Package ‘DMRScan’

April 25, 2017

Title Detection of Differentially Methylated Regions

Version 1.0.0

Description This package detects significant differentially methylated regions (for both qualitative and quantitative traits), using a scan statistic with underlying Poisson heuristics. The scan statistic will depend on a sequence of window sizes (# of CpGs within each window) and on a threshold for each window size. This threshold can be calculated by three different means: i) analytically using Siegmund et.al (2012) solution (preferred), ii) an important sampling as suggested by Zhang (2008), and a iii) full MCMC modeling of the data, choosing between a number of different options for modeling the dependency between each CpG.

biocViews Software, Technology, Sequencing, WholeGenome

Depends R (>= 3.4.0)

Imports Matrix, MASS, RcppRoll, ggplot2, methods, mvtnorm, stats, parallel

License GPL-3

LazyData true

Author Christian M Page [aut, cre], Linda Vos [aut], Trine B Rounge [ctb, dtc], Hanne F Harbo [ths], Bettina K Andreassen [aut]

Maintainer Christian M Page <page.ntnu@gmail.com>

RoxygenNote 5.0.1

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

\R topics documented:

DMRscan ... 2
DMRScan.methylationData 3
DMRScan.phenotypes 4
DMRScan_package 4
estimateThreshold 5
getRegions .. 6
DMR Scan function

Description

DMR Scan function

Usage

\[
\text{DMRScan}(\text{observations}, \text{windowSize}, \text{windowThreshold} = \text{NULL}, \ldots)
\]

Arguments

- **observations**: An object of type `RegionList`
- **windowSize**: A sequence of windowSizes for the slidingWindow, must be an integer
- **windowThreshold**: Optional argument with corresponding cut-off for each window. Will be estimated if not supplied.
- **\ldots**: Optional arguments to be passed to `estimate_windowThreshold()`, if no grid is specified.

Value

An object of type `RegionList` with significantly differentially
Examples

```r
## nProbeoad methylation data from chromosome 22
data(DMRScan.methylationData)
## nProbeoad phenotype (end-point for methylation data)
data(DMRScan.phenotypes)

## Test for an association between phenotype and Methylation
test.statistics <- apply(DMRScan.methylationData, 1, function(x, y)
  summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3],
y = DMRScan.phenotypes)

## Set chromosomal position to each test-statistic
positions <- data.frame(matrix(as.integer(unlist(strsplit(names(test.statistics), split="chr[.]"))), ncol = 3, byrow = TRUE))[-1]

## Set clustering features
min.cpg <- 4  ## Minimum number of CpGs in a tested cluster
max.gap <- 750 ## Maximum distance (in base-pairs) within a cluster

## Identify all clusters, and generate a list for each cluster
regions <- makeCpGregions(observations = test.statistics, chr = positions[,1], pos = positions[,2],
                          maxGap = max.gap, minCpG = min.cpg)

## Number of CpGs in the slidingWindows, can be either a single number
## or a sequence of windowSizes
windowSizes <- 3:7
nCpG <- nCpG(regions)  ## Number of CpGs to be tested

## Estimate the windowThreshold, based on the number of CpGs and windowSizes
windowThresholds <- estimateWindowThreshold(nProbe = nCpG, windowSize = windowSizes, method = "sampling", mcmc = 10000)

## Run the slidingWindow
DMRScanResults <- DMRScan(observations = regions, windowSize = windowSizes, windowThreshold = windowThresholds)

## Print the result
print(DMRScanResults)
```

Description

Examples

```r
data(DMRScan.methylationData)
head(DMRScan.methylationData)
```
DMRScan: An R-package for identification of Differentially Methylated Regions

Description

DMRScan: An R-package for identification of Differentially Methylated Regions

Arguments

- observations: An object of type RegionList
- windowSize: A sequence of windowSizes for the slidingWindow, must be an integer
- windowThreshold: Optional argument with corresponding cut-off for each window. Will be estimated if not supplied.
- ...: Optional arguments to be passed to estimate_windowThreshold(), if no grid is specified.

