details

Color mapping for visible simple annotations are only returned.

This function is only for internal use.

Value

A list of `ColorMapping-class` objects or an empty list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```

Description

Get a list of color mapping parameters

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
get_color_mapping_param_list(object)
```
Arguments

object a HeatmapAnnotation-class object.

Details

Color mapping parameters for visible simple annotations are only returned. This function is only for internal use.

Value

A list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

grid.dendrogram Draw dendrogram under grid system

Description

Draw dendrogram under grid system

Usage

grid.dendrogram(dend, facing = c("bottom", "top", "left", "right"), max_height = NULL, order = c("normal", "reverse"), ...)

Arguments

dend a dendrogram object.
facing facing of the dendrogram.
max_height maximum height of the dendrogram. It is useful to make dendrograms comparable if you want to plot more than one dendrograms. Height for each dendrogram can be obtained by attr(dend, "height").
order should leaves of dendrogram be put in the normal order (1, ..., n) or reverse order (n, ..., 1)? It may matters for the dendrograms putting on left and right.
... pass to viewport which contains the dendrogram.

Details

The dendrogram can be rendered (e.g. by dendextend package).
A viewport is created which contains the dendrogram.

This function only plots the dendrogram without adding labels. The leaves of the dendrogram locates at unit(c(0.5, 1.5, ...,(n-0.5))/n, "npc").
Heatmap

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
hc = hclust(dist(USArrests[1:5, ]))
dend = as.dendrogram(hc)

grid.newpage()
layout = grid.layout(nrow = 2, ncol = 2)
pushViewport(viewport(layout = layout))
grid.dendrogram(dend, layout.pos.row = 1, layout.pos.col = 1)
grid.dendrogram(dend, facing = "top", layout.pos.row = 1, layout.pos.col = 2)
grid.dendrogram(dend, facing = "top", order = "reverse", layout.pos.row = 2,
                  layout.pos.col = 1)
grid.dendrogram(dend, facing = "left", layout.pos.row = 2, layout.pos.col = 2)
upViewport()
```

Heatmap

Constructor method for Heatmap class

Description

Constructor method for Heatmap class

Usage

```r
Heatmap(matrix, col, name,
    na_col = "grey",
    color_space = "LAB",
    rect_gp = gpar(col = NA),
    cell_fun = function(j, i, x, y, width, height, fill) NULL,
    row_title = character(0),
    row_title_side = c("left", "right"),
    row_title_gp = gpar(fontsize = 14),
    row_title_rot = switch(row_title_side[1], "left" = 90, "right" = 270),
    column_title = character(0),
    column_title_side = c("top", "bottom"),
    column_title_gp = gpar(fontsize = 14),
    column_title_rot = 0,
    cluster_rows = TRUE,
    clustering_distance_rows = "euclidean",
    clustering_method_rows = "complete",
    row_dend_side = c("left", "right"),
    row_dend_width = unit(10, "mm"),
    show_row_dend = TRUE,
    row_dend_reorder = TRUE,
```
row_dend_gp = gpar(),
row_hclust_side = row_dend_side,
row_hclust_width = row_dend_width,
show_row_hclust = show_row_dend,
row_hclust_reorder = row_dend_reorder,
row_hclust_gp = row_dend_gp,
cluster_columns = TRUE,
clustering_distance_columns = "euclidean",
clustering_method_columns = "complete",
column_dend_side = c("top", "bottom"),
column_dend_height = unit(10, "mm"),
show_column_dend = TRUE,
column_dend_gp = gpar(),
column_dend_reorder = TRUE,
column_hclust_side = column_dend_side,
column_hclust_height = column_dend_height,
show_column_hclust = show_column_dend,
column_hclust_gp = column_dend_gp,
column_hclust_reorder = column_dend_reorder,
row_order = NULL,
column_order = NULL,
row_names_side = c("right", "left"),
show_row_names = TRUE,
row_names_max_width = unit(4, "cm"),
row_names_gp = gpar(fontsize = 12),
column_names_side = c("bottom", "top"),
show_column_names = TRUE,
column_names_max_height = unit(4, "cm"),
column_names_gp = gpar(fontsize = 12),
top_annotation = new("HeatmapAnnotation"),
top_annotation_height = top_annotation@size,
bottom_annotation = new("HeatmapAnnotation"),
bottom_annotation_height = bottom_annotation@size,
km = 1,
split = NULL,
gap = unit(1, "mm"),
combined_name_fun = function(x) paste(x, collapse = "/"),
width = NULL,
show_heatmap_legend = TRUE,
heatmap_legend_param = list(title = name, color_bar = "discrete"),
use_raster = FALSE,
raster_device = c("png", "jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF"),
raster_quality = 1,
raster_device_param = list())

Arguments

matrix a matrix. Either numeric or character. If it is a simple vector, it will be converted to a one-column matrix.

col a vector of colors if the color mapping is discrete or a color mapping function if the matrix is continuous numbers (should be generated by colorRamp2. If the matrix is continuous, the value can also be a vector of colors so that colors will
be interpolated. Pass to **ColorMapping**.

name
name of the heatmap. The name is used as the title of the heatmap legend.

na_col
color for NA values.

rect_gp
graphic parameters for drawing rectangles (for heatmap body).

color_space
the color space in which colors are interpolated. Only used if matrix is numeric and col is a vector of colors. Pass to **colorRamp2**.

cell_fun
self-defined function to add graphics on each cell. Seven parameters will be passed into this function: i, j, x, y, width, height, fill which are row index, column index in matrix, coordinate of the middle points in the heatmap body viewport, the width and height of the cell and the filled color. x, y, width and height are all **unit** objects.

row_title
title on row.

row_title_side
will the title be put on the left or right of the heatmap?

row_title_gp
graphic parameters for drawing text.

row_title_rot
rotation of row titles. Only 0, 90, 270 are allowed to set.

column_title
title on column.

column_title_side
will the title be put on the top or bottom of the heatmap?

column_title_gp
graphic parameters for drawing text.

column_title_rot
rotation of column titles. Only 0, 90, 270 are allowed to set.

cluster_rows
If the value is a logical, it means whether make cluster on rows. The value can also be a **hclust** or a **dendrogram** that already contains clustering information. This means you can use any type of clustering methods and render the **dendrogram** object with self-defined graphic settings.

clustering_distance_rows
it can be a pre-defined character which is in ("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "spearman", "kendall"). It can also be a function. If the function has one argument, the input argument should be a matrix and the returned value should be a **dist** object. If the function has two arguments, the input arguments are two vectors and the function calculates distance between these two vectors.

clustering_method_rows
method to make cluster, pass to **hclust**.

row_dend_side
should the row cluster be put on the left or right of the heatmap?

row_dend_width
width of the row cluster, should be a **unit** object.

show_row_dend
whether show row clusters.

row_dend_gp
graphics parameters for drawing lines. If users already provide a **dendrogram** object with edges rendered, this argument will be ignored.

