Package ‘ComplexHeatmap’

March 22, 2017

Type Package

Title Making Complex Heatmaps

Version 1.12.0

Date 2016-10-14

Author Zuguang Gu

Maintainer Zuguang Gu <z.gu@dkfz.de>

Depends R (>= 3.1.2), grid, graphics, stats, grDevices

Imports methods, circlize (>= 0.3.4), GetoptLong, colorspace, RColorBrewer, dendextend (>= 1.0.1), GlobalOptions (>= 0.0.10)

Suggests testthat (>= 0.3), knitr, markdown, cluster, MASS, pvclust, dendsort, HilbertCurve, Cairo, png, jpeg, tiff, fastcluster

VignetteBuilder knitr

Description Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential structures. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports self-defined annotation graphics.

biocViews Software, Visualization, Sequencing

URL https://github.com/jokergoo/ComplexHeatmap

License GPL (>= 2)

Repository Bioconductor

Date/Publication 2016-10-14 00:00:00

NeedsCompilation no

R topics documented:

- ComplexHeatmap-package
- AdditiveUnit
- additiveUnit-class
- add_heatmap-dispatch
- add_heatmap-Heatmap-method
- add_heatmap-HeatmapAnnotation-method
- add_heatmap-HeatmapList-method
- annotation_legend_size-HeatmapList-method
anno_barplot 11
anno_boxplot 12
anno_density 13
anno_histogram 14
anno_link 15
anno_oncoprint_barplot 16
anno_points 16
anno_text 17
ColorMapping 18
ColorMapping-class 19
color_mapping_legend-ColorMapping-method 20
columnAnnotation 22
column_anno_barplot 22
column_anno_boxplot 23
column_anno_density 24
column_anno_histogram 24
column_anno_link 25
column_anno_points 26
column_anno_text 26
column_dend dispatched 27
column_dend-Heatmap-method 27
column_dend-HeatmapList-method 28
column_order dispatched 29
column_order-Heatmap-method 29
column_order-HeatmapList-method 30
component_height dispatched 30
component_height-Heatmap-method 31
component_height-HeatmapList-method 32
component_width dispatched 32
component_width-Heatmap-method 33
component_width-HeatmapList-method 34
decorate_annotation 34
decorate_column_dend 35
decorate_column_names 36
decorate_column_title 36
decorate_dend 37
decorate_dimnames 38
decorate_heatmap_body 39
decorate_row_dend 40
decorate_row_names 41
decorate_row_title 41
decorate_title 42
densityHeatmap 43
dist2 45
draw dispatched 46
draw-Heatmap-method 46
draw-HeatmapAnnotation-method 47
draw-HeatmapList-method 48
draw-SingleAnnotation-method 50
draw_annotation-Heatmap-method 51
draw_annotation_legend-HeatmapList-method 52
draw_dend-Heatmap-method 53
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw_dimnames-Heatmap-method</td>
<td>54</td>
</tr>
<tr>
<td>draw_heatmap_body-Heatmap-method</td>
<td>55</td>
</tr>
<tr>
<td>draw_heatmap_legend-HeatmapList-method</td>
<td>56</td>
</tr>
<tr>
<td>draw_heatmap_list-HeatmapList-method</td>
<td>56</td>
</tr>
<tr>
<td>draw_title-dispatch</td>
<td>57</td>
</tr>
<tr>
<td>draw_title-Heatmap-method</td>
<td>58</td>
</tr>
<tr>
<td>draw_title-HeatmapList-method</td>
<td>59</td>
</tr>
<tr>
<td>enhanced_basicplot</td>
<td>59</td>
</tr>
<tr>
<td>get_color_mapping_list-HeatmapAnnotation-method</td>
<td>61</td>
</tr>
<tr>
<td>get_color_mapping_param_list-HeatmapAnnotation-method</td>
<td>61</td>
</tr>
<tr>
<td>grid.dendrogram</td>
<td>62</td>
</tr>
<tr>
<td>Heatmap</td>
<td>63</td>
</tr>
<tr>
<td>Heatmap-class</td>
<td>69</td>
</tr>
<tr>
<td>HeatmapAnnotation</td>
<td>71</td>
</tr>
<tr>
<td>HeatmapAnnotation-class</td>
<td>73</td>
</tr>
<tr>
<td>HeatmapList</td>
<td>73</td>
</tr>
<tr>
<td>HeatmapList-class</td>
<td>74</td>
</tr>
<tr>
<td>heatmap_legend_size-HeatmapList-method</td>
<td>76</td>
</tr>
<tr>
<td>ht_global_opt</td>
<td>76</td>
</tr>
<tr>
<td>is.abs.unit</td>
<td>78</td>
</tr>
<tr>
<td>Legend</td>
<td>79</td>
</tr>
<tr>
<td>make_column_cluster-Heatmap-method</td>
<td>80</td>
</tr>
<tr>
<td>make_layout-dispatch</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-Heatmap-method</td>
<td>81</td>
</tr>
<tr>
<td>make_layout-HeatmapList-method</td>
<td>82</td>
</tr>
<tr>
<td>make_row_cluster-Heatmap-method</td>
<td>84</td>
</tr>
<tr>
<td>map_to_colors-ColorMapping-method</td>
<td>85</td>
</tr>
<tr>
<td>max_text_height</td>
<td>86</td>
</tr>
<tr>
<td>max_text_width</td>
<td>87</td>
</tr>
<tr>
<td>oncoPrint</td>
<td>88</td>
</tr>
<tr>
<td>plotDataFrame</td>
<td>89</td>
</tr>
<tr>
<td>prepare-Heatmap-method</td>
<td>91</td>
</tr>
<tr>
<td>rowAnnotation</td>
<td>92</td>
</tr>
<tr>
<td>row_anno_barplot</td>
<td>92</td>
</tr>
<tr>
<td>row_anno_boxplot</td>
<td>93</td>
</tr>
<tr>
<td>row_anno_density</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_histogram</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_link</td>
<td>94</td>
</tr>
<tr>
<td>row_anno_points</td>
<td>95</td>
</tr>
<tr>
<td>row_anno_text</td>
<td>96</td>
</tr>
<tr>
<td>row_dend-dispatch</td>
<td>97</td>
</tr>
<tr>
<td>row_dend-Heatmap-method</td>
<td>97</td>
</tr>
<tr>
<td>row_dend-HeatmapList-method</td>
<td>98</td>
</tr>
<tr>
<td>row_order-dispatch</td>
<td>99</td>
</tr>
<tr>
<td>row_order-Heatmap-method</td>
<td>99</td>
</tr>
<tr>
<td>row_order-HeatmapList-method</td>
<td>100</td>
</tr>
<tr>
<td>selectArea</td>
<td>100</td>
</tr>
<tr>
<td>set_component_height-Heatmap-method</td>
<td>101</td>
</tr>
<tr>
<td>show-ColorMapping-method</td>
<td>102</td>
</tr>
<tr>
<td>show-dispatch</td>
<td>102</td>
</tr>
<tr>
<td>show-Heatmap-method</td>
<td>103</td>
</tr>
<tr>
<td>show-HeatmapAnnotation-method</td>
<td>104</td>
</tr>
</tbody>
</table>
ComplexHeatmap-package

Making complex heatmap

Description

Making complex heatmap

Details

This package aims to provide a simple and flexible way to arrange multiple heatmaps as well as self-defining annotation graphics.

The package is implemented in an object-oriented way. Components of heatmap lists are abstracted into several classes.

- **Heatmap-class**: a single heatmap containing heatmap body, row/column names, titles, dendrograms and column annotations.
- **HeatmapList-class**: a list of heatmaps and row annotations.
- **HeatmapAnnotation-class**: a list of row annotations or column annotations.

There are also several internal classes:

- **SingleAnnotation-class**: a single row annotation or column annotation.
- **ColorMapping-class**: mapping from values to colors.

For plotting one single heatmap, please go to the documentation page of Heatmap. For plotting multiple heatmaps, please go to HeatmapList-class and +.AdditiveUnit.

The vignette provides detailed explanation of how to use this package.

Examples

```r
# There is no example
NULL
```
Description
Add heatmaps or row annotations to a heatmap list

Usage
S3 method for class 'AdditiveUnit'

x + y

Arguments
x
a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.
y
a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details
It is only a helper function. It actually calls add_heatmap,Heatmap-method, add_heatmap,HeatmapList-method or add_heatmap,HeatmapAnnotation-method depending on the class of the input objects.
The HeatmapAnnotation-class object to be added should only be row annotations.

Value
A HeatmapList-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = rowAnnotation(points = row_anno_points(1:12))
ht + ha
ht_list + ha
ha + ha + ht
AdditiveUnit-class

Constructor method for AdditiveUnit class

Description

Constructor method for AdditiveUnit class

Usage

AdditiveUnit(...)

Arguments

... black hole arguments.

Details

This method is not used in the package.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

no example for this function
NULL

AdditiveUnit-class

An internal class

Description

An internal class

Details

This class is a super class for Heatmap-class, HeatmapList-class and HeatmapAnnotation-class classes. It is only designed for a generic method so that above three classes can be appended to each other.

Examples

no example
NULL
add_heatmap-method

Add heatmaps or row annotations as a heatmap list

Usage

S4 method for signature 'Heatmap'
add_heatmap(object, x)

Arguments

object a Heatmap-class object.

x a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details

There is a shortcut function +.AdditiveUnit.

Value

A HeatmapList-class object.
add_heatmap-HeatmapAnnotation-method

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
add_heatmap(ht, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
which = "row")
add_heatmap(ht, ha)
```

Description

Add row annotations or heatmaps as a heatmap list

Usage

```r
## S4 method for signature 'HeatmapAnnotation'
add_heatmap(object, x)
```

Arguments

- `object` - a HeatmapAnnotation-class object.
- `x` - a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details

There is a shortcut function +.AdditiveUnit.

Value

A HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
                      which = "row")
add_heatmap(ha, ht)
```

Description

Add heatmaps and row annotations to the heatmap list

Usage

```r
## S4 method for signature 'HeatmapList'
add_heatmap(object, x)
```

Arguments

- **object**: a `HeatmapList-class` object.
- **x**: a `Heatmap-class` object or a `HeatmapAnnotation-class` object or a `HeatmapList-class` object.

Details

There is a shortcut function `+.AdditiveUnit`.

Value

A `HeatmapList-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht_list = ht + ht
```
add_heatmap(ht_list, ht)

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
add_heatmap(ht_list, ha)

Description

Size of the annotation legend viewport

Usage

```r
## S4 method for signature 'HeatmapList'
annotation_legend_size(object, legend_list = list(), ...)
```

Arguments

- `object` a `HeatmapList-class` object.
- `legend_list` a list of self-defined legend, should be wrapped into `grob` objects.
- `...` graphic parameters passed to `color_mapping_legend`, `ColorMapping-method`.

Details

Legends for all heatmaps or legends for all annotations will be put in one viewport. This function calculates the size of such viewport. Note graphic parameters for legends will affect the size.

This function is only for internal use.

Value

A `unit` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# no example for this internal method
NULL
```
anno_barplot

Using barplot as annotation

Description
Using barplot as annotation

Usage

`anno_barplot(x, baseline = "min", which = c("column", "row"), border = TRUE, bar_width = 0.6, gp = gpar(fill = "#CCCCCC"), ylim = NULL, axis = FALSE, axis_side = NULL, axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"), ...)
``

Arguments

- **x**: a vector of numeric values. If the value is a matrix, columns of the matrix will be represented as stacked barplots. Note for stacked barplots, each row in the matrix should only contain values with same sign (either all positive or all negative).
- **baseline**: baseline for bars. The value should be "min" or "max", or a numeric value. It is enforced to be zero for stacked barplots.
- **which**: is the annotation a column annotation or a row annotation?
- **border**: whether show border of the annotation component
- **bar_width**: relative width of the bars, should less than one
- **gp**: graphic parameters. If it is the stacked barplots, the length of the graphic parameter should be same as the number of stacks.
- **ylim**: data ranges.
- **axis**: whether add axis
- **axis_side**: if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
- **axis_gp**: graphic parameters for axis
- **axis_direction**: if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?
- **...**: for future use.

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
f = anno_barplot(rnorm(10))
grid.newpage(); f(1:10)
```

```r
f = anno_barplot(rnorm(10), which = "row")
grid.newpage(); f(1:10)
```
anno_boxplot

Description

Using boxplot as annotation

Usage

```r
anno_boxplot(x, which = c("column", "row"), border = TRUE,
    gp = gpar(fill = "#CCCCCC", ylim = NULL, outline = TRUE,
    pch = 16, size = unit(2, "mm"), axis = FALSE, axis_side = NULL,
    axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"))
```

Arguments

- `x`: a matrix or a list. If `x` is a matrix and if `which` is column, statistics for boxplot is calculated by columns, if `which` is row, the calculation is by rows.
- `which`: is the annotation a column annotation or a row annotation?
- `border`: whether show border of the annotation component
- `gp`: graphic parameters
- `ylim`: data ranges.
- `outline`: whether draw outliers
- `pch`: point type
- `size`: point size
- `axis`: whether add axis
- `axis_side`: if it is placed as column annotation, value can only be "left" or "right". If it is placed as row annotation, value can only be "bottom" or "top".
- `axis_gp`: graphic parameters for axis
- `axis_direction`: if the annotation is row annotation, should the axis be from left to right (default) or follow the reversed direction?

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(32), nrow = 4)
f = anno_boxplot(mat)
g grid.newpage(); f(1:8)
```

```r
f = anno_boxplot(mat, which = "row")
g grid.newpage(); f(1:4)
```
anno_density

\begin{verbatim}
lit = lapply(1:4, function(i) rnorm(8))
f = anno_boxplot(lit)
grid.newpage(); f(1:4)
\end{verbatim}

anno_density Using kernel density as annotation

Description

Using kernel density as annotation

Usage

anno_density(x, which = c("column", "row"), gp = gpar(fill = "CCCCCC"),
type = c("lines", "violin", "heatmap"), ...)