row_dend_reorder
apply reordering on rows. The value can be a logical value or a vector which contains weight which is used to reorder rows

row_hclust_side
deprecated, use **row_dend_side** instead

row_hclust_width
deprecated, use **row_dend_width** instead
show_row_hclust
 deprecated, use show_row_dend instead
row_hclust_gp deprecated, use row_dend_gp instead
row_hclust_reorder deprecated, use row_dend_reorder instead
cluster_columns whether make cluster on columns. Same settings as cluster_rows.
clustering_distance_columns same setting as clustering_distance_rows.
clustering_method_columns method to make cluster, pass to hclust.
column_dend_side should the column cluster be put on the top or bottom of the heatmap?
column_dend_height height of the column cluster, should be a unit object.
show_column_dend whether show column clusters.
column_dend_gp graphic parameters for drawing lines. Same settings as row_dend_gp.
column_dend_reorder apply reordering on columns. The value can be a logical value or a vector which contains weight which is used to reorder columns
column_hclust_side deprecated, use column_dend_side instead
column_hclust_height deprecated, use column_dend_height instead
show_column_hclust deprecated, use show_column_dend instead
column_hclust_gp deprecated, use column_dend_gp instead
column_hclust_reorder deprecated, use column_dend_reorder instead
row_order order of rows. It makes it easy to adjust row order for a list of heatmaps if this heatmap is selected as the main heatmap. Manually setting row order should turn off clustering
column_order order of column. It makes it easy to adjust column order for both matrix and column annotations.
row_names_side should the row names be put on the left or right of the heatmap?
show_row_names whether show row names.
row_names_max_width maximum width of row names viewport. Because some times row names can be very long, it is not reasonable to show them all.
row_names_gp graphic parameters for drawing text.
column_names_side should the column names be put on the top or bottom of the heatmap?
column_names_max_height maximum height of column names viewport.
show_column_names whether show column names.
Heatmap

column_names_gp

graphic parameters for drawing text.

top_annotation

a HeatmapAnnotation object which contains a list of annotations.

top_annotation_height

total height of the column annotations on the top.

bottom_annotation

a HeatmapAnnotation object.

bottom_annotation_height

total height of the column annotations on the bottom.

km

do k-means clustering on rows. If the value is larger than 1, the heatmap will be split by rows according to the k-means clustering. For each row-clusters, hierarchical clustering is still applied with parameters above.

split

a vector or a data frame by which the rows are split. But if cluster_rows is a clustering object, split can be a single number indicating rows are to be split according to the split on the tree.

gap

gap between row-slices if the heatmap is split by rows, should be unit object. If it is a vector, the order corresponds to top to bottom in the heatmap

combined_name_fun

if the heatmap is split by rows, how to make a combined row title for each slice?
The input parameter for this function is a vector which contains level names under each column in split.

width

the width of the single heatmap, should be a fixed unit object. It is used for the layout when the heatmap is appended to a list of heatmaps.

show_heatmap_legend

whether show heatmap legend?

heatmap_legend_param

a list contains parameters for the heatmap legend. See color_mapping_legend,ColorMapping-method for all available parameters.

use_raster

whether render the heatmap body as a raster image. It helps to reduce file size when the matrix is huge.

raster_device

graphic device which is used to generate the raster image

raster_quality

a value set to larger than 1 will improve the quality of the raster image.

raster_device_param

a list of further parameters for the selected graphic device

Details

The initialization function only applies parameter checking and fill values to each slot with proper ones. Then it will be ready for clustering and layout.

Following methods can be applied on the Heatmap-class object:

• show,Heatmap-method: draw a single heatmap with default parameters

• draw,Heatmap-method: draw a single heatmap.

• add_heatmap,Heatmap-method append heatmaps and row annotations to a list of heatmaps.

The constructor function pretends to be a high-level graphic function because the show method of the Heatmap-class object actually plots the graphics.
Value

A `Heatmap-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]
require(circlize)
Heatmap(mat)
Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
Heatmap(mat, name = "test")
Heatmap(mat, column_title = "blablabla")
Heatmap(mat, row_title = "blablabla")
Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, fontface = "bold"))
Heatmap(mat, cluster_rows = FALSE)
Heatmap(mat, clustering_distance_rows = "pearson")
Heatmap(mat, clustering_distance_rows = function(x) dist(x))
Heatmap(mat, clustering_method_rows = "single")
Heatmap(mat, row_dend_side = "right")
Heatmap(mat, row_dend_width = unit(1, "cm"))
Heatmap(mat, row_names_side = "left", row_dend_side = "right",
          column_names_side = "top", column_dend_side = "bottom")
Heatmap(mat, show_row_names = FALSE)

mat2 = mat
rownames(mat2) = NULL
colnames(mat2) = NULL
Heatmap(mat2)

Heatmap(mat, row_names_gp = gpar(fontsize = 20))
Heatmap(mat, km = 2)
Heatmap(mat, split = rep(c("A", "B"), 6))
Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)))
 Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)),
   combined_name_fun = function(x) paste(x, collapse = "\n"))

annotation = HeatmapAnnotation(df = data.frame(type = c(rep("A", 6), rep("B", 6)))))
Heatmap(mat, top_annotation = annotation)
annotation = HeatmapAnnotation(df = data.frame(type1 = rep(c("A", "B"), 6),
   type2 = rep(c("C", "D"), each = 6)))
Heatmap(mat, bottom_annotation = annotation)

annotation = data.frame(value = rnorm(10))
annotation = HeatmapAnnotation(df = annotation)
```
Heatmap-class

Class for a single heatmap

Description

Class for a single heatmap

Details

The components for a single heatmap are placed into a 9 x 7 layout:

```
+--------+ (1)
+--------+ (2)
+--------+ (3)
+--------+ (4)
+----------+----------+----------+----------+----------+----------+----------+
|1|2|3| |4|5|6| |7|8|9|
+----------+----------+----------+----------+----------+----------+----------+
```

From top to bottom in column 4, the regions are:

- title which is put on the top of the heatmap, graphics are drawn by `draw_title`, `Heatmap-method`.
- column cluster on the top, graphics are drawn by `draw_dend`, `Heatmap-method`.