Arguments

\begin{itemize}
 \item \texttt{x} a matrix or a list. If \texttt{x} is a matrix and if \texttt{which} is column, statistics for density is calculated by columns, if \texttt{which} is row, the calculation is by rows.
 \item \texttt{which} is the annotation a column annotation or a row annotation?
 \item \texttt{gp} graphic parameters. Note it is ignored if \texttt{type} equals to heatmap.
 \item \texttt{type} which type of graphics is used to represent density distribution.
 \item ... pass to \texttt{density}
\end{itemize}

Value

A graphic function which can be set in \texttt{HeatmapAnnotation} constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

\begin{verbatim}
mat = matrix(rnorm(32), nrow = 4)
f = anno_density(mat)
grid.newpage(); f(1:8)

f = anno_density(mat, which = "row", type = "violin")
grid.newpage(); f(1:4)

lt = lapply(1:4, function(i) rnorm(8))
f = anno_density(lit, type = "heatmap")
grid.newpage(); f(1:4)
\end{verbatim}
anno_histogram

Using histogram as annotation

Description

Using histogram as annotation

Usage

anno_histogram(x, which = c("column", "row"), gp = gpar(fill = "#CCCCCC"), ...)

Arguments

- **x**: a matrix or a list. If `x` is a matrix and if which is column, statistics for histogram is calculated by columns, if which is row, the calculation is by rows.
- **which**: is the annotation a column annotation or a row annotation?
- **gp**: graphic parameters
- **...**: pass to `hist`

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(32), nrow = 4)
f = anno_histogram(mat)
grid.newpage(); f(1:8)

f = anno_histogram(mat, which = "row")
grid.newpage(); f(1:4)

lit = lapply(1:4, function(i) rnorm(8))
f = anno_histogram(lit)
grid.newpage(); f(1:4)
```
anno_link

Link annotation with labels

Description

Link annotation with labels

Usage

anno_link(at, labels, which = c("column", "row"), side = ifelse(which == "column", "top", "right")
lines_gp = gpar(), labels_gp = gpar(), padding = 0.25, link_width = NULL)

Arguments

at numeric index in the original matrix
labels corresponding labels
which column annotation or row annotation
side side of the labels. If it is a column annotation, permitted values are "top" and "bottom"; If it is a row annotation, permitted values are "left" and "right".
lines_gp graphic settings for the segments
labels_gp graphic settings for the labels
padding padding between labels if they are attached to each other
link_width width of the segments.

Details

Sometimes there are many rows or columns in the heatmap and we want to mark some of the rows. This annotation function is used to mark these rows and connect labels and corresponding rows with links.

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(10000), nr = 1000)
labels = sample(letters, 20, replace = TRUE)
Heatmap(mat, show_row_dend = FALSE, show_column_dend = FALSE) +
rowAnnotation(link = row_anno_link(at = sample(1000, 20), labels = labels),
width = unit(1, "cm") + max_text_width(labels))
anno_oncoprint_barplot

Column barplot annotation for oncoPrint

Description
Column barplot annotation for oncoPrint

Usage
anno_oncoprint_barplot()

Details
This function is only used for column annotation

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
There is no example
NULL

anno_points

Using points as annotation

Description
Using points as annotation

Usage
anno_points(x, which = c("column", "row"), border = TRUE, gp = gpar(), pch = 16,
size = unit(2, "mm"), ylim = NULL, axis = FALSE, axis_side = NULL,
axis_gp = gpar(fontsize = 8), axis_direction = c("normal", "reverse"), ...)

Arguments
x a vector of numeric values.
which is the annotation a column annotation or a row annotation?
border whether show border of the annotation component
gp graphic parameters.
pch point type.
size point size.
ylim data ranges.
Using text as annotation

Description

Using text as annotation

Usage

```r
anno_text(x, which = c("column", "row"), gp = gpar(), rot = 0,
          just = NULL, offset = unit(0.5, "npc"))
```

Arguments

- `x`: a vector of text
- `which`: is the annotation a column annotation or a row annotation?
- `gp`: graphic parameters.
- `rot`: rotation of text
- `just`: justification of text, pass to `grid.text`
- `offset`: if it is a row annotation, offset corresponds to the x-coordinates of text. and if it is a column annotation, offset corresponds to the y-coordinates of text. The value should be a `unit` object.

Value

A graphic function which can be set in `HeatmapAnnotation` constructor method.
ColorMapping

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
colnames(mat) = letters[1:10]
rownames(mat) = LETTERS[1:10]
long_cn = do.call("paste0", rep(list(colnames(mat)), 4)) # just to construct long text
ha_rot_cn = HeatmapAnnotation(text = anno_text(long_cn, rot = 45, offset = unit(5, "mm")))
Heatmap(mat, name = "foo", top_annotation = ha_rot_cn, top_annotation_height = unit(1.2, "cm"))
```

ColorMapping

Constructor methods for ColorMapping class

Description

Constructor methods for ColorMapping class

Usage

```r
ColorMapping(name, colors = NULL, levels = NULL,
             col_fun = NULL, breaks = NULL, na_col = "#FFFFFF")
```

Arguments

- **name**: name for this color mapping. The name is automatically generated if it is not specified.
- **colors**: discrete colors.
- **levels**: levels that correspond to colors. If colors is name indexed, levels can be ignored.
- **col_fun**: color mapping function that maps continuous values to colors.
- **breaks**: breaks for the continuous color mapping. If col_fun is generated by `colorRamp2`, breaks can be ignored.
- **na_col**: colors for NA values.

Details

- colors and levels are used for discrete color mapping. col_fun and breaks are used for continuous color mapping.

Value

A **ColorMapping-class** object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))

ColorMapping-class

Class to map values to colors

Description

Class to map values to colors

Details

The ColorMapping-class handles color mapping with both discrete values and continuous values. Discrete values are mapped by setting a vector of colors and continuous values are mapped by setting a color mapping function.

Methods

The ColorMapping-class provides following methods:

- **ColorMapping**: constructor methods.
- **map_to_colors**, **ColorMapping-method**: mapping values to colors.
- **color_mapping_legend**, **ColorMapping-method**: draw legend or get legend as a grob object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

for examples, please go to `ColorMapping` method page
NULL
Draw legend based on color mapping

Usage

```r
## S4 method for signature 'ColorMapping'
color_mapping_legend(object, ..., 
plot = TRUE, 
title = object@name, 
title_gp = gpar(fontsize = 10, fontface = "bold"), 
title_position = c("topleft", "topcenter", "leftcenter", "lefttop"), 
color_bar = c("discrete", "continuous"), 
grid_height = unit(4, "mm"), 
grid_width = unit(4, "mm"), 
grid_border = NULL, 
at = object@levels, 
labels = at, 
labels_gp = gpar(fontsize = 10), 
nrow = NULL, 
ncol = 1, 
legend_height = NULL, legend_width = NULL, 
legend_direction = c("vertical", "horizontal"), 
param = NULL)
```

Arguments

- `object`: a `ColorMapping` object.
- `plot`: whether to plot or just return the size of the legend viewport.
- `title`: title of the legend, by default it is the name of the legend.
- `title_gp`: graphical parameters for legend title.
- `title_position`: position of the title.
- `color_bar`: if the mapping is continuous, whether show the legend as discrete color bar or continuous color bar.
- `grid_height`: height of each legend grid.
- `grid_width`: width of each legend grid.
- `grid_border`: color for legend grid borders.
- `at`: break values of the legend.
- `labels`: labels corresponding to break values.
- `labels_gp`: graphical parameters for legend labels.
- `nrow`: if there are too many legend grids, they can be put as an array, this controls number of rows.
ncol if there are too many legend grids, they can be put as an array, this controls number of columns

legend_height height of the legend, only works when color_bar is continuous and direction is vertical

legend_width width of the legend, only works when color_bar is continuous and direction is horizontal

legend_direction when color_bar is continuous, should the legend be vertical or horizontal?

param will be parsed if the parameters are specified as a list

... pass to viewport.

Details

A viewport is created which contains a legend title, legend grids and corresponding labels.

This function will be improved in the future to support more types of legends.

Value

A grob object which contains the legend

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

discrete color mapping for characters
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c("a", "b", "c"))
grid.newpage()
color_mapping_legend(cm)

discrete color mapping for numeric values
cm = ColorMapping(name = "test",
 colors = c("blue", "white", "red"),
 levels = c(1, 2, 3))
grid.newpage()
color_mapping_legend(cm)

continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
 col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
grid.newpage()
color_mapping_legend(cm, title_gp = gpar(fontsize = 16))
columnAnnotation

Description

Construct column annotations

Usage

```r
columnAnnotation(...)  
```

Arguments

`...`

pass to `HeatmapAnnotation`

Details

The function is identical to

```r
HeatmapAnnotation(..., which = "column")  
```

Value

A `HeatmapAnnotation-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = rowAnnotation(df = df)
```

column_anno_barplot

Description

Column annotation which is represented as barplots

Usage

```r
column_anno_barplot(...)  
```

Arguments

`...`

pass to `anno_barplot`
Details

A wrapper of `anno_barplot` with pre-defined `which` to column.

Value

See help page of `anno_barplot`.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL
column_anno_density
Column annotation which is represented as density plot

Description
Column annotation which is represented as density plot

Usage
column_anno_density(...)

Arguments
... pass to anno_density

Details
A wrapper of anno_density with pre-defined which to column.

Value
See help page of anno_density

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example
NULL

column_anno_histogram
Column annotation which is represented as histogram

Description
Column annotation which is represented as histogram

Usage
column_anno_histogram(...)

Arguments
... pass to anno_histogram

Details
A wrapper of anno_histogram with pre-defined which to column.
column_anno_link

Value

See help page of `anno_histogram`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL
```

column_anno_link *Column annotation which is represented as links*

Description

Column annotation which is represented as links

Usage

```r
column_anno_link(...)```

**Arguments**

```r
... pass to anno_link```

Details

A wrapper of `anno_link` with pre-defined `which` to `column`.

Value

See help page of `anno_link`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
# There is no example
NULL```
column_anno_points  Column annotation which is represented as points

Description
Column annotation which is represented as points

Usage
column_anno_points(...)

Arguments
...     pass to anno_points

Details
A wrapper of anno_points with pre-defined which to column.

Value
See help page of anno_points

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

column_anno_text  Column annotation which is represented as text

Description
Column annotation which is represented as text

Usage
column_anno_text(...)  

Arguments
...     pass to anno_text

Details
A wrapper of anno_text with pre-defined which to column.
Value

See help page of anno_text

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

column_dend-dispatch  Method dispatch page for column_dend

description

Method dispatch page for column_dend.

Dispatch

column_dend can be dispatched on following classes:

• column_dend,HeatmapList-method,HeatmapList-class class method
• column_dend,Heatmap-method,Heatmap-class class method

Examples

# no example
NULL

column_dend-Heatmap-method

Get column dendrograms from a heatmap

description

Get column dendrograms from a heatmap

Usage

## S4 method for signature 'Heatmap'
column_dend(object)

Arguments

object  a Heatmap-class object
Value
A dendrogram object

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
column_dend(ht)
ht = Heatmap(mat, km = 2)
column_dend(ht)

Description
Get column dendrograms from a heatmap list

Usage
## S4 method for signature 'HeatmapList'
column_dend(object)

Arguments
object a HeatmapList-class object

Value
A list of dendrograms for which dendrogram corresponds to each matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
column_dend(ht_list)
ht_list = Heatmap(mat, km = 2) + Heatmap(mat)
column_dend(ht_list)
Method dispatch page for column_order

Description

Method dispatch page for column_order.

Dispatch

column_order can be dispatched on following classes:

- `column_order,HeatmapList-method,HeatmapList-class` class method
- `column_order,Heatmap-method,Heatmap-class` class method

Examples

# no example
NULL

Get column order from a heatmap list

Description

Get column order from a heatmap list

Usage

```r
S4 method for signature 'Heatmap'
column_order(object)
```

Arguments

- `object` a `Heatmap-class` object

Value

A vector containing column orders

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
column_order(ht)
ht = Heatmap(mat, km = 2)
column_order(ht)
```
column_order-HeatmapList-method

Get column order from a heatmap list

Description
Get column order from a heatmap list

Usage
## S4 method for signature 'HeatmapList'
column_order(object)

Arguments
object
a HeatmapList-class object

Value
A list contains column orders which correspond every matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
column_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
column_order(ht_list)

component_height-dispatch

Method dispatch page for component_height

Description
Method dispatch page for component_height.

Dispatch
component_height can be dispatched on following classes:

- component_height,HeatmapList-method,HeatmapList-class class method
- component_height,Heatmap-method,Heatmap-class class method
**component_height-Heatmap-method**

*Height of each heatmap component*

---

### Description

Height of each heatmap component

### Usage

```r
S4 method for signature 'Heatmap'
component_height(object, k = 1:9)
```

### Arguments

- **object**: a `Heatmap-class` object.
- **k**: which component in the heatmap, see `Heatmap-class`.

### Details

This function is only for internal use.

### Value

A `unit` object.

### Author(s)

Zuguang Gu <z.gu@dkfz.de>

### Examples

```r
no example for this internal method
```
**component_height-HeatmapList-method**

*Height of each heatmap list component*

**Description**
Height of each heatmap list component

**Usage**
```r
S4 method for signature 'HeatmapList'
component_height(object, k = 1:7)
```

**Arguments**
- `object`: a `HeatmapList-class` object.
- `k`: which component in the heatmap list, see `HeatmapList-class`.

**Value**
A `unit` object

**Author(s)**
Zuguang Gu &lt;z.gu@dkfz.de&gt;

**Examples**
```r
no example for this internal method
```

---

**component_width-dispatch**

*Method dispatch page for component_width*

**Description**
Method dispatch page for component_width.

**Dispatch**
component_width can be dispatched on following classes:
- `component_width,HeatmapList-method,HeatmapList-class` class method
- `component_width,Heatmap-method,Heatmap-class` class method

**Examples**
```r
no example
NULL
```
### Description

Width of each heatmap component

### Usage

```r
S4 method for signature 'Heatmap'
component_width(object, k = 1:7)
```

### Arguments

- `object`: a `Heatmap-class` object.
- `k`: which component in the heatmap, see `Heatmap-class`.

### Details

This function is only for internal use.

### Value

A `unit` object.

### Details

This function is only for internal use.

### Author(s)

Zuguang Gu <z.gu@dkfz.de>

### Examples

# no example for this internal method
component_width-HeatmapList-method

Width of each heatmap list component

Description
Width of each heatmap list component

Usage
## S4 method for signature 'HeatmapList'
component_width(object, k = 1:7)

Arguments
object               a HeatmapList-class object.
k                 which component in the heatmap list, see HeatmapList-class.

Details
This function is only for internal use.

Value
A unit object

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# no example for this internal method

decorate_annotation

Decorate the heatmap annotation

Description
Decorate the heatmap annotation

Usage
decorate_annotation(annotation, code, slice)

Arguments
annotation     name of the annotation
code          code that adds graphics in the selected heatmap body
slice         index of row slices in the heatmap
Details

There is a viewport for every column annotation and row annotation. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
ha1 = HeatmapAnnotation(df = data.frame(type = rep(letters[1:2], 5)))
ha2 = rowAnnotation(point = anno_points(runif(10), which = "row"))
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2,
 top_annotation = ha1) + ha2
decorate_annotation("type", {
 grid.circle(x = unit(c(0.2, 0.4, 0.6, 0.8), "npc"),
 gp = gpar(fill = "#FF000080"))
})
decorate_annotation("point", {
 grid.rect(gp = gpar(fill = "#FF000080"))
}, slice = 2)
```

---

decorate_column_dend  Decorate heatmap dendrogram on columns

Description

Decorate heatmap dendrogram on columns

Usage

decorate_column_dend(...)  

Arguments

... pass to `decorate_dend`

Details

This is a wrapper function which pre-defined which argument in `decorate_dend`.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
**decorate_column_names**  
*Decorate heatmap column names*

**Description**
Decorate heatmap column names

**Usage**
```r
decorate_column_names(...)```

Arguments

... pass to `decorate_dimnames`

Details
This is a helper function which pre-defined which argument in `decorate_dimnames`.

Value
The function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

No example for this function
NULL

decorate_column_title
Decorate heatmap column title

Description
Decorate heatmap column title

Usage
```r
decorate_column_title(...)```

**Arguments**

... pass to `decorate_title`


**Details**

This is a helper function which pre-defined which argument in `decorate_title`.

**Value**

The function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
No example for this function
NULL
```

---

**Descripion**

Decorate the heatmap dendrogram

**Usage**

```r
decorate_dend(heatmap, code, slice = 1, which = c("column", "row"))
```

**Arguments**

- `heatmap`: name of the heatmap
- `code`: code that adds graphics in the selected heatmap body
- `slice`: index of row slices in the heatmap
- `which`: on rows or on columns?

**Details**

There is a viewport for each dendrogram in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the number of leaves in the dendrogram, it is simple to calculate the position of every leave in the dendrogram. E.g., for the column dendrogram, the i^{th} leave is located at:

```r
assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

**Value**

This function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_dend("mat", {
 grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

---

**decorate_dimnames**  
Decorate the heatmap dimension names

**Description**

Decorate the heatmap dimension names

**Usage**

```r
decorate_dimnames(heatmap, code, slice = 1, which = c("column", "row"))
```

**Arguments**

- `heatmap` name of the heatmap
- `code` code that adds graphics in the selected heatmap body
- `slice` index of row slices in the heatmap
- `which` on rows or on columns?

**Details**

There is a viewport for row names and column names in the heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the dimensions of the matrix, it is simple to calculate the position of every row name or column name in the heatmap. E.g., for the column column, the i\(^{th}\) name is located at:

```r
assume nc is the number of columns
unit((i-0.5)/nc, "npc")
```

**Value**

The function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
set.seed(123)
mat = matrix(rnorm(100), 10)
rownames(mat) = letters[1:10]
colnames(mat) = LETTERS[1:10]
Heatmap(mat, name = "mat", km = 2)

decorate_dimnames("mat", {
 grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

**Description**

Decorate the heatmap body

**Usage**

```r
decorate_heatmap_body(heatmap, code, slice = 1)
```

**Arguments**

- `heatmap` name of the heatmap which is set as `name` option in `Heatmap` function
- `code` code that adds graphics in the selected heatmap body
- `slice` index of row slices in the heatmap if it is split by rows

**Details**

There is a viewport for each row slice in each heatmap. This function constructs the name of the viewport, goes to the viewport by `seekViewport` and applies code to that viewport.

If you know the number of rows and columns for that row slice, it is simple to calculate the position of every small grid in the row slice. E.g., the position for the grid in i\(^{\text{th}}\) row and j\(^{\text{th}}\) column is:

```r
assume nc is the number of columns
and nr is the number of rows in that row slice
unit((i-0.5)/nc, "npc")
unit((j-0.5)/nr, "npc")

the width is
unit(1/nc, "npc")

the height is
unit(1/nr, "npc")
```

**Value**

This function returns no value.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat")
decorate_heatmap_body("mat", {
 grid.circle(gp = gpar(fill = "#FF000080"))
})
```

---

**decorate_row_dend**

*Decorate heatmap dendrogram on rows*

Description

Decorate heatmap dendrogram on rows

Usage

`decorate_row_dend(...)`

Arguments

`...` pass to `decorate_dend`

Details

This is a helper function which pre-defined which argument in `decorate_dend`.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
No example for this function
NULL
```
**decorate_row_names**  
Decorate heatmap row names

**Usage**
```
decorate_row_names(...)
```

**Arguments**
```
...
```
pass to `decorate_dimnames`

**Details**
This is a helper function which pre-defined which argument in `decorate_dimnames`.

**Value**
The function returns no value.

**Author(s)**
Zuguang Gu <z.gu@dkfz.de>

**Examples**
```
No example for this function
NULL
```

---

**decorate_row_title**  
Decorate heatmap row title

**Usage**
```
decorate_row_title(...)
```

**Arguments**
```
...
```
pass to `decorate_title`

**Details**
This is a helper function which pre-defined which argument in `decorate_title`. 
Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# No example for this function
NULL

decorate_title

Decorate the heatmap title

Description

Decorate the heatmap title

Usage

decorate_title(heatmap, code, slice = 1, which = c("column", "row"))

Arguments

heatmap name of the heatmap
code code that adds graphics in the selected heatmap body
slice index of row slices in the heatmap
which on rows or on columns?

Details

There is a viewport for row titles and column title in the heatmap. This function constructs the name of the viewport, goes to the viewport by seekViewport and applies code to that viewport.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_title("mat", {
  grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
densityHeatmap

Use colors to represent density distribution

Description

Use colors to represent density distribution

Usage
densityHeatmap(data, 
col = rev(brewer.pal(11, "Spectral")), 
color_space = "LAB", 
anno = NULL, 
ylab = deparse(substitute(data)), 
title = paste0("Density heatmap of ", deparse(substitute(data))), 
rangle = c(-Inf, Inf), 
cluster_columns = FALSE, 
clustering_distance_columns = "euclidean", 
clustering_method_columns = "complete", 
column_dend_side = "top", 
column_dend_height = unit(10, "mm"), 
show_column_dend = FALSE, 
column_dend_gp = gpar(), 
column_dend reorder = TRUE, 
column_names_side = c("bottom", "top"), 
show_column_names = TRUE, 
column_names_max_height = unit(4, "cm"), 
column_names_gp = gpar(fontsize = 12), 
column_order = NULL,
...)

Arguments
data a matrix or a list. If it is a matrix, density will be calculated by columns.
col a list of colors that density values are mapped to.
color_space the color space in which colors are interpolated. Pass to colorRamp2.
anno annotation for the matrix columns or the list. The value should be a vector or
a data frame and colors for annotations are randomly assigned. If you want
to customize the annotation colors, use a HeatmapAnnotation-class object
directly.
ylab label on y-axis in the plot
title title of the plot
range ranges on the y-axis. By default the range is between 1th quantile and 99th
quantile of the data.
cluster_columns whether cluster columns (here cluster by density distributions)
clustering_distance_columns pass to Heatmap
densityHeatmap

clustering_method_columns
  pass to Heatmap

column_dend_side
  pass to Heatmap

column_dend_height
  pass to Heatmap

densityHeatmap
  pass to Heatmap

column_dend_gp
  pass to Heatmap

column_dend_reorder
  pass to Heatmap

column_names_side
  pass to Heatmap

densityHeatmap
  pass to Heatmap

column_names_max_height
  pass to Heatmap

column_names_gp
  pass to Heatmap

column_order
  order of columns
  pass to draw,HeatmapList-method

Details

To visualize data distribution in a matrix or in a list, sometimes we use boxplot or beanplot. Here we use colors to map the density values and visualize distribution of values in each column (or each vector in the list) through a heatmap. It is useful if you have huge number of columns in data to visualize.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
densityHeatmap(matrix, anno = rep(c("A", "B"), each = 5))
densityHeatmap(matrix, col = c("white", "red"), anno = rep(c("A", "B"), each = 5))

ha = HeatmapAnnotation(points = anno_points(runif(10)),
 anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, anno = ha)

lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)
```
**dist2**

**Calculate pairwise distance from a matrix**

**Description**

Calculate pairwise distance from a matrix

**Usage**

```r
dist2(mat, pairwise_fun = function(x, y) sqrt(sum((x - y)^2)), ...)
```

**Arguments**

- `mat` a matrix. The distance is calculated by rows.
- `pairwise_fun` a function which calculates distance between two vectors.
- `...` pass to `as.dist`.

**Details**

You can construct any type of distance measurements by defining a pair-wise distance function. The function is implemented by two nested for loops, so the efficiency may not be so good.

**Value**

A `dist` object.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
mat = matrix(rnorm(40), nr = 4, ncol = 10)
rownames(mat) = letters[1:4]
colnames(mat) = letters[1:10]

d2 = dist2(mat)
d2 = dist2(mat, pairwise_fun = function(x, y) 1 - cor(x, y))
distance only calculated within 10 and 90 quantile of each vector
d2 = dist2(mat, pairwise_fun = function(x, y) {
 q1 = quantile(x, c(0.1, 0.9))
 q2 = quantile(y, c(0.1, 0.9))
 sqrt(sum((x[l] - y[l])^2))
})
```
**draw-Heatmap-method**

---

**draw-dispatch**

Method dispatch page for `draw`.

**Description**

Method dispatch page for `draw`.

**Dispatch**

draw can be dispatched on following classes:

- `draw,HeatmapAnnotation-method, HeatmapAnnotation-class` class method
- `draw,SingleAnnotation-method, SingleAnnotation-class` class method
- `draw,HeatmapList-method, HeatmapList-class` class method
- `draw,Heatmap-method, Heatmap-class` class method

**Examples**

# no example

NULL

---

**draw-Heatmap-method**

Draw a single heatmap

---

**Description**

Draw a single heatmap

**Usage**

```r
S4 method for signature 'Heatmap'
draw(object, internal = FALSE, test = FALSE, ...)
```

**Arguments**

- `object` a `Heatmap-class` object.
- `internal` only used inside the calling of `draw,HeatmapList-method`. Only heatmap without legends will be drawn.
- `test` only for testing
- `...` pass to `draw,HeatmapList-method`.

**Details**

The function creates a `HeatmapList-class` object which only contains a single heatmap and call `draw,HeatmapList-method` to make the final heatmap.
Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
draw(ht, heatmap_legend_side = "left")

Description

Draw the heatmap annotations

Usage

## S4 method for signature 'HeatmapAnnotation'
draw(object, index, k = NULL, n = NULL, align_to = "bottom", ...)

Arguments

object a HeatmapAnnotation-class object.
index a vector of order.
k if row annotation is splitted, the value identifies which row slice.
n total number of row slices.
align_to if the allocated space is more than than the column annotation itself, should the viewport be aligned to the top or bottom?
... pass to viewport which contains all annotations.

Details

A viewport is created. Mostly, this method is used inside draw,HeatmapList-method.

Value

No value is returned.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

```r
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)
grid.newpage(); draw(ha, 1:6)
grid.newpage(); draw(ha, 6:1)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")),
 which = "row")
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(points = anno_points(1:6))
grid.newpage(); draw(ha, 1:6)

ha = HeatmapAnnotation(histogram = anno_barplot(1:6))
grid.newpage(); draw(ha, 1:6)

mat = matrix(rnorm(36), 6)
ha = HeatmapAnnotation(boxplot = anno_boxplot(mat))
grid.newpage(); draw(ha, 1:6)
```

---

### draw-HeatmapList-method

**Draw a list of heatmaps**

**Description**

Draw a list of heatmaps

**Usage**

```r
S4 method for signature 'HeatmapList'
draw(object,
 padding = unit(c(2, 2, 2, 2), "mm"),
 newpage = TRUE,
 row_title = character(0),
 row_title_side = c("left", "right"),
 row_title_gp = gpar(fontsize = 14),
 column_title = character(0),
 column_title_side = c("top", "bottom"),
 column_title_gp = gpar(fontsize = 14),
 heatmap_legend_side = c("right", "left", "bottom", "top"),
 show_heatmap_legend = TRUE,
 heatmap_legend_list = list(),
 annotation_legend_side = c("right", "left", "bottom", "top"),
 annotation_legend_list = list())
```
show_annotation_legend = TRUE,
annotation_legend_list = list(),
gap = unit(3, "mm"),
main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
row_dend_side = c("original", "left", "right"),
row_sub_title_side = c("original", "left", "right"), ...)