```r
Heatmap(mat, top_annotation = annotation)

annotation = data.frame(value = rnorm(10))
value = 1:10
ha = HeatmapAnnotation(df = annotation, points = anno_points(value),
annotation_height = c(1, 2))
Heatmap(mat, top_annotation = ha, top_annotation_height = unit(2, "cm"),
bottom_annotation = ha)
```
Heatmap-class

• column annotation on the top, graphics are drawn by \texttt{draw_annotation,Heatmap-method}.
• column names on the top, graphics are drawn by \texttt{draw_dimnames,Heatmap-method}.
• heatmap body, graphics are drawn by \texttt{draw_heatmap_body,Heatmap-method}.
• column names on the bottom, graphics are drawn by \texttt{draw_dimnames,Heatmap-method}.
• column annotation on the bottom, graphics are drawn by \texttt{draw_annotation,Heatmap-method}.
• column cluster on the bottom, graphics are drawn by \texttt{draw_dend,Heatmap-method}.
• title on the bottom, graphics are drawn by \texttt{draw_title,Heatmap-method}.

From left to right in row 5, the regions are:

• title which is put in the left of the heatmap, graphics are drawn by \texttt{draw_title,Heatmap-method}.
• row cluster on the left, graphics are drawn by \texttt{draw_dend,Heatmap-method}.
• row names on the left, graphics are drawn by \texttt{draw_dimnames,Heatmap-method}.
• heatmap body
• row names on the right, graphics are drawn by \texttt{draw_dimnames,Heatmap-method}.
• row cluster on the right, graphics are drawn by \texttt{draw_dend,Heatmap-method}.
• title on the right, graphics are drawn by \texttt{draw_title,Heatmap-method}.

The \texttt{Heatmap-class} is not responsible for heatmap legend and annotation legends. The \texttt{draw,Heatmap-method} method will construct a \texttt{HeatmapList-class} object which only contains one single heatmap and call \texttt{draw,HeatmapList-method} to make a complete heatmap.

Methods

The \texttt{Heatmap-class} provides following methods:

• \texttt{Heatmap}: constructor method.
• \texttt{draw,Heatmap-method}: draw a single heatmap.
• \texttt{add_heatmap,Heatmap-method} append heatmaps and row annotations to a list of heatmaps.
• \texttt{row_order,HeatmapList-method}: get order of rows
• \texttt{column_order,HeatmapList-method}: get order of columns
• \texttt{row_dend,HeatmapList-method}: get row dendrograms
• \texttt{column_dend,HeatmapList-method}: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

for examples, please go to `Heatmap` method page
NULL
HeatmapAnnotation

Constructor method for HeatmapAnnotation class

Description

Constructor method for HeatmapAnnotation class

Usage

HeatmapAnnotation(df, name, col, na_col = "grey",

 annotation_legend_param = list(),

 show_legend = TRUE,

 ...,

 which = c("column", "row"),

 annotation_height = 1,

 annotation_width = 1,

 height = calc_anno_size(),

 width = calc_anno_size(),

 gp = gpar(col = NA),

 gap = unit(0, "mm"),

 show_annotation_name = FALSE,

 annotation_name_gp = gpar(),

 annotation_name_offset = unit(2, "mm"),

 annotation_name_side = ifelse(which == "column", "right", "bottom"),

 annotation_name_rot = ifelse(which == "column", 0, 90))

Arguments

df a data frame. Each column will be treated as a simple annotation. The data frame must have column names.

name name of the heatmap annotation, optional.

col a list of colors which contains color mapping to columns in df. See SingleAnnotation for how to set colors.

na_col color for NA values in simple annotations.

annotation_legend_param a list which contains parameters for annotation legends

show_legend whether show legend for each column in df.

... functions which define complex annotations or vectors of simple annotation. Values should be named arguments.

which are the annotations row annotations or column annotations?

annotation_height height of each annotation if annotations are column annotations.

annotation_width width of each annotation if annotations are row annotations.

height not using currently.

width width of the whole heatmap annotations, only used for row annotation when appending to the list of heatmaps.

gp graphic parameters for simple annotations.
HeatmapAnnotation

gap
gap between each annotation

show_annotation_name
whether show annotation names. For column annotation, annotation names are
drawn either on the left or the right, and for row annotations, names are draw
either on top to at bottom. The value can be a vector.

annotation_name_gp
graphic parameters for annotation names. Graphic parameters can be vectors.

annotation_name_offset
offset to the annotations, unit object. The value can be a vector.

annotation_name_side
side of the annotation names.

annotation_name_rot
rotation of the annotation names, can only take values in c(00, 90, 180, 270).
The value can be a vector.

Details

The simple annotations are defined by df and col arguments. Complex annotations are defined by
the function list. So you need to at least to define df or a annotation function.

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are two shortcut functions: rowAnnotation and columnAnnotation.

Examples

df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
ha = HeatmapAnnotation(type = c("a", "a", "a", "b", "b", "b"),
 col = list(type = c("a" = "red", "b" = "blue")))

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")),
 which = "row")

ha = HeatmapAnnotation(points = anno_points(1:6))

ha = HeatmapAnnotation(histogram = anno_points(1:6))

mat = matrix(rnorm(36), 6)
ha = HeatmapAnnotation(boxplot = anno_boxplot(mat))
HeatmapAnnotation-class

Class for heatmap annotations

Description

Class for heatmap annotations

Details

A complex heatmap contains a list of annotations which are represented as different graphics placed on rows and columns. The HeatmapAnnotation-class contains a list of single annotations which are represented as a list of SingleAnnotation-class objects with same number of rows or columns.

Methods

The HeatmapAnnotation-class provides following methods:

- HeatmapAnnotation: constructor method
- draw,HeatmapAnnotation-method: draw the annotations

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

for examples, please go to `HeatmapAnnotation` method page
NULL

HeatmapList

Constructor method for HeatmapList class

Description

Constructor method for HeatmapList class

Usage

HeatmapList(...)

Arguments

... arguments

Details

There is no public constructor method for the HeatmapList-class.
HeatmapList-class

Value

No value is returned.

Details

There is no public constructor method for the HeatmapList-class.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example
NULL

HeatmapList-class Class for a list of heatmaps

Description

Class for a list of heatmaps

Details

A heatmap list is defined as a list of heatmaps and row annotations.

The components for the heatmap list are placed into a 7 x 7 layout:

```
+------+(1)
+------+(2)
+------+(3)
+-----------------
| 1 | 2 | 3 | 4(4) | 5 | 6 | 7 |
+-----------------
```

From top to bottom in column 4, the regions are:

- annotation legend on the top, graphics are drawn by `draw_annotation_legend`,HeatmapList-method.
- heatmap legend on the top, graphics are drawn by `draw_heatmap_legend`,HeatmapList-method.
- title for the heatmap list which is put on the top, graphics are drawn by `draw_title`,HeatmapList-method.
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the bottom, graphics are drawn by `draw_title`,HeatmapList-method.
- heatmap legend on the bottom, graphics are drawn by `draw_heatmap_legend`,HeatmapList-method.
- annotation legend on the bottom, graphics are drawn by `draw_annotation_legend`,HeatmapList-method.
HeatmapList-class

From left to right in row 4, the regions are:

- annotation legend on the left, graphics are drawn by `draw_annotation_legend,HeatmapList-method`.
- heatmap legend on the left, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`.
- title for the heatmap list which is put on the left, graphics are drawn by `draw_title,HeatmapList-method`.
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the right, graphics are drawn by `draw_title,HeatmapList-method`.
- heatmap legend on the right, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`.
- annotation legend on the right, graphics are drawn by `draw_annotation_legend,HeatmapList-method`.

For the list of heatmaps which are placed at (5, 5) in the layout, the heatmaps and row annotations are placed one after the other.

Methods

The HeatmapList-class provides following methods:

- `draw,HeatmapList-method`: draw the list of heatmaps and row annotations.
- `add_heatmap,HeatmapList-method`: add heatmaps to the list of heatmaps.
- `row_order,HeatmapList-method`: get order of rows
- `column_order,HeatmapList-method`: get order of columns
- `row_dend,HeatmapList-method`: get row dendrograms
- `column_dend,HeatmapList-method`: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
ownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
                        which = "row")
ht + ha
ht_list + ha
```
heatmap_legend_size-HeatmapList-method

Size of the heatmap legend viewport

Description
Size of the heatmap legend viewport

Usage

S4 method for signature 'HeatmapList'
heatmap_legend_size(object, legend_list = list(), ...)

Arguments

object a HeatmapList-class object
legend_list a list of self-defined legend, should be wrapped into grob objects.
... graphic parameters passed to color_mapping_legend,ColorMapping-method.

Details
This function is only for internal use.

Value
A unit object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

ht_global_opt Global graphic options for heatmaps

Description
Global graphic options for heatmaps

Usage

ht_global_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE)
Arguments

... options, see 'details' section
RESET reset all the option values
READ.ONLY TRUE means only to return read-only values, FALSE means only to return non-read-only values, NULL means to return both.
LOCAL switch local mode

Details

You can set some parameters for all heatmaps/annotations simultaneously by this global function. Please note you should put it before your heatmap code and reset all option values after drawing the heatmaps to get rid of affecting next heatmap plotting.

There are following parameters:

- `heatmap_row_names_gp` set `row_names_gp` in `Heatmap`
- `heatmap_column_names_gp` set `column_names_gp` in `Heatmap`
- `heatmap_row_title_gp` set `row_title_gp` in `Heatmap`
- `heatmap_column_title_gp` set `column_title_gp` in `Heatmap`
- `heatmap_legend_title_gp` set `title_gp` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_title_position` set `title_position` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_labels_gp` set `labels_gp` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_grid_width` set `grid_width` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_grid_height` set `grid_height` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_grid_border` set `grid_border` element in `heatmap_legend_param` in `Heatmap`
- `heatmap_legend_title_gp` set `title_gp` element in `legend_param` in `SingleAnnotation`
- `heatmap_legend_title_position` set `title_position` element in `legend_param` in `SingleAnnotation`
- `heatmap_legend_labels_gp` set `labels_gp` element in `legend_param` in `SingleAnnotation`
- `heatmap_legend_grid_width` set `grid_width` element in `legend_param` in `SingleAnnotation`
- `heatmap_legend_grid_height` set `grid_height` element in `legend_param` in `SingleAnnotation`
- `heatmap_legend_grid_border` set `grid_border` element in `legend_param` in `SingleAnnotation`
- `fast_hclust` whether use `hclust` to speed up clustering?

You can get or set option values by the traditional way (like `options`) or by `$` operator:

```r
# to get option values
ht_global_opt("heatmap_row_names_gp")
ht_global_opt$heatmap_row_names_gp

# to set option values
ht_global_opt("heatmap_row_names_gp" = gpar(fontsize = 8))
ht_global_opt$heatmap_row_names_gp = gpar(fontsize = 8)
```

Value

Depends on the options users selected.
is_abs_unit

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
no example for this function
NULL

is_abs_unit
Whether the unit object contains absolute unit

Description
Whether the unit object contains absolute unit

Usage
is_abs_unit(u)

Arguments
u a unit object

Details
Besides the normal absolute units (e.g. "mm", "inches"), this function simply treat grob objects as absolute units.
For a complex unit which is combination of different units, it is absolute only if all units included are absolute units.

Value
A logical value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
is_abs_unit(unit(1, "mm"))
is_abs_unit(unit(1, "npc"))
is_abs_unit(textGrob("foo"))
is_abs_unit(unit(1, "mm") + unit(1, "npc"))
Description

Making legend grobs

Usage

```
Legend(at, labels = at, nrow = NULL, ncol = 1, col_fun,
       grid_height = unit(4, "mm"), grid_width = unit(4, "mm"), gap = unit(2, "mm"),
       labels_gp = gpar(fontsize = 10),
       border = NULL, background = "#EEEEEE",
       type = "grid", legend_gp = gpar(),
       pch = 16, size = unit(2, "mm"),
       legend_height = NULL, legend_width = NULL,
       direction = c("vertical", "horizontal"),
       title = ", title_gp = gpar(fontsize = 10, fontface = "bold"),
       title_position = c("topleft", "topcenter", "leftcenter", "lefttop"))
```

Arguments

- **at**: breaks, can be either numeric or character
- **labels**: labels corresponding to at
- **nrow**: if there are too many legends, they can be positioned in an array, this controls number of rows
- **ncol**: if there are too many legends, they can be positioned in an array, this controls number of columns. At a same time only one of nrow and ncol can be specified.
- **col_fun**: a color mapping function which is used to make a continuous color bar
- **grid_height**: height of legend grid
- **grid_width**: width of legend grid
- **gap**: when legends are put in multiple columns, this is the gap between neighbouring columns, measured as a *unit* object
- **labels_gp**: graphic parameters for labels
- **border**: color of legend borders, also for the ticks in the continuous legend
- **background**: background colors
- **type**: type of legends, can be grid, points and lines
- **legend_gp**: graphic parameters for the legend
- **pch**: type of points
- **size**: size of points
- **legend_height**: height of the whole legend, used when col_fun is specified and direction is set to vertical
- **legend_width**: width of the whole legend, used when col_fun is specified and direction is set to horizontal
- **direction**: direction of the continuous legend
- **title**: title of the legend
- **title_gp**: graphic parameters of title
- **title_position**: position of title according to the legend
Value

A grob object

Examples

There is no example
NULL

Description

Make cluster on columns

Usage

S4 method for signature 'Heatmap'
make_column_cluster(object)

Arguments

object a Heatmap-class object.

Details

The function will fill or adjust column_dend and column_order slots.
This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
Description

Method dispatch page for make_layout.

Dispatch

make_layout can be dispatched on following classes:

- make_layout,HeatmapList-method,HeatmapList-class class method
- make_layout,Heatmap-method,Heatmap-class class method

Examples

no example
NULL

Description

Make the layout of a single heatmap

Usage

S4 method for signature 'Heatmap'
make_layout(object)

Arguments

object a Heatmap-class object.

Details

The layout of the single heatmap will be established by setting the size of each heatmap components. Also functions that make graphics for heatmap components will be recorded.

Whether apply row clustering or column clustering affects the layout, so clustering should be applied first before making the layout.

This function is only for internal use.