Arguments

object a **HeatmapList-class** object

padding padding of the plot. Elements correspond to bottom, left, top, right paddings.

newpage whether create a new page for the graphics.

row_title title on the row.

row_title_side will the title be put on the left or right of the heatmap.

row_title_gp graphic parameters for drawing text.

column_title title on the column.

column_title_side will the title be put on the top or bottom of the heatmap.

column_title_gp graphic parameters for drawing text.

heatmap_legend_side side of the heatmap legend.

show_heatmap_legend whether show heatmap legend.

heatmap_legend_list a list of self-defined legend, should be wrapped into **grob** objects.

annotation_legend_side side of annotation legend.

show_annotation_legend whether show annotation legend.

annotation_legend_list a list of self-defined legend, should be wrapped into **grob** objects.

gap gap between heatmaps, should be a **unit** object.

main_heatmap name or index for the main heatmap

row_dend_side if auto adjust, where to put the row dendograms for the main heatmap

row_sub_title_side if auto adjust, where to put sub row titles for the main heatmap

... pass to **make_layout,HeatmapList-method**

Details

The function first calls **make_layout,HeatmapList-method** to calculate the layout of the heatmap list and the layout of every single heatmap, then makes the plot by re-calling the graphic functions which are already recorded in the layout.

Value

This function returns a list of row dendrograms and column dendrogram.
**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
colnames(mat) = letters[1:10]
rownames(mat) = letters[1:12]
ht = Heatmap(mat)
ht_list = ht + ht
draw(ht_list)
draw(ht_list, row_title = "row title", column_title = "column title",
 heatmap_legend_side = "top")
```

**Description**

Draw the single annotation

**Usage**

```r
S4 method for signature 'SingleAnnotation'
draw(object, index, k = NULL, n = NULL)
```

**Arguments**

- `object`: a `SingleAnnotation-class` object.
- `index`: a vector of orders
- `k`: if row annotation is splitted, the value identifies which row slice. It is only used for the names of the viewport which contains the annotation graphics.
- `n`: total number of row slices

**Details**

A viewport is created.

The graphics would be different depending the annotation is a row annotation or a column annotation.

**Value**

No value is returned.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>
Examples

```r
anno = SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
 col = c("a" = "red", "b" = "blue"))
grid.newpage(); draw(anno, 1:5)
grid.newpage(); draw(anno, c(1, 4, 3, 5, 2))

anno = SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
 col = c("a" = "red", "b" = "blue"), which = "row")
grid.newpage(); draw(anno, 1:5)

anno = SingleAnnotation(value = 1:10)
grid.newpage(); draw(anno, 1:10)
require(circlize)
anno = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
grid.newpage(); draw(anno, 1:10)

anno = SingleAnnotation(fun = anno_points(1:10))
grid.newpage(); draw(anno, 1:10)
```

---

**Description**

Draw column annotations

**Usage**

```r
S4 method for signature 'Heatmap'
draw_annotation(object, which = c("top", "bottom"))
```

**Arguments**

- `object` a `Heatmap-class` object.
- `which` are the annotations put on the top or bottom of the heatmap?

**Details**

A viewport is created which contains column annotations. Since the column annotations is a `HeatmapAnnotation-class` object, the function calls `draw,HeatmapAnnotation-method` to draw the annotations. This function is only for internal use.

**Value**

This function returns no value.
Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# no example for this internal method
NULL

draw_annotation_legend-HeatmapList-method

Draw legends for all column annotations

Description
Draw legends for all column annotations

Usage
## S4 method for signature 'HeatmapList'
draw_annotation_legend(object, legend_list = list(), ...)

Arguments
- object: a \texttt{HeatmapList-class} object
- legend_list: a list of self-defined legend, should be wrapped into \texttt{grob} objects.
- ...: graphic parameters passed to \texttt{color_mapping_legend,ColorMapping-method}.

Details
A viewport is created which contains annotation legends.
This function is only for internal use.

Value
This function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# no example for this internal method
NULL
Description

Draw dendrogram on row or column

Usage

```r
S4 method for signature 'Heatmap'
draw_dend(object,
 which = c("row", "column"), k = 1, max_height = NULL, ...)
```

Arguments

- `object`: a `Heatmap-class` object.
- `which`: is dendrogram put on the row or on the column of the heatmap?
- `k`: a matrix may be splitted by rows, the value identifies which row-slice.
- `max_height`: maximum height of the dendrograms.
- `...`: pass to `viewport`, basically for defining the position of the viewport.

Details

If the matrix is split into several row slices, a list of dendrograms will be drawn by the heatmap that each dendrogram corresponds to its row slices.

A viewport is created which contains dendrograms.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

`grid.dendrogram`

Examples

```r
There is no example
NULL
```
draw_dimnames-Heatmap-method

*Draw row names or column names*

**Description**

Draw row names or column names

**Usage**

```r
S4 method for signature 'Heatmap'
draw_dimnames(object,
 which = c("row", "column"), k = 1, dimname_padding = unit(0, "mm"), ...)
```

**Arguments**

- `object`: a `Heatmap-class` object.
- `which`: are names put on the row or on the column of the heatmap?
- `k`: a matrix may be split by rows, the value identifies which row-slice.
- `dimname_padding`: padding for the row/column names
- `...`: pass to `viewport`, basically for defining the position of the viewport.

**Details**

A viewport is created which contains row names or column names.

This function is only for internal use.

**Value**

This function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
no example for this internal method
NULL
```
draw_heatmap_body-Heatmap-method

Draw the heatmap body

Description

Draw the heatmap body

Usage

## S4 method for signature 'Heatmap'
draw_heatmap_body(object, k = 1, ...)

Arguments

object       a Heatmap-class object.
k           a matrix may be split by rows, the value identifies which row-slice.
...         pass to viewport, basically for defining the position of the viewport.

Details

The matrix can be split into several parts by rows if km or split is specified when initializing the Heatmap object. If the matrix is split, there will be gaps between rows to identify different row-slice.

A viewport is created which contains subset rows of the heatmap.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# no example for this internal method
NULL
**draw_heatmap_legend-HeatmapList-method**

*Draw legends for all heatmaps*

**Description**

Draw legends for all heatmaps

**Usage**

```r
S4 method for signature 'HeatmapList'
draw_heatmap_legend(object, legend_list = list(), ...)
```

**Arguments**

- `object`: a `HeatmapList-class` object
- `legend_list`: a list of self-defined legend, should be wrapped into `grob` objects.
- `...`: graphic parameters passed to `color_mapping_legend,ColorMapping-method`.

**Details**

A viewport is created which contains heatmap legends. This function is only for internal use.

**Value**

This function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
no example for this internal method
NULL
```

---

**draw_heatmap_list-HeatmapList-method**

*Draw the list of heatmaps*

**Description**

Draw the list of heatmaps

**Usage**

```r
S4 method for signature 'HeatmapList'
draw_heatmap_list(object)
```
Arguments

object 
a HeatmapList-class object

Details

A viewport is created which contains heatmaps.
This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# no example for this internal method
NULL

draw_title-dispatch Method dispatch page for draw_title

Description

Method dispatch page for draw_title.

Dispatch

draw_title can be dispatched on following classes:

* draw_title,HeatmapList-method,HeatmapList-class class method
* draw_title,Heatmap-method,Heatmap-class class method

Examples

# no example
NULL
**draw_title-Heatmap-method**

*Draw heatmap title*

**Description**

Draw heatmap title

**Usage**

```r
S4 method for signature 'Heatmap'
draw_title(object,
 which = c("row", "column"), k = 1, ...)
```

**Arguments**

- `object`: a `Heatmap`-class object.
- `which`: is title put on the row or on the column of the heatmap?
- `k`: a matrix may be split by rows, the value identifies which row-slice.
- `...`: pass to `viewport`, basically for defining the position of the viewport.

**Details**

A viewport is created which contains heatmap title.

This function is only for internal use.

**Value**

This function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
no example for this internal method
NULL
```
Draw heatmap list title

Usage

## S4 method for signature 'HeatmapList'

```r
draw_title(object,
 which = c("column", "row"))
```

Arguments

- **object**: a `HeatmapList-class` object
- **which**: dendrogram on the row or on the column of the heatmap

Details

A viewport is created which contains heatmap list title.
This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# no example for this internal method
NULL

---

**enhanced_basicplot**  
Enhanced version of basic barplot and boxplot

Description

Enhanced version of basic barplot and boxplot
Usage

```r
enhanced_basicplot(data, ..., ylim = NULL,
 ylab = deparse(substitute(data)), title = NULL, title_gp = gpar(fontsize = 14),
 type = c("boxplot", "barplot"), width = 0.8, gp = gpar(),
 pch = 1, size = unit(2, "mm"), axis_gp = gpar(fontsize = 8),
 padding = unit(c(2, 18, 2, 2), "mm"),
 heatmap_legend_list = list())
```

Arguments

- `data`: a matrix, a list or a simple numeric vector. If your data is a data frame please convert it to a matrix in the first place.
- `...`: pass to `Heatmap`
- `ylim`: ranges on y axis
- `ylab`: label on y axis
- `title`: title of the plot
- `title_gp`: graphic parameters for the title
- `type`: type of the plot
- `width`: relative width of the bar or box
- `gp`: graphic parameters for the bar or box
- `pch`: shape of outlier points in the boxplot
- `size`: size of hte outlier points in the boxplot
- `axis_gp`: graphic parameters for the axis
- `padding`: padding of the plot
- `heatmap_legend_list`: a list of `grob` which contains legend. It can be generated by `color_mapping_legend, ColorMapping-`

Details

This function adds annotations to the barplot or boxplot.
This function is still quite experimental.