Value

A Heatmap-class object.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL

make_layout-HeatmapList-method

Make layout for the complete plot

Description

Make layout for the complete plot

Usage

```r
## S4 method for signature 'HeatmapList'
make_layout(object, row_title = character(0),
             row_title_side = c("left", "right"),
             row_title_gp = gpar(fontsize = 14),
             column_title = character(0),
             column_title_side = c("top", "bottom"),
             column_title_gp = gpar(fontsize = 14),
             heatmap_legend_side = c("right", "left", "bottom", "top"),
             show_heatmap_legend = TRUE,
             heatmap_legend_list = list(),
             annotation_legend_side = c("right", "left", "bottom", "top"),
             show_annotation_legend = TRUE,
             annotation_legend_list = list(),
             gap = unit(3, "mm"),
             main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[[1]],
             row_dend_side = c("original", "left", "right"),
             row_hclust_side = row_dend_side,
             row_sub_title_side = c("original", "left", "right"),
             cluster_rows = NULL,
             clustering_distance_rows = NULL,
             clustering_method_rows = NULL,
             row_dend_width = NULL,
             show_row_dend = NULL,
             row_dend_reorder = NULL,
             row_dend_gp = NULL,
             row_order = NULL,
             km = NULL,
             split = NULL)
```
Arguments

- **object**: A `HeatmapList-class` object.
- **row_title**: Title on the row.
- **row_title_side**: Will the title be put on the left or right of the heatmap.
- **row_title_gp**: Graphic parameters for drawing text.
- **column_title**: Title on the column.
- **column_title_side**: Will the title be put on the top or bottom of the heatmap.
- **column_title_gp**: Graphic parameters for drawing text.
- **heatmap_legend_side**: Side of the heatmap legend.
- **show_heatmap_legend**: Whether show heatmap legend.
- **heatmap_legend_list**: A list of self-defined legend, should be wrapped into `grob` objects.
- **annotation_legend_side**: Side of annotation legend.
- **show_annotation_legend**: Whether show annotation legend.
- **annotation_legend_list**: A list of self-defined legend, should be wrapped into `grob` objects.
- **gap**: Gap between heatmaps, should be a `unit` object.
- **main_heatmap**: Name or index for the main heatmap.
- **row_dend_side**: If auto adjust, where to put the row dendrograms for the main heatmap.
- **row_hclust_side**: Deprecated, use `row_dend_side` instead.
- **row_sub_title_side**: If auto adjust, where to put sub row titles for the main heatmap.
- **cluster_rows**: Same setting as in `Heatmap`, if it is specified, `cluster_rows` in main heatmap is ignored.
- **clustering_distance_rows**: Same setting as in `Heatmap`, if it is specified, `clustering_distance_rows` in main heatmap is ignored.
- **clustering_method_rows**: Same setting as in `Heatmap`, if it is specified, `clustering_method_rows` in main heatmap is ignored.
- **row_dend_width**: Same setting as in `Heatmap`, if it is specified, `row_dend_width` in main heatmap is ignored.
- **show_row_dend**: Same setting as in `Heatmap`, if it is specified, `show_row_dend` in main heatmap is ignored.
- **row_dend_reorder**: Same setting as in `Heatmap`, if it is specified, `row_dend_reorder` in main heatmap is ignored.
- **row_dend_gp**: Same setting as in `Heatmap`, if it is specified, `row_dend_gp` in main heatmap is ignored.
Make cluster on rows

Description
Make cluster on rows

Usage
```r
## S4 method for signature 'Heatmap'
make_row_cluster(object)
```

Arguments
- `object` a `Heatmap-class` object.

Details
The function will fill or adjust `row_dend_list`, `row_order_list`, `row_title` and `matrix_param` slots.
If `order` is defined, no clustering will be applied.
This function is only for internal use.
Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this internal method
NULL
Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))
map_to_colors(cm, "a")
map_to_colors(cm, c("a", "a", "b"))

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))
map_to_colors(cm, 1)
map_to_colors(cm, "1")
map_to_colors(cm, c(1, 1, 2, 2))

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
map_to_colors(cm, 0.2)
map_to_colors(cm, seq(0.2, 0.8, by = 0.1))

max_text_height Maximum height of text

Description

Maximum height of text

Usage

max_text_height(text, ...)

Arguments

text a vector of text

... pass to textGrob

Details

Simply calculate maximum height of a list of textGrob objects.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
max_text_width

Description

Maximum width of text

Usage

max_text_width(text, ...)

Arguments

text a vector of text

... pass to textGrob

Details

Simply calculate maximum width of a list of textGrob objects.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

max_text_width is always used to calculate the size of viewport when there is text annotation (anno_text)

Examples

x = c("a", "bb", "ccc")
max_text_width(x, gp = gpar(fontsize = 10))
oncoPrint

Make oncoPrint

Description

Make oncoPrint

Usage

oncoPrint(mat, get_type = function(x) x,
alter_fun = alter_fun_list, alter_fun_list = NULL, col,
row_order = oncoprint_row_order(),
column_order = oncoprint_column_order(),
show_column_names = FALSE,
show_pct = TRUE, pct_gp = gpar(), pct_digits = 0,
axis_gp = gpar(fontsize = 8),
show_row_barplot = TRUE,
row_barplot_width = unit(2, "cm"),
remove_empty_columns = FALSE,
heatmap_legend_param = list(title = "Alterations"),
top_annotation = HeatmapAnnotation(column_bar = anno_oncoprint_barplot(),
annotation_height = unit(2, "cm")),
barplot_ignore = NULL,
...)

Arguments

mat a character matrix which encodes multiple alterations or a list of matrix for which every matrix contains binary value representing the alteration is present or absent. When it is a list, the names represent alteration types. You can use unify_mat_list to make all matrix having same row names and column names.

get_type If different alterations are encoded in the matrix, this self-defined function determines how to extract them. Only work when mat is a matrix.

alter_fun a single function or a list of functions which define how to add graphics for different alterations. If it is a list, the names of the list should cover all alteration types.

alter_fun_list deprecated, use alter_run instead.

col a vector of color for which names correspond to alteration types.

row_order order of genes. By default it is sorted by frequency of alterations decreasingly. Set it to NULL if you don’t want to set the order.

column_order order of samples. By default the order is calculated by the 'memo sort' method which can visualize the mutual exclusivity across genes. Set it to NULL if you don’t want to set the order.

show_column_names whether show column names.

show_pct whether show percent values on the left of the oncoprint.

pct_gp graphic parameters for percent row annotation.

pct_digits digits for percent values.
plotDataFrame

Description

Quickly visualize a data frame

Usage

plotDataFrame(df, overlap = 0.25, nlevel = 30, show_row_names = TRUE, show_column_names = TRUE, group = NULL, group_names = names(group), main_heatmap = NULL, km = 1, split = NULL, cluster_rows = TRUE, cluster_columns = TRUE, row_order = NULL, ...)
Arguments

- `df`: a data frame.
- `overlap`: how to group numeric columns. If the overlapping rate between the ranges in the current column and previous numeric column is larger than this value, the two columns are treated as under same measurement and should be grouped.
- `nlevel`: If the number of levels of a character column is larger than this value, the column will be excluded, because it doesn’t make any sense to visualize a character vector or matrix that contains huge number of unique elements through a heatmap.
- `show_row_names`: whether show row names after the last heatmap if there are row names.
- `show_column_names`: whether show column names for all heatmaps.
- `group`: a list of index that defines the grouping.
- `group_names`: names for each group.
- `main_heatmap`: which group is the main heatmap?
- `km`: a value larger than 1 means applying k-means clustering on rows for the main heatmap.
- `split`: one or multiple variables that split the rows.
- `cluster_rows`: whether perform clustering on rows of the main heatmap.
- `cluster_columns`: whether perform clustering on columns for all heatmaps.
- `row_order`: order of rows, remember to turn off `cluster_rows`...