Value

No value is returned

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(runif(100), 10)
enhanced_basicplot(mat)
ha = HeatmapAnnotation(char = sample(letters[1:2], 10, replace = TRUE),
 num = runif(10))
enhanced_basicplot(mat, top_annotation = ha)
enhanced_basicplot(mat, type = "barplot", top_annotation = ha)
```
**get_color_mapping_list**-HeatmapAnnotation-method

*Get a list of color mapping objects*

**Description**
Get a list of color mapping objects

**Usage**
```r
S4 method for signature 'HeatmapAnnotation'
get_color_mapping_list(object)
```

**Arguments**
- `object`: a *HeatmapAnnotation-class* object.

**Details**
Color mapping for visible simple annotations are only returned.
This function is only for internal use.

**Value**
A list of *ColorMapping-class* objects or an empty list.

**Author(s)**
Zuguang Gu <z.gu@dkfz.de>

**Examples**
```r
no example for this internal method
NULL
```

---

**get_color_mapping_param_list**-HeatmapAnnotation-method

*Get a list of color mapping parameters*

**Description**
Get a list of color mapping parameters

**Usage**
```r
S4 method for signature 'HeatmapAnnotation'
get_color_mapping_param_list(object)
```
Arguments

object  a HeatmapAnnotation-class object.

Details

Color mapping parameters for visible simple annotations are only returned. This function is only for internal use.

Value

A list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

grid.dendrogram  

Draw dendrogram under grid system

Description

Draw dendrogram under grid system

Usage

grid.dendrogram(dend, facing = c("bottom", "top", "left", "right"), max_height = NULL, order = c("normal", "reverse"), ...)

Arguments

dend  a dendrogram object.
facing  facing of the dendrogram.
max_height  maximum height of the dendrogram. It is useful to make dendrograms comparable if you want to plot more than one dendrograms. Height for each dendrogram can be obtained by attr(dend, "height").
order  should leaves of dendrogram be put in the normal order (1, ..., n) or reverse order (n, ..., 1)? It may matters for the dendrograms putting on left and right.
...  pass to viewport which contains the dendrogram.

Details

The dendrogram can be rendered (e.g. by dendextend package). A viewport is created which contains the dendrogram. This function only plots the dendrogram without adding labels. The leaves of the dendrogram locates at unit(c(0.5, 1.5, ..., (n-0.5))/n, "npc").
Heatmap

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

hc = hclust(dist(USArrests[1:5, ]))
dend = as.dendrogram(hc)

grid.newpage()
layout = grid.layout(nrow = 2, ncol = 2)
pushViewport(viewport(layout = layout))
grid.dendrogram(dend, layout.pos.row = 1, layout.pos.col = 1)
grid.dendrogram(dend, facing = "top", layout.pos.row = 1, layout.pos.col = 2)
grid.dendrogram(dend, facing = "top", order = "reverse", layout.pos.row = 2,
layout.pos.col = 1)
grid.dendrogram(dend, facing = "left", layout.pos.row = 2, layout.pos.col = 2)
upViewport()
row_dend_gp = gpar(),
row_hclust_side = row_dend_side,
row_hclust_width = row_dend_width,
show_row_hclust = show_row_dend,
row_hclust_reorder = row_dend_reorder,
row_hclust_gp = row_dend_gp,
cluster_columns = TRUE,
clustering_distance_columns = "euclidean",
clustering_method_columns = "complete",
column_dend_side = c("top", "bottom"),
column_dend_height = unit(10, "mm"),
show_column_dend = TRUE,
column_dend_gp = gpar(),
column_dend_reorder = TRUE,
column_hclust_side = column_dend_side,
column_hclust_height = column_dend_height,
show_column_hclust = show_column_dend,
column_hclust_gp = column_dend_gp,
column_hclust_reorder = column_dend_reorder,
row_order = NULL,
column_order = NULL,
row_names_side = c("right", "left"),
show_row_names = TRUE,
row_names_max_width = unit(4, "cm"),
row_names_gp = gpar(fontsize = 12),
column_names_side = c("bottom", "top"),
show_column_names = TRUE,
column_names_max_height = unit(4, "cm"),
column_names_gp = gpar(fontsize = 12),
top_annotation = new("HeatmapAnnotation"),
top_annotation_height = top_annotation@size,
bottom_annotation = new("HeatmapAnnotation"),
bottom_annotation_height = bottom_annotation@size,
km = 1,
split = NULL,
gap = unit(1, "mm"),
combined_name_fun = function(x) paste(x, collapse = "/"),
width = NULL,
show_heatmap_legend = TRUE,
heatmap_legend_param = list(title = name, color_bar = "discrete"),
use_raster = FALSE,
raster_device = c("png", "jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF"),
raster_quality = 1,
raster_device_param = list())

Arguments

matrix a matrix. Either numeric or character. If it is a simple vector, it will be converted to a one-column matrix.

col a vector of colors if the color mapping is discrete or a color mapping function if the matrix is continuous numbers (should be generated by colorRamp2. If the matrix is continuous, the value can also be a vector of colors so that colors will
be interpolated. Pass to ColorMapping.

- **name**: name of the heatmap. The name is used as the title of the heatmap legend.
- **na_col**: color for NA values.
- **rect_gp**: graphic parameters for drawing rectangles (for heatmap body).
- **color_space**: the color space in which colors are interpolated. Only used if matrix is numeric and col is a vector of colors. Pass to colorRamp2.
- **cell_fun**: self-defined function to add graphics on each cell. Seven parameters will be passed into this function: i, j, x, y, width, height, fill which are row index, column index in matrix, coordinate of the middle points in the heatmap body viewport, the width and height of the cell and the filled color. x, y, width and height are all unit objects.
- **row_title**: title on row.
- **row_title_side**: will the title be put on the left or right of the heatmap?
- **row_title_gp**: graphic parameters for drawing text.
- **row_title_rot**: rotation of row titles. Only 0, 90, 270 are allowed to set.
- **column_title**: title on column.
- **column_title_side**: will the title be put on the top or bottom of the heatmap?
- **column_title_gp**: graphic parameters for drawing text.
- **column_title_rot**: rotation of column titles. Only 0, 90, 270 are allowed to set.
- **cluster_rows**: If the value is a logical, it means whether make cluster on rows. The value can also be a hclust or a dendrogram that already contains clustering information. This means you can use any type of clustering methods and render the dendrogram object with self-defined graphic settings.
- **clustering_distance_rows**: it can be a pre-defined character which is in ("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "spearman", "kendall"). It can also be a function. If the function has one argument, the input argument should be a matrix and the returned value should be a dist object. If the function has two arguments, the input arguments are two vectors and the function calculates distance between these two vectors.
- **clustering_method_rows**: method to make cluster, pass to hclust.
- **row_dend_side**: should the row cluster be put on the left or right of the heatmap?
- **row_dend_width**: width of the row cluster, should be a unit object.
- **show_row_dend**: whether show row clusters.
- **row_dend_gp**: graphics parameters for drawing lines. If users already provide a dendrogram object with edges rendered, this argument will be ignored.
- **row_dend_reorder**: apply reordering on rows. The value can be a logical value or a vector which contains weight which is used to reorder rows.
- **row_hclust_side**: deprecated, use row_dend_side instead
- **row_hclust_width**: deprecated, use row_dend_width instead
show_row_hclust
  deprecated, use show_row_dend instead
row_hclust_gp
  deprecated, use row_dend_gp instead
row_hclust_reorder
  deprecated, use row_dend_reorder instead
cluster_columns
  whether make cluster on columns. Same settings as cluster_rows.
clustering_distance_columns
  same setting as clustering_distance_rows.
clustering_method_columns
  method to make cluster, pass to hclust.
column_dend_side
  should the column cluster be put on the top or bottom of the heatmap?
column_dend_height
  height of the column cluster, should be a unit object.
show_column_dend
  whether show column clusters.
column_dend_gp
  graphic parameters for drawing lines. Same settings as row_dend_gp.
column_dend_reorder
  apply reordering on columns. The value can be a logical value or a vector which contains weight which is used to reorder columns
column_hclust_side
  deprecated, use column_dend_side instead
column_hclust_height
  deprecated, use column_dend_height instead
show_column_hclust
  deprecated, use show_column_dend instead
column_hclust_gp
  deprecated, use column_dend_gp instead
column_hclust_reorder
  deprecated, use column_dend_reorder instead
row_order
  order of rows. It makes it easy to adjust row order for a list of heatmaps if this heatmap is selected as the main heatmap. Manually setting row order should turn off clustering
column_order
  order of column. It makes it easy to adjust column order for both matrix and column annotations.
row_names_side
  should the row names be put on the left or right of the heatmap?
show_row_names
  whether show row names.
row_names_max_width
  maximum width of row names viewport. Because some times row names can be very long, it is not reasonable to show them all.
row_names_gp
  graphic parameters for drawing text.
column_names_side
  should the column names be put on the top or bottom of the heatmap?
column_names_max_height
  maximum height of column names viewport.
show_column_names
  whether show column names.
Heatmap

column_names_gp
graphic parameters for drawing text.
top_annotation a HeatmapAnnotation object which contains a list of annotations.
top_annotation_height total height of the column annotations on the top.
bottom_annotation a HeatmapAnnotation object.
bottom_annotation_height total height of the column annotations on the bottom.
km do k-means clustering on rows. If the value is larger than 1, the heatmap will be split by rows according to the k-means clustering. For each row-clusters, hierarchical clustering is still applied with parameters above.
split a vector or a data frame by which the rows are split. But if cluster_rows is a clustering object, split can be a single number indicating rows are to be split according to the split on the tree.
gap gap between row-slices if the heatmap is split by rows, should be unit object. If it is a vector, the order corresponds to top to bottom in the heatmap
combined_name_fun if the heatmap is split by rows, how to make a combined row title for each slice? The input parameter for this function is a vector which contains level names under each column in split.
width the width of the single heatmap, should be a fixed unit object. It is used for the layout when the heatmap is appended to a list of heatmaps.
show_heatmap_legend whether show heatmap legend?
heatmap_legend_param a list contains parameters for the heatmap legend. See color_mapping_legend,ColorMapping-method for all available parameters.
use_raster whether render the heatmap body as a raster image. It helps to reduce file size when the matrix is huge.
raster_device graphic device which is used to generate the raster image
raster_quality a value set to larger than 1 will improve the quality of the raster image.
raster_device_param a list of further parameters for the selected graphic device

Details
The initialization function only applies parameter checking and fill values to each slot with proper ones. Then it will be ready for clustering and layout.

Following methods can be applied on the Heatmap-class object:

• show,Heatmap-method: draw a single heatmap with default parameters
• draw,Heatmap-method: draw a single heatmap.
• add_heatmap,Heatmap-method append heatmaps and row annotations to a list of heatmaps.

The constructor function pretends to be a high-level graphic function because the show method of the Heatmap-class object actually plots the graphics.
Value

A `Heatmap-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

require(circlize)
Heatmap(mat)
Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
Heatmap(mat, name = "test")
Heatmap(mat, column_title = "blablabla")
Heatmap(mat, row_title = "blablabla")
Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20,
 fontface = "bold")
Heatmap(mat, cluster_rows = FALSE)
Heatmap(mat, clustering_distance_rows = "pearson")
Heatmap(mat, clustering_distance_rows = function(x) dist(x))
Heatmap(mat, clustering_method_rows = "single")
Heatmap(mat, row_dend_side = "right")
Heatmap(mat, row_dend_width = unit(1, "cm"))
Heatmap(mat, row_names_side = "left", row_dend_side = "right",
 column_names_side = "top", column_dend_side = "bottom")
Heatmap(mat, show_row_names = FALSE)

mat2 = mat
rownames(mat2) = NULL
colnames(mat2) = NULL
Heatmap(mat2)

Heatmap(mat, row_names_gp = gpar(fontsize = 20))
Heatmap(mat, km = 2)
Heatmap(mat, split = rep(c("A", "B"), 6))
Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)))
Heatmap(mat, split = data.frame(rep(c("A", "B"), 6), rep(c("C", "D"), each = 6)),
 combined_name_fun = function(x) paste(x, collapse = "\n"))

annotation = HeatmapAnnotation(df = data.frame(type = c(rep("A", 6), rep("B", 6))))
Heatmap(mat, top_annotation = annotation)

annotation = HeatmapAnnotation(df = data.frame(type1 = rep(c("A", "B"), 6),
 type2 = rep(c("C", "D"), each = 6)))
Heatmap(mat, bottom_annotation = annotation)

annotation = data.frame(value = rnorm(10))
annotation = HeatmapAnnotation(df = annotation)
```
Heatmap-class

Class for a single heatmap

Description

Class for a single heatmap

Details

The components for a single heatmap are placed into a 9 x 7 layout:

```
+------+ (1)
+------+ (2)
+------+ (3)
+------+ (4)
+-------------------
|1|2|3| 4(5) |5|6|7|
+-------------------
|1|2|3| 4(5) |5|6|7|
+-------------------
+------ (6)
+------ (7)
+------ (8)
+------ (9)
```

From top to bottom in column 4, the regions are:

- title which is put on the top of the heatmap, graphics are drawn by `draw_title`, `Heatmap-method`
- column cluster on the top, graphics are drawn by `draw_dend`, `Heatmap-method`
Heatmap-class

• column annotation on the top, graphics are drawn by draw_annotation,Heatmap-method.
• column names on the top, graphics are drawn by draw_dimnames,Heatmap-method.
• heatmap body, graphics are drawn by draw_heatmap_body,Heatmap-method.
• column names on the bottom, graphics are drawn by draw_dimnames,Heatmap-method.
• column annotation on the bottom, graphics are drawn by draw_annotation,Heatmap-method.
• column cluster on the bottom, graphics are drawn by draw_dend,Heatmap-method.
• title on the bottom, graphics are drawn by draw_title,Heatmap-method.

From left to right in row 5, the regions are:

• title which is put in the left of the heatmap, graphics are drawn by draw_title,Heatmap-method.
• row cluster on the left, graphics are drawn by draw_dend,Heatmap-method.
• row names on the left, graphics are drawn by draw_dimnames,Heatmap-method.
• heatmap body
• row names on the right, graphics are drawn by draw_dimnames,Heatmap-method.
• row cluster on the right, graphics are drawn by draw_dend,Heatmap-method.
• title on the right, graphics are drawn by draw_title,Heatmap-method.

The Heatmap-class is not responsible for heatmap legend and annotation legends. The draw,Heatmap-method method will construct a HeatmapList-class object which only contains one single heatmap and call draw,HeatmapList-method to make a complete heatmap.

Methods

The Heatmap-class provides following methods:

• Heatmap: constructor method.
• draw,Heatmap-method: draw a single heatmap.
• add_heatmap,Heatmap-method: append heatmaps and row annotations to a list of heatmaps.
• row_order,HeatmapList-method: get order of rows
• column_order,HeatmapList-method: get order of columns
• row_dend,HeatmapList-method: get row dendrograms
• column_dend,HeatmapList-method: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# for examples, please go to `Heatmap` method page
NULL
HeatmapAnnotation

Constructor method for HeatmapAnnotation class

Description

Constructor method for HeatmapAnnotation class

Usage

HeatmapAnnotation(df, name, col, na_col = "grey",
annotation_legend_param = list(),
show_legend = TRUE,
...,
which = c("column", "row"),
annotation_height = 1,
annotation_width = 1,
height = calc_anno_size(),
width = calc_anno_size(),
gp = gpar(col = NA),
gap = unit(0, "mm"),
show_annotation_name = FALSE,
annotation_name_gp = gpar(),
annotation_name_offset = unit(2, "mm"),
annotation_name_side = ifelse(which == "column", "right", "bottom"),
annotation_name_rot = ifelse(which == "column", 0, 90))

Arguments

df a data frame. Each column will be treated as a simple annotation. The data frame must have column names.
name name of the heatmap annotation, optional.
col a list of colors which contains color mapping to columns in df. See SingleAnnotation for how to set colors.
na_col color for NA values in simple annotations.
annotation_legend_param a list which contains parameters for annotation legends
show_legend whether show legend for each column in df.
... functions which define complex annotations or vectors of simple annotation. Values should be named arguments.
which are the annotations row annotations or column annotations?
annotation_height height of each annotation if annotations are column annotations.
annotation_width width of each annotation if annotations are row annotations.
height not using currently.
width width of the whole heatmap annotations, only used for row annotation when appending to the list of heatmaps.
gp graphic parameters for simple annotations.
HeatmapAnnotation

gap     gap between each annotation
show.annotation.name  whether show annotation names. For column annotation, annotation names are drawn either on the left or the right, and for row annotations, names are drawn either on top to at bottom. The value can be a vector.

annotation.name_gp  graphic parameters for annotation names. Graphic parameters can be vectors.
annotation.name.offset  offset to the annotations, unit object. The value can be a vector.
annotation.name.side  side of the annotation names.
annotation.name.rot  rotation of the annotation names, can only take values in $\{00, 90, 180, 270\}$. The value can be a vector.

Details

The simple annotations are defined by df and col arguments. Complex annotations are defined by the function list. So you need to at least to define df or a annotation function.

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are two shortcut functions: rowAnnotation and columnAnnotation.

Examples

df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = HeatmapAnnotation(df = df)

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue")))
ha = HeatmapAnnotation(type = c("a", "a", "a", "b", "b", "b"),
                        col = list(type = c("a" = "red", "b" = "blue")))

ha = HeatmapAnnotation(df = df, col = list(type = c("a" = "red", "b" = "blue"),
                                           which = "row")

ha = HeatmapAnnotation(points = anno_points(1:6))
ha = HeatmapAnnotation(histogram = anno_points(1:6))
mat = matrix(rnorm(36), 6)
ha = HeatmapAnnotation(boxplot = anno_boxplot(mat))
HeatmapAnnotation-class

Class for heatmap annotations

Description

Class for heatmap annotations

Details

A complex heatmap contains a list of annotations which are represented as different graphics placed on rows and columns. The \texttt{HeatmapAnnotation-class} contains a list of single annotations which are represented as a list of \texttt{SingleAnnotation-class} objects with same number of rows or columns.

Methods

The \texttt{HeatmapAnnotation-class} provides following methods:

- \texttt{HeatmapAnnotation}: constructor method
- \texttt{draw,HeatmapAnnotation}: draw the annotations

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# for examples, please go to `HeatmapAnnotation` method page
NULL

HeatmapList

Constructor method for HeatmapList class

Description

Constructor method for HeatmapList class

Usage

HeatmapList(...) 

Arguments

... arguments

Details

There is no public constructor method for the \texttt{HeatmapList-class}.
Value
No value is returned.

Details
There is no public constructor method for the HeatmapList-class.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples

# no example
NULL

---

HeatmapList-class  Class for a list of heatmaps

Description
Class for a list of heatmaps

Details
A heatmap list is defined as a list of heatmaps and row annotations.
The components for the heatmap list are placed into a 7 x 7 layout:

```
+------+(1)
+------+(2)
+------+(3)
+--------+--------
|1|2|3| 4(4) |5|6|7|
+--------+--------
 +--------+(5)
 +--------+(6)
 +--------+(7)
```

From top to bottom in column 4, the regions are:

- annotation legend on the top, graphics are drawn by `draw_annotation_legend,HeatmapList-method`
- heatmap legend on the top, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`
- title for the heatmap list which is put on the top, graphics are drawn by `draw_title,HeatmapList-method`
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the bottom, graphics are drawn by `draw_title,HeatmapList-method`
- heatmap legend on the bottom, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`
- annotation legend on the bottom, graphics are drawn by `draw_annotation_legend,HeatmapList-method`
HeatmapList-class

From left to right in row 4, the regions are:

- annotation legend on the left, graphics are drawn by `draw_annotation_legend,HeatmapList-method`.
- heatmap legend on the left, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`.
- title for the heatmap list which is put on the left, graphics are drawn by `draw_title,HeatmapList-method`.
- the list of heatmaps and row annotations
- title for the heatmap list which is put on the right, graphics are drawn by `draw_title,HeatmapList-method`.
- heatmap legend on the right, graphics are drawn by `draw_heatmap_legend,HeatmapList-method`.
- annotation legend on the right, graphics are drawn by `draw_annotation_legend,HeatmapList-method`.

For the list of heatmaps which are placed at (5, 5) in the layout, the heatmaps and row annotations are placed one after the other.

Methods

The HeatmapList-class provides following methods:

- `draw,HeatmapList-method`: draw the list of heatmaps and row annotations.
- `add_heatmap,HeatmapList-method`: add heatmaps to the list of heatmaps.
- `row_order,HeatmapList-method`: get order of rows
- `column_order,HeatmapList-method`: get order of columns
- `row_dend,HeatmapList-method`: get row dendrograms
- `column_dend,HeatmapList-method`: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht + ht
ht + ht + ht

ht_list = ht + ht
ht + ht_list

ha = HeatmapAnnotation(points = anno_points(1:12, which = "row"),
 which = "row")
ht + ha
ht_list + ha
```
heatmap_legend_size-HeatmapList-method

Size of the heatmap legend viewport

Description
Size of the heatmap legend viewport

Usage
## S4 method for signature 'HeatmapList'
heatmap_legend_size(object, legend_list = list(), ...)

Arguments
  object a HeatmapList-class object
  legend_list a list of self-defined legend, should be wrapped into grob objects.
  ... graphic parameters passed to color_mapping_legend,ColorMapping-method.

Details
This function is only for internal use.

Value
A unit object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# no example for this internal method
NULL

ht_global_opt

Global graphic options for heatmaps

Description
Global graphic options for heatmaps

Usage
ht_global_opt(..., RESET = FALSE, READONLY = NULL, LOCAL = FALSE)
Arguments

... options, see ‘details’ section
RESET reset all the option values
READ. ONLY TRUE means only to return read-only values, FALSE means only to return non-read-only values, NULL means to return both.
LOCAL switch local mode

Details

You can set some parameters for all heatmaps/annotations simultaneously by this global function. Please note you should put it before your heatmap code and reset all option values after drawing the heatmaps to get rid of affecting next heatmap plotting.

There are following parameters:

heatmap_row_names_gp set row_names_gp in Heatmap.
heatmap_column_names_gp set column_names_gp in Heatmap.
heatmap_row_title_gp set row_title_gp in Heatmap.
heatmap_column_title_gp set column_title_gp in Heatmap.
heatmap_legend_title_gp set title_gp element in heatmap_legend_param in Heatmap.
heatmap_legend_title_position set title_position element in heatmap_legend_param in Heatmap.
heatmap_legend_labels_gp set labels_gp element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_width set grid_width element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_height set grid_height element in heatmap_legend_param in Heatmap.
heatmap_legend_grid_border set grid_border element in heatmap_legend_param in Heatmap.
heatmap_legend_title_gp set title_gp element in legend_param in SingleAnnotation.
heatmap_legend_title_position set title_position element in legend_param in SingleAnnotation.
heatmap_legend_labels_gp set labels_gp element in legend_param in SingleAnnotation.
heatmap_legend_grid_width set grid_width element in legend_param in SingleAnnotation.
heatmap_legend_grid_height set grid_height element in legend_param in SingleAnnotation.
heatmap_legend_grid_border set grid_border element in legend_param in SingleAnnotation.
fast_hclust whether use hclust to speed up clustering?

You can get or set option values by the traditional way (like options) or by $ operator:

# to get option values
ht_global_opt("heatmap_row_names_gp")
ht_global_opt$heatmap_row_names_gp

# to set option values
ht_global_opt("heatmap_row_names_gp" = gpar(fontsize = 8))
ht_global_opt$heatmap_row_names_gp = gpar(fontsize = 8)

Value

Depends on the options users selected.
is_abs_unit

Description
Whether the unit object contains absolute unit

Usage
is_abs_unit(u)

Arguments
u a unit object

Details
Besides the normal absolute units (e.g. "mm", "inches"), this function simply treat grob objects as absolute units.
For a complex unit which is combination of different units, it is absolute only if all units included are absolute units.

Value
A logical value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
is_abs_unit(unit(1, "mm"))
is_abs_unit(unit(1, "npc"))
is_abs_unit(textGrob("foo"))
is_abs_unit(unit(1, "mm") + unit(1, "npc"))
Legend

Making legend grobs

Description

Making legend grobs

Usage

Legend(at, labels = at, nrow = NULL, ncol = 1, col_fun,
grid_height = unit(4, "mm"), grid_width = unit(4, "mm"), gap = unit(2, "mm"),
labels_gp = gpar(fontsize = 10),
border = NULL, background = "#EEEEEE",
type = "grid", legend_gp = gpar(),
pch = 16, size = unit(2, "mm"),
legend_height = NULL, legend_width = NULL,
direction = c("vertical", "horizontal"),
title = ", title_gp = gpar(fontsize = 10, fontface = "bold"),
title_position = c("topleft", "topcenter", "leftcenter", "lefttop"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>breaks, can be wither numeric or character</td>
</tr>
<tr>
<td>labels</td>
<td>labels corresponding to at</td>
</tr>
<tr>
<td>nrow</td>
<td>if there are too many legends, they can be positioned in an array, this controls number of rows</td>
</tr>
<tr>
<td>ncol</td>
<td>if there are too many legends, they can be positioned in an array, this controls number of columns. At a same time only one of nrow and ncol can be specified.</td>
</tr>
<tr>
<td>col_fun</td>
<td>a color mapping function which is used to make a continuous color bar</td>
</tr>
<tr>
<td>grid_height</td>
<td>height of legend grid</td>
</tr>
<tr>
<td>grid_width</td>
<td>width of legend grid</td>
</tr>
<tr>
<td>gap</td>
<td>when legends are put in multiple columns, this is the gap between neighbouring columns, measured as a unit object</td>
</tr>
<tr>
<td>labels_gp</td>
<td>graphic parameters for labels</td>
</tr>
<tr>
<td>border</td>
<td>color of legend borders, also for the ticks in the continuous legend</td>
</tr>
<tr>
<td>background</td>
<td>background colors</td>
</tr>
<tr>
<td>type</td>
<td>type of legends, can be grid, points and lines</td>
</tr>
<tr>
<td>legend_gp</td>
<td>graphic parameters for the legend</td>
</tr>
<tr>
<td>pch</td>
<td>type of points</td>
</tr>
<tr>
<td>size</td>
<td>size of points</td>
</tr>
<tr>
<td>legend_height</td>
<td>height of the whole legend, used when col_fun is specified and direction is set to vertical</td>
</tr>
<tr>
<td>legend_width</td>
<td>width of the whole legend, used when col_fun is specified and direction is set to horizontal</td>
</tr>
<tr>
<td>direction</td>
<td>direction of the continuous legend</td>
</tr>
<tr>
<td>title</td>
<td>title of the legend</td>
</tr>
<tr>
<td>title_gp</td>
<td>graphic parameters of title</td>
</tr>
<tr>
<td>title_position</td>
<td>position of title according to the legend</td>
</tr>
</tbody>
</table>
Value

A `grob` object

Examples

```r
There is no example
NULL
```

---

**Description**

Make cluster on columns

**Usage**

```r
S4 method for signature 'Heatmap'
make_column_cluster(object)
```

**Arguments**

- `object` a `Heatmap-class` object.

**Details**

The function will fill or adjust `column_dend` and `column_order` slots.

This function is only for internal use.

**Value**

A `Heatmap-class` object.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
no example for this internal method
NULL
```
**make_layout**-dispatch

Method dispatch page for **make_layout**

**Description**

Method dispatch page for **make_layout**.

**Dispatch**

**make_layout** can be dispatched on following classes:

- **make_layout,HeatmapList-method,HeatmapList-class** class method
- **make_layout,Heatmap-method,Heatmap-class** class method

**Examples**

```r
no example
NULL
```

**make_layout**-Heatmap-method

*Make the layout of a single heatmap*

**Description**

Make the layout of a single heatmap

**Usage**

```r
S4 method for signature 'Heatmap'
make_layout(object)
```

**Arguments**

- `object` a **Heatmap-class** object.

**Details**

The layout of the single heatmap will be established by setting the size of each heatmap components. Also functions that make graphics for heatmap components will be recorded.

Whether apply row clustering or column clustering affects the layout, so clustering should be applied first before making the layout.

This function is only for internal use.

**Value**

A **Heatmap-class** object.
Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# no example for this internal method
NULL

make_layout-HeatmapList-method

Make layout for the complete plot

Description

Make layout for the complete plot

Usage

```r
S4 method for signature 'HeatmapList'
make_layout(object, row_title = character(0),
 row_title_side = c("left", "right"),
 row_title_gp = gpar(fontsize = 14),
 column_title = character(0),
 column_title_side = c("top", "bottom"),
 column_title_gp = gpar(fontsize = 14),
 heatmap_legend_side = c("right", "left", "bottom", "top"),
 show_heatmap_legend = TRUE,
 heatmap_legend_list = list(),
 annotation_legend_side = c("right", "left", "bottom", "top"),
 show_annotation_legend = TRUE,
 annotation_legend_list = list(),
 gap = unit(3, "mm"),
 main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
 row_dend_side = c("original", "left", "right"),
 row_hclust_side = row_dend_side,
 row_sub_title_side = c("original", "left", "right"),
 cluster_rows = NULL,
 clustering_distance_rows = NULL,
 clustering_method_rows = NULL,
 row_dend_width = NULL,
 show_row_dend = NULL,
 row_dend_reorder = NULL,
 row_dend_gp = NULL,
 row_order = NULL,
 km = NULL,
 split = NULL)
```
Arguments

object: a *HeatmapList-class* object.
row_title: title on the row.
row_title_side: will the title be put on the left or right of the heatmap.
row_title_gp: graphic parameters for drawing text.
column_title: title on the column.
column_title_side: will the title be put on the top or bottom of the heatmap.
column_title_gp: graphic parameters for drawing text.
heatmap_legend_side: side of the heatmap legend.
show_heatmap_legend: whether show heatmap legend.
heatmap_legend_list: a list of self-defined legend, should be wrapped into *grob* objects.
annotation_legend_side: side of annotation legend.
show_annotation_legend: whether show annotation legend.
annotation_legend_list: a list of self-defined legend, should be wrapped into *grob* objects.
gap: gap between heatmaps, should be a *unit* object.
main_heatmap: name or index for the main heatmap
row_dend_side: if auto adjust, where to put the row dendrograms for the main heatmap
row_hclust_side: deprecated, use *row_dend_side* instead
row_sub_title_side: if auto adjust, where to put sub row titles for the main heatmap
cluster_rows: same setting as in *Heatmap*, if it is specified, cluster_rows in main heatmap is ignored.
clustering_distance_rows: same setting as in *Heatmap*, if it is specified, clustering_distance_rows in main heatmap is ignored.
clustering_method_rows: same setting as in *Heatmap*, if it is specified, clustering_method_rows in main heatmap is ignored.
row_dend_width: same setting as in *Heatmap*, if it is specified, row_dend_width in main heatmap is ignored.
show_row_dend: same setting as in *Heatmap*, if it is specified, show_row_dend in main heatmap is ignored.
row_dend_reorder: same setting as in *Heatmap*, if it is specified, row_dend_reorder in main heatmap is ignored.
row_dend_gp: same setting as in *Heatmap*, if it is specified, row_dend_gp in main heatmap is ignored.
row_order: same setting as in Heatmap, if it is specified, row_order in main heatmap is ignored.

km: same setting as in Heatmap, if it is specified, km in main heatmap is ignored.

split: same setting as in Heatmap, if it is specified, split in main heatmap is ignored.