Details

The data frame contains heterogeneous information. The `plotDataFrame` function provides a simple and quick way to visualize information that are stored in a data frame.

There are only a few settings in this function, so the heatmap generated by this function may look ugly (in most of the time). However, users can customize the style of the heatmaps by manually constructing a `HeatmapList` object.

Value

A `HeatmapList` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
df = data.frame(matrix(rnorm(40), nrow = 10, dimnames = list(letters[1:10], letters[1:4])),
                 large = runif(10)*100,
                 t1 = sample(letters[1:3], 10, replace = TRUE),
                 matrix(runif(60), nrow = 10, dimnames = list(LETTERS[1:10], LETTERS[1:6])),
                 t2 = sample(LETTERS[1:3], 10, replace = TRUE))
plotDataFrame(df)
plotDataFrame(df, group = list(1:4, 5, 6, 7:12, 13), group_names = c("mat1", "large", "t1", "mat2", "t2"),
              main_heatmap = 4, km = 2, column_title = "column title", row_title = "row title")
```
Prepare the heatmap

Description

Prepare the heatmap

Usage

```r
## S4 method for signature 'Heatmap'
prepare(object, process_rows = TRUE)
```

Arguments

- `object`: a `Heatmap-class` object.
- `process_rows`: whether process rows of the heatmap

Details

The preparation of the heatmap includes following steps:

- making clustering on rows if specified (by calling `make_row_cluster`, `Heatmap-method`)
- making clustering on columns if specified (by calling `make_column_cluster`, `Heatmap-method`)
- making the layout of the heatmap (by calling `make_layout`, `Heatmap-method`)

This function is only for internal use.

Value

A `Heatmap-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
rowAnnotation

Description

Construct row annotations

Usage

```r
rowAnnotation(...)```

**Arguments**

... pass to `HeatmapAnnotation`

**Details**

The function is identical to

```r
HeatmapAnnotation(..., which = "row")```

Value

A `HeatmapAnnotation-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = columnAnnotation(df = df)
```

row_anno_barplot

Description

Row annotation which is represented as barplots

Usage

```r
row_anno_barplot(...)```

**Arguments**

... pass to `anno_barplot`
Details
A wrapper of anno_barplot with pre-defined which to row.

Value
See help page of anno_barplot

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL
row_anno_density

Row annotation which is represented as density plot

Description
Row annotation which is represented as density plot

Usage
row_anno_density(...)

Arguments
... pass to anno_density

Details
A wrapper of anno_density with pre-defined which to row.

Value
See help page of anno_density

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL

row_anno_histogram

Row annotation which is represented as histogram

Description
Row annotation which is represented as histogram

Usage
row_anno_histogram(...)

Arguments
... pass to anno_histogram

Details
A wrapper of anno_histogram with pre-defined which to row.
**row_anno_link**

Value

See help page of `anno_histogram`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

---

**row_anno_link**  
*Column annotation which is represented as links*

Description

Column annotation which is represented as links

Usage

`row_anno_link(...)`

Arguments

...  

pass to `anno_link`

Details

A wrapper of `anno_link` with pre-defined which to `row`.

Value

See help page of `anno_link`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL
row_anno_points  
Row annotation which is represented as points

Description
Row annotation which is represented as points

Usage
row_anno_points(...)

Arguments
...  pass to anno_points

Details
A wrapper of anno_points with pre-defined which to row.

Value
See help page of anno_points

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL

row_anno_text  
Row annotation which is represented as text

Description
Row annotation which is represented as text

Usage
row_anno_text(...)

Arguments
...  pass to anno_text

Details
A wrapper of anno_text with pre-defined which to row.
Value

See help page of `anno_text`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
There is no example
NULL
```

---

```r
table()
```

## Method dispatch page for `row_dend`

### Description

Method dispatch page for `row_dend`.

### Dispatch

`row_dend` can be dispatched on following classes:

- `row_dend,HeatmapList-method,HeatmapList-class` class method
- `row_dend,Heatmap-method,Heatmap-class` class method

### Examples

```r
no example
NULL
```

---

```r
table()
```

## `row_dend-Heatmap-method`

Get row dendrograms from a heatmap

### Description

Get row dendrograms from a heatmap

### Usage

```r
S4 method for signature 'Heatmap'
row_dend(object)
```

### Arguments

- `object` a `Heatmap-class` object
Value

A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_dend(ht)
ht = Heatmap(mat, km = 2)
row_dend(ht)
```

Description

Get row dendrograms from a heatmap list

Usage

```r
S4 method for signature 'HeatmapList'
row_dend(object)
```

Arguments

- `object`: a `HeatmapList-class` object

Value

A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_dend(ht_list)
ht_list = Heatmap(mat, km = 2) + Heatmap(mat)
row_dend(ht_list)
```
Description

Method dispatch page for row_order.

Dispatch

row_order can be dispatched on following classes:

- row_order,HeatmapList-method,HeatmapList-class class method
- row_order,Heatmap-method,Heatmap-class class method

Examples

# no example
NULL

row_order-Heatmap-method

Get row order from a heatmap

Description

Get row order from a heatmap

Usage

## S4 method for signature 'Heatmap'
row_order(object)

Arguments

object a Heatmap-class object

Value

A list contains row orders which correspond to the original matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_order(ht)
ht = Heatmap(mat, km = 2)
row_order(ht)
row_order-HeatmapList-method

Get row order from a heatmap list

Description
Get row order from a heatmap list

Usage
## S4 method for signature 'HeatmapList'
row_order(object)

Arguments
object

a HeatmapList-class object

Value
A list contains row orders which correspond to the original matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
row_order(ht_list)

selectArea

Select an area in the heatmap

Description
Select an area in the heatmap

Usage
selectArea(mark = TRUE)

Arguments
mark
whether mark the selected area as a rectangle
Details

Users can use mouse to click two positions on the heatmap, the function will return the row index and column index for the selected region in the selected matrix.
This function only works under interactive graphical environment.

Value

A list containing row index and column index corresponding to the selected region.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# No example for this function
NULL

Description

Set height of each heatmap component

Usage

### S4 method for signature 'Heatmap'
set_component_height(object, k, v)

Arguments

- **object**: a `Heatmap-class` object.
- **k**: which components, see `Heatmap-class`.
- **v**: height of the component, a `unit` object.