Details
It sets the size of each component of the heatmap list and adjusts graphic parameters for each heatmap if necessary.
The layout for the heatmap list and layout for each heatmap are calculated when drawing the heatmap list.
This function is only for internal use.

Value
A HeatmapList-class object in which settings for each heatmap are adjusted.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# no example for this internal method
NULL
Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# no example for this internal method
NULL

Description

Map values to colors

Usage

## S4 method for signature 'ColorMapping'
map_to_colors(object, x)

Arguments

object       a ColorMapping-class object.
x            input values.

Details

It maps a vector of values to a vector of colors.

Value

A vector of colors.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
Examples

# discrete color mapping for characters
cm = ColorMapping(name = "test",
                  colors = c("blue", "white", "red"),
                  levels = c("a", "b", "c"))
map_to_colors(cm, "a")
map_to_colors(cm, c("a", "a", "b"))

# discrete color mapping for numeric values
cm = ColorMapping(name = "test",
                  colors = c("blue", "white", "red"),
                  levels = c(1, 2, 3))
map_to_colors(cm, 1)
map_to_colors(cm, "1")
map_to_colors(cm, c(1, 1, 2, 2))

# continuous color mapping
require(circlize)
cm = ColorMapping(name = "test",
                  col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
map_to_colors(cm, 0.2)
map_to_colors(cm, seq(0.2, 0.8, by = 0.1))

max_text_height

Maximum height of text

Description

Maximum height of text

Usage

max_text_height(text, ...)

Arguments

text a vector of text

... pass to textGrob

Details

Simply calculate maximum height of a list of textGrob objects.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
max_text_width

See Also
max_text_height is always used to calculate the size of viewport when there is text annotation
(anno_text)

Examples
x = c("a", "b\nb", "c\nc\nc")
max_text_height(x, gp = gpar(fontsize = 10))

max_text_width  Maximum width of text

Description
Maximum width of text

Usage
max_text_width(text, ...)

Arguments
text  a vector of text
...
  pass to textGrob

Details
Simply calculate maximum width of a list of textGrob objects.

Value
A unit object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

See Also
max_text_width is always used to calculate the size of viewport when there is text annotation
(anno_text)

Examples
x = c("a", "bb", "ccc")
max_text_width(x, gp = gpar(fontsize = 10))
oncoPrint

**Make oncoPrint**

**Description**

Make oncoPrint

**Usage**

```r
oncoPrint(mat, get_type = function(x) x, alter_fun = alter_fun_list, alter_fun_list = NULL, col, row_order = oncoprint_row_order(), column_order = oncoprint_column_order(), show_column_names = FALSE, show_pct = TRUE, pct_gp = gpar(), pct_digits = 0, axis_gp = gpar(fontsize = 8), show_row_barplot = TRUE, row_barplot_width = unit(2, "cm"), remove_empty_columns = FALSE, heatmap_legend_param = list(title = "Alterations"), top_annotation = HeatmapAnnotation(column_bar = anno_oncoprint_barplot(), annotation_height = unit(2, "cm")), barplot_ignore = NULL, ...
```

**Arguments**

- **mat**
  - a character matrix which encodes multiple alterations or a list of matrix for which every matrix contains binary value representing the alteration is present or absent. When it is a list, the names represent alteration types. You can use `unify_mat_list` to make all matrix having same row names and column names.
- **get_type**
  - If different alterations are encoded in the matrix, this self-defined function determines how to extract them. Only work when `mat` is a matrix.
- **alter_fun**
  - a single function or a list of functions which define how to add graphics for different alterations. If it is a list, the names of the list should cover all alteration types.
- **alter_fun_list**
  - deprecated, use `alter_run` instead.
- **col**
  - a vector of color for which names correspond to alteration types.
- **row_order**
  - order of genes. By default it is sorted by frequency of alterations decreasingly. Set it to `NULL` if you don’t want to set the order.
- **column_order**
  - order of samples. By default the order is calculated by the ’memo sort’ method which can visualize the mutual exclusivity across genes. Set it to `NULL` if you don’t want to set the order.
- **show_column_names**
  - whether show column names.
- **show_pct**
  - whether show percent values on the left of the oncoprint.
- **pct_gp**
  - graphic parameters for percent row annotation.
- **pct_digits**
  - digits for percent values.
plotDataFrame

axis_gp  graphic parameters for axes
show_row_barplot  whether show barplot annotation on rows
row_barplot_width  width of barplot annotation on rows. It should be a unit object
remove_empty_columns  if there is no alteration in that sample, whether remove it on the heatmap
heatmap_legend_param  pass to Heatmap
top_annotation  by default the top annotation contains barplots representing frequency of mutations in every sample.
barplot_ignore  specific alterations that you don’t want to put on the barplots. If you want to really suppress the top barplot set top_annotation to NULL.
...  pass to Heatmap, so can set bottom_annotation here.

Details

The function returns a normal heatmap list and you can add more heatmaps/row annotations to it.
The 'memo sort' method is from https://gist.github.com/armish/564a65ab874a770e2c26. Thanks to B. Arman Aksoy for contributing the code.
The function would be a little bit slow if you plot it in an interactive device because all alterations are added through a for loop.
For more explanation, please go to the vignette.

Value

A HeatmapList-class object which means you can add other heatmaps or row annotations to it.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

plotDataFrame  Quickly visualize a data frame

Description

Quickly visualize a data frame

Usage

plotDataFrame(df, overlap = 0.25, nlevel = 30, show_row_names = TRUE,
show_column_names = TRUE, group = NULL, group_names = names(group),
main_heatmap = NULL, km = 1, split = NULL, cluster_rows = TRUE,
cluster_columns = TRUE, row_order = NULL, ...)

Arguments

df a data frame.
overlap how to group numeric columns. If the overlapping rate between the ranges in the current column and previous numeric column is larger than this value, the two columns are treated as under same measurement and should be grouped.
nlevel If the number of levels of a character column is larger than this value, the column will be excluded, because it doesn’t make any sense to visualize a character vector or matrix that contains huge number of unique elements through a heatmap.
show_row_names whether show row names after the last heatmap if there are row names.
show_column_names whether show column names for all heatmaps.
group a list of index that defines the grouping.
group_names names for each group.
main_heatmap which group is the main heatmap?
km a value larger than 1 means applying k-means clustering on rows for the main heatmap.
split one or multiple variables that split the rows.
cluster_rows whether perform clustering on rows of the main heatmap.
cluster_columns whether perform clustering on columns for all heatmaps.
row_order order of rows, remember to turn off cluster_rows
...

Details

The data frame contains heterogeneous information. The plotDataFrame function provides a simple and quick way to visualize information that are stored in a data frame.

There are only a few settings in this function, so the heatmap generated by this function may look ugly (in most of the time). However, users can customize the style of the heatmaps by manually constructing a HeatmapList object.

Value

A HeatmapList object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

df = data.frame(matrix(rnorm(40), nrow = 10, dimnames = list(letters[1:10], letters[1:4])),
    large = runif(10)*100,
    t1 = sample(letters[1:3], 10, replace = TRUE),
    matrix(runif(60), nrow = 10, dimnames = list(LETTERS[1:10], LETTERS[1:6])),
    t2 = sample(LETTERS[1:3], 10, replace = TRUE))
plotDataFrame(df)
plotDataFrame(df, group = list(1:4, 5, 6, 7:12, 13), group_names = c("mat1", "large", "t1", "mat2", "t2"),
    main_heatmap = 4, km = 2, column_title = "column title", row_title = "row title")
Prepare the heatmap

## S4 method for signature 'Heatmap'

`prepare(object, process_rows = TRUE)`

### Arguments

- `object`: a `Heatmap-class` object.
- `process_rows`: whether process rows of the heatmap

### Details

The preparation of the heatmap includes following steps:

- making clustering on rows if specified (by calling `make_row_cluster,Heatmap-method`)
- making clustering on columns if specified (by calling `make_column_cluster,Heatmap-method`)
- making the layout of the heatmap (by calling `make_layout,Heatmap-method`)

This function is only for internal use.

### Value

A `Heatmap-class` object.

### Author(s)

Zuguang Gu <z.gu@dkfz.de>

### Examples

```r
no example for this internal method
NULL
```
rowAnnotation Construct row annotations

Description
Construct row annotations

Usage
rowAnnotation(...)

Arguments
... pass to HeatmapAnnotation

Details
The function is identical to
HeatmapAnnotation(..., which = "row")

Value
A HeatmapAnnotation-class object.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
df = data.frame(type = c("a", "a", "a", "b", "b", "b"))
ha = columnAnnotation(df = df)

row_annno_barplot Row annotation which is represented as barplots

Description
Row annotation which is represented as barplots

Usage
row_annno_barplot(...) 

Arguments
... pass to anno_barplot
Details

A wrapper of `anno_barplot` with pre-defined which to row.

Value

See help page of `anno_barplot`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
There is no example
NULL
```
row_anno_density  
Row annotation which is represented as density plot

Description
Row annotation which is represented as density plot

Usage
row_anno_density(...)

Arguments
...  pass to anno_density

Details
A wrapper of anno_density with pre-defined which to row.

Value
See help page of anno_density

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL

row_anno_histogram  
Row annotation which is represented as histogram

Description
Row annotation which is represented as histogram

Usage
row_anno_histogram(...)

Arguments
...  pass to anno_histogram

Details
A wrapper of anno_histogram with pre-defined which to row.
**row_anno_link**

**Value**

See help page of `anno_histogram`

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL
```

---

**Description**

Column annotation which is represented as links

**Usage**

```r
row_anno_link(...)```

Arguments

```r
... pass to anno_link```

**Details**

A wrapper of `anno_link` with pre-defined which to row.

**Value**

See help page of `anno_link`

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
There is no example
NULL
```
row_anno_points  Row annotation which is represented as points

Description
Row annotation which is represented as points

Usage
row_anno_points(...) 

Arguments
... pass to anno_points 

Details
A wrapper of anno_points with pre-defined which to row.

Value
See help page of anno_points 

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL

row_anno_text  Row annotation which is represented as text

Description
Row annotation which is represented as text

Usage
row_anno_text(...) 

Arguments
... pass to anno_text 

Details
A wrapper of anno_text with pre-defined which to row.
Value

See help page of `anno_text`

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
There is no example
NULL
```

---

### row_dend-dispatch

Method dispatch page for `row_dend`.

**Dispatch**

`row_dend` can be dispatched on following classes:

- `row_dend,HeatmapList-method, HeatmapList-class` class method
- `row_dend,Heatmap-method, Heatmap-class` class method

**Examples**

```r
no example
NULL
```

---

### row_dend-Heatmap-method

*Get row dendrograms from a heatmap*

**Description**

Get row dendrograms from a heatmap

**Usage**

```r
S4 method for signature 'Heatmap'
row_dend(object)
```

**Arguments**

- `object` a `Heatmap-class` object
Value

A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_dend(ht)
ht = Heatmap(mat, km = 2)
row_dend(ht)
```

---

## S4 method for signature 'HeatmapList'

```r
row_dend(object)
```

Arguments

- `object`: a `HeatmapList-class` object

Value

A list of dendrograms for which each dendrogram corresponds to a row slice

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```r
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_dend(ht_list)
ht_list = Heatmap(mat, km = 2) + Heatmap(mat)
row_dend(ht_list)
```
Method dispatch page for row_order

Description

Method dispatch page for row_order.

Dispatch

row_order can be dispatched on following classes:

- row_order,HeatmapList-method,HeatmapList-class class method
- row_order,Heatmap-method,Heatmap-class class method

Examples

# no example
NULL

Get row order from a heatmap

Description

Get row order from a heatmap

Usage

## S4 method for signature 'Heatmap'
row_order(object)

Arguments

object a Heatmap-class object

Value

A list contains row orders which correspond to the original matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
row_order(ht)
ht = Heatmap(mat, km = 2)
row_order(ht)
row_order-HeatmapList-method

Get row order from a heatmap list

Description
Get row order from a heatmap list

Usage
## S4 method for signature 'HeatmapList'
row_order(object)

Arguments
object a HeatmapList-class object

Value
A list contains row orders which correspond to the original matrix

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
row_order(ht_list)
ht = Heatmap(mat, km = 2) + Heatmap(mat)
row_order(ht_list)

selectArea
Select an area in the heatmap

Description
Select an area in the heatmap

Usage
selectArea(mark = TRUE)

Arguments
mark whether mark the selected area as a rectangle
Details

Users can use mouse to click two positions on the heatmap, the function will return the row index and column index for the selected region in the selected matrix.
This function only works under interactive graphical environment.

Value

A list containing row index and column index corresponding to the selected region.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# No example for this function
NULL

## S4 method for signature 'Heatmap'

set_component_height(object, k, v)

Arguments

object          a Heatmap-class object.
k              which components, see Heatmap-class.
v              height of the component, a unit object.

Details

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>
show-dispatch

Examples

# no example for this internal method
NULL

show-ColorMapping-method

Print ColorMapping object

Description

Print ColorMapping object

Usage

## S4 method for signature 'ColorMapping'
show(object)

Arguments

object a ColorMapping-class object.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL

show-dispatch Method dispatch page for show

Description

Method dispatch page for show.

Dispatch

show can be dispatched on following classes:

- show,ColorMapping-method, ColorMapping-class class method
- show,HeatmapAnnotation-method, HeatmapAnnotation-class class method
- show,SingleAnnotation-method, SingleAnnotation-class class method
- show,HeatmapList-method, HeatmapList-class class method
- show,Heatmap-method, Heatmap-class class method
**Examples**

```r
no example
NULL
```

---

**Description**

Draw the single heatmap with default parameters

**Usage**

```r
S4 method for signature 'Heatmap'
show(object)
```

**Arguments**

- `object` a `Heatmap-class` object.

**Details**

Actually it calls `draw,Heatmap-method`, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to `draw,Heatmap-method`.

**Value**

This function returns no value.

**Author(s)**

Zuguang Gu <z.gu@dkfz.de>

**Examples**

```r
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]

ht = Heatmap(mat)
ht
draw(ht, heatmap_legend_side = "left")
```
show-HeatmapAnnotation-method

Print the Heatmap Annotation object

Description
Print the Heatmap Annotation object

Usage
## S4 method for signature 'HeatmapAnnotation'
show(object)

Arguments
object a HeatmapAnnotation-class object.

Value
No value is returned.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL

show-HeatmapList-method

Draw a list of heatmaps with default parameters

Description
Draw a list of heatmaps with default parameters

Usage
## S4 method for signature 'HeatmapList'
show(object)

Arguments
object a HeatmapList-class object.
Details
Actually it calls draw,HeatmapList-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw,HeatmapList-method.

Value
This function returns no value.

Author(s)
Zuguang Gu <z.gu@dkfz.de>

Examples
# There is no example
NULL
SingleAnnotation  Constructor method for SingleAnnotation class

Description

Constructor method for SingleAnnotation class

Usage

SingleAnnotation(name, value, col, fun, 
na_col = "grey", 
which = c("column", "row"), 
show_legend = TRUE, 
gp = gpar(col = NA), 
legend_param = list(), 
show_name = FALSE, 
n_name_gp = gpar(fontsize = 12), 
nome_offset = unit(2, "mm"), 
nam_side = ifelse(which == "column", "right", "bottom"), 
nam_rot = ifelse(which == "column", 0, 90))

Arguments

name  name for this annotation. If it is not specified, an internal name is assigned.
value  A vector of discrete or continuous annotation.
col  colors corresponding to value. If the mapping is discrete mapping, the value of col should be a vector; If the mapping is continuous mapping, the value of col should be a color mapping function.
fun  a self-defined function to add annotation graphics. The argument of this function should only be a vector of index that corresponds to rows or columns.
na_col  color for NA values in simple annotations.
which  is the annotation a row annotation or a column annotation?
show_legend  if it is a simple annotation, whether show legend when making the complete heatmap.
gp  Since simple annotation is represented as a row of grids. This argument controls graphic parameters for the simple annotation.
legend_param  parameters for the legend. See color_mapping_legend, ColorMapping-method for options.
show_name  whether show annotation name
name_gp  graphic parameters for annotation name
name_offset  offset to the annotation, a unit object
name_side  'right' and 'left' for column annotations and 'top' and 'bottom' for row annotations
name_rot  rotation of the annotation name, can only take values in c(00, 90, 180, 270).
Details

The most simple annotation is one row or one column grids in which different colors represent different classes of the data. Here the function use `ColorMapping-class` to process such simple annotation. value and col arguments controls values and colors of the simple annotation and a `ColorMapping-class` object will be constructed based on value and col.

`fun` is used to construct a more complex annotation. Users can add any type of annotation graphics by implementing a function. The only input argument of `fun` is a index of rows or columns which is already adjusted by the clustering. In the package, there are already several annotation graphic function generators: `anno_points`, `anno_histogram` and `anno_boxplot`.

In the case that row annotations are splitted by rows, index corresponding to row orders in each row-slice and `fun` will be applied on each of the row slices.

One thing that users should be careful is the difference of coordinates when the annotation is a row annotation or a column annotation.

Value

A `SingleAnnotation-class` object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are following built-in annotation functions that can be used to generate complex annotations: `anno_points`, `anno_barplot`, `anno_histogram`, `anno_boxplot`, `anno_density`, `anno_text` and `anno_link`.

Examples

```r
discrete character
SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"))
SingleAnnotation(name = "test", value = c("a", "a", "a", "b", "b", "b"),
 which = "row")

with defined colors
SingleAnnotation(value = c("a", "a", "a", "b", "b", "b"),
 col = c("a" = "red", "b" = "blue"))

continuous numbers
require(circlize)
SingleAnnotation(value = 1:10)
SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))

self-defined graphic function
SingleAnnotation(fun = anno_points(1:10))
```
SingleAnnotation-class

Class for a single annotation

Description

Class for a single annotation

Details

A complex heatmap always has more than one annotations on rows and columns. Here the SingleAnnotation-class defines the basic unit of annotations. The most simple annotation is one row or one column grids in which different colors represent different classes of the data. The annotation can also be more complex graphics, such as a boxplot that shows data distribution in corresponding row or column.

The SingleAnnotation-class is used for storing data for a single annotation and provides methods for drawing annotation graphics.

Methods

The SingleAnnotation-class provides following methods:

- SingleAnnotation: constructor method
- draw,SingleAnnotation-method: draw the single annotation.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

The SingleAnnotation-class is always used internally. The public HeatmapAnnotation-class contains a list of SingleAnnotation-class objects and is used to add annotation graphics on heatmaps.

Examples

# for examples, please go to `SingleAnnotation` method page
NULL
unify_mat_list

Unify a list of matrix

Description

Unify a list of matrix

Usage

unify_mat_list(mat_list, default = 0)

Arguments

- **mat_list**: a list of matrix, all of them should have dimension names
- **default**: default values for the newly added rows and columns

Details

All matrix will be unified to have same row names and column names

Value

A list of matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

# There is no example
NULL
Index

+.AdditiveUnit, 5
add_heatmap (add_heatmap-dispatch), 7
add_heatmap, Heatmap-method
   (add_heatmap-Heatmap-method), 7
add_heatmap, HeatmapAnnotation-method
   (add_heatmap-HeatmapAnnotation-method), 8
add_heatmap, HeatmapList-method
   (add_heatmap-HeatmapList-method), 9
add_heatmap-dispatch, 7
add_heatmap-Heatmap-method, 7
add_heatmap-HeatmapAnnotation-method, 8
add_heatmap-HeatmapList-method, 9
AdditiveUnit, 6
AdditiveUnit-class, 6
anno_barplot, 11, 22, 23, 92, 93, 107
anno_boxplot, 12, 23, 93, 107
anno_density, 13, 24, 94, 107
anno_histogram, 14, 24, 25, 94, 95, 107
anno_link, 15, 25, 95, 107
anno_oncoprint_barplot, 16
anno_points, 16, 26, 96, 107
anno_text, 17, 26, 27, 87, 96, 97, 107
annotation_legend_size
   (annotation_legend_size-HeatmapList-method), 10
annotation_legend_size, Heatmap-method
   (annotation_legend_size-Heatmap-method), 10
annotation_legend_size-HeatmapList-method, 10
as.dist, 45

color_mapping_legend
   (color_mapping_legend-ColorMapping-method), 20
color_mapping_legend, ColorMapping-method
   (color_mapping_legend-ColorMapping-method), 20
color_mapping_legend-ColorMapping-method, 20

ColorMapping, 18, 19, 65
ColorMapping-class, 19
colorRamp2, 18, 43, 64, 65
column_anno_barplot, 22
column_anno_boxplot, 23
column_anno_density, 24
column_anno_histogram, 24
column_anno_link, 25
column_anno_points, 26
column_anno_text, 26
column_dend (column_dend-dispatch), 27
column_dend, Heatmap-method
   (column_dend-Heatmap-method), 27
column_dend, HeatmapList-method
   (column_dend-HeatmapList-method), 28
column_dend-dispatch, 27
column_dend-Heatmap-method, 27
column_dend-HeatmapList-method, 28
column_dend, Heatmap-method
   (column_dend-Heatmap-method), 29
column_dend, HeatmapList-method
   (column_dend-HeatmapList-method), 30
column_dend-dispatch, 29
column_dend-Heatmap-method, 29
column_dend-HeatmapList-method, 30
column_dend, Heatmap-method
   (column_dend-Heatmap-method), 30
column_dend, HeatmapList-method
   (column_dend-HeatmapList-method), 30

column_order (column_order-dispatch), 29
column_order, Heatmap-method
   (column_order-Heatmap-method), 29
column_order, HeatmapList-method
   (column_order-HeatmapList-method), 30
column_order-dispatch, 29
column_order, Heatmap-method, 29
column_order-HeatmapList-method, 30
columnAnnotation, 22, 72
ComplexHeatmap-package, 4
component_height
   (component_height-dispatch), 30
column_order, Heatmap-method
   (component_height-Heatmap-method), 31
column_order-HeatmapList-method
   (component_height-HeatmapList-method), 31
column_dend, Heatmap-method
   (component_height-Heatmap-method), 32
component_height, HeatmapList-method
   (component_height-HeatmapList-method), 32
column_dend, Heatmap-method
   (component_height-Heatmap-method), 33
column_dend-HeatmapList-method, 33

110
INDEX

32
component_width
  (component_width-dispatch), 32
component_width,Heatmap-method
  (component_width-Heatmap-method), 32
component_width,HeatmapList-method
  (component_width-HeatmapList-method), 33
component_width-dispatch, 32
component_width-Heatmap-method, 33
component_width-HeatmapList-method, 34
decorate_annotation, 34
decorate_column_dend, 35
decorate_column_names, 36
decorate_column_title, 36
decorate_dend, 35, 37, 40
decorate_dimnames, 36, 38, 41
decorate_heatmap_body, 39
decorate_row_dend, 40
decorate_row_names, 41
decorate_row_title, 41
decorate_title, 36, 37, 41, 42
dendrogram, 62, 63
density, 13
densityHeatmap, 43
dist, 45, 63
dist2, 45
draw (draw-dispatch), 46
draw,Heatmap-method
  (draw-Heatmap-method), 46
draw,HeatmapAnnotation-method
  (draw-HeatmapAnnotation-method), 47
draw,HeatmapList-method
  (draw-HeatmapList-method), 48
draw,SingleAnnotation-method
  (draw-SingleAnnotation-method), 50
draw-dispatch, 46
draw-Heatmap-method, 46
draw-HeatmapAnnotation-method, 47
draw-HeatmapList-method, 48
draw-SingleAnnotation-method, 50
draw_annotation
  (draw_annotation-Heatmap-method), 51
draw_annotation,Heatmap-method
  (draw_annotation-Heatmap-method), 51
draw_annotation-Heatmap-method, 51
draw_annotation_legend
  (draw_annotation_legend-HeatmapList-method), 52
draw_annotation_legend,HeatmapList-method
  (draw_annotation_legend-HeatmapList-method), 52
draw_annotation_legend-HeatmapList-method, 52
draw_dend (draw_dend-Heatmap-method), 53
draw_dend,Heatmap-method
  (draw_dend-Heatmap-method), 53
draw_dend-Heatmap-method, 53
draw_dimnames
  (draw_dimnames-Heatmap-method), 54
draw_dimnames,Heatmap-method
  (draw_dimnames-Heatmap-method), 54
draw_dimnames-Heatmap-method, 54
draw_heatmap_body
  (draw_heatmap_body-Heatmap-method), 55
draw_heatmap_body,Heatmap-method
  (draw_heatmap_body-Heatmap-method), 55
draw_heatmap_body-Heatmap-method, 55
draw_heatmap_legend
  (draw_heatmap_legend-HeatmapList-method), 56
draw_heatmap_legend,HeatmapList-method
  (draw_heatmap_legend-HeatmapList-method), 56
draw_heatmap_list
  (draw_heatmap_list-HeatmapList-method), 56
draw_heatmap_list,HeatmapList-method
  (draw_heatmap_list-HeatmapList-method), 56
draw_heatmap_list-HeatmapList-method, 56
draw_title (draw_title-dispatch), 57
draw_title,Heatmap-method
  (draw_title-Heatmap-method), 58
draw_title,HeatmapList-method
  (draw_title-HeatmapList-method), 59
draw_title-dispatch, 57
draw_title-Heatmap-method, 58
draw_title-HeatmapList-method, 59
draw_annotation-Heatmap-method, 51
draw_annotation-HeatmapList-method, 51
draw_annotation-HeatmapList-method, 51
draw_annotation-HeatmapList-method, 51
draw_annotation-HeatmapList-method, 51
enhanced_basicplot, 59
INDEX

row_order, Heatmap-method
  (row_order-Heatmap-method), 99
row_order, HeatmapList-method
  (row_order-HeatmapList-method), 100
row_order-dispatch, 99
row_order-Heatmap-method, 99
row_order-HeatmapList-method, 100
rowAnnotation, 72, 92
seekViewport, 35, 37–39, 42
selectArea, 100
set_component_height
  (set_component_height-Heatmap-method), 101
set_component_height, Heatmap-method
  (set_component_height-Heatmap-method), 101
set_component_height-Heatmap-method, 101
show(show-dispatch), 102
show, ColorMapping-method
  (show-ColorMapping-method), 102
show, Heatmap-method
  (show-Heatmap-method), 103
show, HeatmapAnnotation-method
  (show-HeatmapAnnotation-method), 104
show, HeatmapList-method
  (show-HeatmapList-method), 104
show, SingleAnnotation-method
  (show-SingleAnnotation-method), 105
show-ColorMapping-method, 102
show-dispatch, 102
show-Heatmap-method, 103
show-HeatmapAnnotation-method, 104
show-HeatmapList-method, 104
show-SingleAnnotation-method, 105
SingleAnnotation, 71, 77, 106, 108
SingleAnnotation-class, 108
textGrob, 86, 87
unify_mat_list, 88, 109
viewport, 21, 47, 53–55, 58, 62