Details

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

# no example for this internal method
NULL

---

show-ColorMapping-method

*Print ColorMapping object*

Description

Print ColorMapping object

Usage

```r
S4 method for signature 'ColorMapping'
show(object)
```

Arguments

- `object` a `ColorMapping-class` object.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

---

show-dispatch

*Method dispatch page for show*

Description

Method dispatch page for `show`.

Dispatch

`show` can be dispatched on following classes:

- `show,ColorMapping-method, ColorMapping-class` class method
- `show,HeatmapAnnotation-method, HeatmapAnnotation-class` class method
- `show,SingleAnnotation-method, SingleAnnotation-class` class method
- `show,HeatmapList-method, HeatmapList-class` class method
- `show,Heatmap-method, Heatmap-class` class method
Examples

# no example
NULL

Description

Draw the single heatmap with default parameters

Usage

## S4 method for signature 'Heatmap'
show(object)

Arguments

object 
a Heatmap-class object.

Details

Actually it calls `draw,Heatmap-method`, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to `draw,Heatmap-method`.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht
draw(ht, heatmap_legend_side = "left")
show-HeatmapAnnotation-method

*Print the Heatmap Annotation object*

**Description**

Print the Heatmap Annotation object

**Usage**

```r
S4 method for signature 'HeatmapAnnotation'
show(object)
```

**Arguments**

- `object` a `HeatmapAnnotation-class` object.

**Value**

No value is returned.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL
```

---

show-HeatmapList-method

*Draw a list of heatmaps with default parameters*

**Description**

Draw a list of heatmaps with default parameters

**Usage**

```r
S4 method for signature 'HeatmapList'
show(object)
```

**Arguments**

- `object` a `HeatmapList-class` object.
Details

Actually it calls `draw.HematmapList-method`, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to `draw.HematmapList-method`.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
There is no example
NULL
```

---

**show-SingleAnnotation-method**

*Print the SingleAnnotation object*

**Description**

Print the SingleAnnotation object

**Usage**

```r
S4 method for signature 'SingleAnnotation'
show(object)
```

**Arguments**

- `object` a `SingleAnnotation-class` object.

**Value**

No value is returned.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL
```
SingleAnnotation  

**Description**

Constructor method for SingleAnnotation class

**Usage**

```r
SingleAnnotation(name, value, col, fun,
na_col = "grey",
which = c("column", "row"),
show_legend = TRUE,
gp = gpar(col = NA),
legend_param = list(),
show_name = FALSE,
name_gp = gpar(fontsize = 12),
name_offset = unit(2, "mm"),
name_side = ifelse(which == "column", "right", "bottom"),
name_rot = ifelse(which == "column", 0, 90))
```

**Arguments**

- **name**
  name for this annotation. If it is not specified, an internal name is assigned.

- **value**
  A vector of discrete or continuous annotation.

- **col**
  colors corresponding to value. If the mapping is discrete mapping, the value of col should be a vector; If the mapping is continuous mapping, the value of col should be a color mapping function.

- **fun**
  a self-defined function to add annotation graphics. The argument of this function should only be a vector of index that corresponds to rows or columns.

- **na_col**
  color for NA values in simple annotations.

- **which**
  is the annotation a row annotation or a column annotation?

- **show_legend**
  if it is a simple annotation, whether show legend when making the complete heatmap.

- **gp**
  Since simple annotation is represented as a row of grids. This argument controls graphic parameters for the simple annotation.

- **legend_param**
  parameters for the legend. See `color_mapping_legend`, `ColorMapping-method` for options.

- **show_name**
  whether show annotation name

- **name_gp**
  graphic parameters for annotation name

- **name_offset**
  offset to the annotation, a `unit` object

- **name_side**
  'right' and 'left' for column annotations and 'top' and 'bottom' for row annotations

- **name_rot**
  rotation of the annotation name, can only take values in c(0, 90, 180, 270).
Details

The most simple annotation is one row or one column grids in which different colors represent different classes of the data. Here the function use ColorMapping-class to process such simple annotation. value and col arguments controls values and colors of the simple annotation and a ColorMapping-class object will be constructed based on value and col.

fun is used to construct a more complex annotation. Users can add any type of annotation graphics by implementing a function. The only input argument of fun is a index of rows or columns which is already adjusted by the clustering. In the package, there are already several annotation graphic function generators: anno_points, anno_histogram and anno_boxplot.

In the case that row annotations are splitted by rows, index corresponding to row orders in each row-slice and fun will be applied on each of the row slices.

One thing that users should be careful is the difference of coordinates when the annotation is a row annotation or a column annotation.

Value

A SingleAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are following built-in annotation functions that can be used to generate complex annotations: anno_points, anno_barplot, anno_histogram, anno_boxplot, anno_density, anno_text and anno_link.

Examples

  # discrete character
  SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
  SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"),
                  which = "row")

  # with defined colors
  SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
                   col = c("a" = "red", "b" = "blue"))

  # continuous numbers
  require(circlize)
  SingleAnnotation(value = 1:10)
  SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))

  # self-defined graphic function
  SingleAnnotation(fun = anno_points(1:10))
SingleAnnotation-class

Class for a single annotation

Description

Class for a single annotation

Details

A complex heatmap always has more than one annotations on rows and columns. Here the SingleAnnotation-class defines the basic unit of annotations. The most simple annotation is one row or one column grids in which different colors represent different classes of the data. The annotation can also be more complex graphics, such as a boxplot that shows data distribution in corresponding row or column.

The SingleAnnotation-class is used for storing data for a single annotation and provides methods for drawing annotation graphics.

Methods

The SingleAnnotation-class provides following methods:

- SingleAnnotation: constructor method
- draw,SingleAnnotation-method: draw the single annotation.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

The SingleAnnotation-class is always used internally. The public HeatmapAnnotation-class contains a list of SingleAnnotation-class objects and is used to add annotation graphics on heatmaps.

Examples

# for examples, please go to `SingleAnnotation` method page
NULL
**unify_mat_list**  
Unify a list of matrix

---

**Description**  
Unify a list of matrix

**Usage**  
```
unify_mat_list(mat_list, default = 0)
```

**Arguments**  
- **mat_list**: a list of matrix, all of them should have dimension names  
- **default**: default values for the newly added rows and columns

**Details**  
All matrix will be unified to have same row names and column names

**Value**  
A list of matrix

**Author(s)**  
Zuguang Gu <z.gu@dkfz.de>

**Examples**  
# There is no example
NULL
Index

+.AdditiveUnit, 5
add_heatmap (add_heatmap-dispatch), 7
add_heatmap, Heatmap-method
 (add_heatmap-Heatmap-method), 7
add_heatmap, HeatmapAnnotation-method
 (add_heatmap-HeatmapAnnotation-method), 8
add_heatmap, HeatmapList-method
 (add_heatmap-HeatmapList-method), 9
add_heatmap-dispatch, 7
add_heatmap-Heatmap-method, 7
add_heatmap-HeatmapAnnotation-method, 8
add_heatmap-HeatmapList-method, 9
AdditiveUnit, 6
AdditiveUnit-class, 6
anno_barplot, 11, 22, 23, 92, 93, 107
anno_boxplot, 12, 23, 93, 107
anno_density, 13, 24, 94, 107
anno_histogram, 14, 24, 25, 94, 95, 107
anno_link, 15, 25, 95, 107
anno_oncoprint_barplot, 16
anno_points, 16, 26, 96, 107
anno_text, 17, 26, 27, 87, 96, 97, 107
annotation_legend_size
 (annotation_legend_size-HeatmapList-method), 10
annotation_legend_size, Heatmap-method
 (annotation_legend_size-Heatmap-method), 10
annotation_legend_size-HeatmapList-method, 10
as.dist, 45

color_mapping_legend
 (color_mapping_legend-ColorMapping-method), 20
color_mapping_legend, ColorMapping-method
 (color_mapping_legend-ColorMapping-method), 20

color_mapping_legend-ColorMapping-method, 20
ColorMapping, 18, 19, 65
ColorMapping-class, 19
colorRamp2, 18, 43, 64, 65
column_anno_barplot, 22
column_anno_boxplot, 23
column_anno_density, 24
column_anno_histogram, 24
column_anno_link, 25
column_anno_points, 26
column_anno_text, 26
column_dend (column_dend-dispatch), 27
column_dend, Heatmap-method
 (column_dend-Heatmap-method), 27
column_dend, HeatmapList-method
 (column_dend-HeatmapList-method), 28
column_dend-dispatch, 27
column_dend-Heatmap-method, 27
column_dend-HeatmapList-method, 28
column_order (column_order-dispatch), 29
column_order, Heatmap-method
 (column_order-Heatmap-method), 29
column_order-HeatmapList-method, 30
column_order-dispatch, 29
column_order-Heatmap-method, 29
column_order-HeatmapList-method, 30
columnAnnotation, 22, 72
ComplexHeatmap-package, 4
column_dend, Heatmap-method
 (component_height-Heatmap-method), 30
column_order-HeatmapList-method, 32
column_order-dispatch, 29
column_order-Heatmap-method, 29
column_order-HeatmapList-method, 30
columnAnnotation, 22, 72
Component_height
 (component_height-dispatch), 30
Component_height, Heatmap-method
 (component_height-Heatmap-method), 31
Component_height, HeatmapList-method
 (component_height-HeatmapList-method), 32
Component_height-dispatch, 30
Component_height-Heatmap-method, 31
Component_height-HeatmapList-method,
INDEX

get_color_mapping_list (get_color_mapping_list-HeatmapAnnotation-method, 61
get_color_mapping_list,HeatmapAnnotation-method (get_color_mapping_list-HeatmapAnnotation-method, 61
get_color_mapping_list-HeatmapAnnotation-method, 61
get_color_mapping_param_list (get_color_mapping_param_list-HeatmapAnnotation-method, 61
get_color_mapping_param_list,HeatmapAnnotation-method (get_color_mapping_param_list-HeatmapAnnotation-method, 61
get_color_mapping_param_list-HeatmapAnnotation-method, 61
grid.dendrogram, 53, 62
grid.text, 17
grob, 10, 19, 21, 49, 52, 56, 60, 76, 78, 80, 83
hclust, 65, 66, 77
Heatmap, 4, 39, 43, 44, 55, 60, 63, 70, 77, 83, 84, 89
Heatmap-class, 69
heatmap_legend_size (heateamp_legend_size-HeatmapList-method, 76
heatmap_legend_size,HeatmapList-method (heatmap_legend_size-HeatmapList-method, 76
heatmap_legend_size-HeatmapList-method, 76
HeatmapAnnotation, 11–15, 17, 22, 67, 71, 73, 92
HeatmapAnnotation-class, 73
HeatmapList, 73, 90
HeatmapList-class, 74
hist, 14
ht_global_opt, 76
is_abs_unit, 78
Legend, 79
make_column_cluster (make_column_cluster-Heatmap-method, 80
make_column_cluster,Heatmap-method (make_column_cluster-Heatmap-method, 80
make_column_cluster-Heatmap-method, 80
make_layout (make_layout-dispatch, 81
make_layout,Heatmap-method (make_layout-HeatmapList-method, 81
make_layout,HeatmapList-method (make_layout-HeatmapList-method, 82
make_layout-dispatch, 81
make_layout-Heatmap-method, 81
make_layout-HeatmapList-method, 82
make_row_cluster (make_row_cluster-Heatmap-method, 84
make_row_cluster,Heatmap-method (make_row_cluster-Heatmap-method, 84
make_row_cluster-Heatmap-method, 84
map_to_colors (map_to_colors-ColorMapping-method, 85
map_to_colors,ColorMapping-method (map_to_colors-ColorMapping-method, 85
max_text_height, 86, 87
max_text_width, 87, 87
oncoPrint, 88
options, 77
plotDataFrame, 89, 90
prepare (prepare-Heatmap-method, 91
prepare,Heatmap-method (prepare-Heatmap-method, 91
prepare-Heatmap-method, 91
row_anno_barplot, 92
row_anno_boxplot, 93
row_anno_density, 94
row_anno_histogram, 94
row_anno_link, 95
row_anno_points, 96
row_anno_text, 96
row_dend (row_dend-dispatch, 97
row_dend,Heatmap-method (row_dend-Heatmap-method, 97
row_dend,HeatmapList-method (row_dend-HeatmapList-method, 98
row_dend-HeatmapList-method, 98
row_dend-dispatch, 97
row_dend-Heatmap-method, 97
row_dend-HeatmapList-method, 97
row_dend-HeatmapList-method, 98
row_order (row_order-dispatch, 99
row_order, Heatmap-method (row_order-Heatmap-method), 99
row_order, HeatmapList-method (row_order-HeatmapList-method), 100
row_order-dispatch, 99
row_order-Heatmap-method, 99
row_order-HeatmapList-method, 100
rowAnnotation, 72, 92
seekViewport, 35, 37–39, 42
selectArea, 100
set_component_height (set_component_height-Heatmap-method), 101
set_component_height, Heatmap-method (set_component_height-Heatmap-method), 101
set_component_height-Heatmap-method, 101
show (show-dispatch), 102
show, ColorMapping-method (show-ColorMapping-method), 102
show, Heatmap-method (show-Heatmap-method), 103
show, HeatmapAnnotation-method (show-HeatmapAnnotation-method), 104
show, HeatmapList-method (show-HeatmapList-method), 104
show, SingleAnnotation-method (show-SingleAnnotation-method), 105
show-ColorMapping-method, 102
show-dispatch, 102
show-Heatmap-method, 103
show-HeatmapAnnotation-method, 104
show-HeatmapList-method, 104
show-SingleAnnotation-method, 105
SingleAnnotation, 71, 77, 106, 108
SingleAnnotation-class, 108
textGrob, 86, 87
unify_mat_list, 88, 109
viewport, 21, 47, 53–55, 58, 62