Value

An object of type RegionList with significantly differentially

Author(s)

Christian Page, <page.ntnu@gmail.com>

References

http://Some_link_to_BMC-bioInformatics.com
estimateThreshold

Examples

```r
## nProbeoad methylation data from chromosome 22
data(DMRScan.methylationData)
## nProbeoad phenotype (end-point for methylation data)
data(DMRScan.phenotypes)

## Test for an association between phenotype and Methylation
test.statistics <- apply(DMRScan.methylationData, 1, function(x, y)
  summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2, 3],
y = DMRScan.phenotypes)

## Set chromosomal position to each test-statistic
positions <- data.frame(matrix(as.integer(unlist(strsplit(names(test.statistics), split="chr[.|]"))), ncol = 3, byrow = TRUE))[, -1]

## Set clustering features
min.cpg <- 4  ## Minimum number of CpGs in a tested cluster
max.gap <- 750 # Maximum distance (in base-pairs) within a cluster
## before it is broken up into two separate clusters

## Identify all clusters, and generate a list for each cluster
regions <- makeCpGregions(observations = test.statistics,
  chr = positions[, 1], pos = positions[, 2],
  maxGap = max.gap, minCpG = min.cpg)

## Number of CpGs in the slidingWindows, can be either a single number
## or a sequence of windowSizes
windowSizes <- 3:7
nCpG <- nCpG(regions)  ## Number of CpGs to be tested

# Estimate the windowThreshold, based on the number of CpGs and windowSizes
windowThresholds <- estimateWindowThreshold(nProbe = nCpG,
  windowSize = windowSizes, method = "sampling", mcmc = 10000)

## Run the slidingWindow
DMRScanResults <- DMRScan(observations = regions,
  windowSize = windowSizes,
  windowThreshold = windowThresholds)

## Print the result
print(DMRScanResults)
```

estimateThreshold

Estimate window thresholds

Description

Estimate window thresholds for sliding window, one unique value for each window size

Usage

```r
estimateWindowThreshold(nProbe, windowSize, method = "siegmund",
  mcmc = 1000, nCPU = 1, submethod = "ar", ...)
```

Arguments

- `nProbe` The number of probes (CpGs) in the study.
windowSize The different window sizes to be tested. Must be either one, or an ordered sequence of integers.

method Gives the method by which the threshold is calculated. Can be either an analytical solution "sieg mund", provided by Sieg mund et al (2012), or an iterative process; either importance sampling "sampling", as suggested by Zhang (2012) or a full MCMC model "mcmc" which can account for any dependency structure, which is pass to arima.sim, with ...

mcmc The number of MCMC iterations to be used, when using either Important Sampling ("zhang") or MCMC estimation of the threshold.

nCPU When calculating the thresholds on a cluster, how many CPUs should be used. This option is only compatible with the 'mcmc' method.

submethod A character string indicating if an AR(5) or ARIMA model should be used. In the AR(5), the index runs from -2 to 2. A regular AR(p) model can be obtained using ARIMA(p,0,0) instead.

... Optimal parameters passed on to arima(), when simulating data using the mcmc option, see arima.sim()

Value

Returns a vector of the threshold for each window size

Examples

thresholdGrid <- estimateWindowThreshold(nProbe = 1000,
windowSize = 3:8, method = "sieg mund")

Description

Method getRegions

getRegions for Region List

Usage

getRegions(x)

Arguments

x An object of type RegionList

Value

An object of type Region

A region from a RegionList

Examples

someEmptyRegions <- RegionList(3L)
To get back three empty regions
getRegions(someEmptyRegions)
head,RegionList-method

Cat the head of a list of regions in a RegionList object

Description
Cat the head of a list of regions in a RegionList object

Usage
```r
## S4 method for signature 'RegionList'
head(x, n = 10L)
```

Arguments
- `x`: An object to be printed of type RegionList
- `n`: The number of regions to be printed when the RegionList is longer than `n`

Value
The top regions in a RegionList

length,Region-method

Calculate the length of a region in terms of CpGs

Description
Calculate the length of a region in terms of CpGs
Get the number of regions in a RegionList

Usage
```r
## S4 method for signature 'Region'
length(x)
```

```r
## S4 method for signature 'RegionList'
length(x)
```

Arguments
- `x`: A RegionList object

Value
- The number of CpGs in a Region
- The number of CpGs in a RegionList
Description
Clustger CpGs together in genes based on annotation

Usage
makeCpGgenes(observations, chr, pos, gene, minCpG = 2)

Arguments
observations Vector of corresponding observed T-value for each CpG, must be ordered in the
same way as chr and pos
chr Vector of chromosome location for each CpG
pos Vector giving base pair position for each CpG If unsorted, use order(chr, pos) to
sort the genomic positions within each chromosome.
gene A vector asigning each probe to a gene.
minCpG Minimum number of CpGs allowed in each region to be considered. Default is
set to at least 2 CpGs within each region.

Value
The supplied observations ordered into into a list, with one entry for each CpG region.

Examples
data(DMRScan.methylationData) ## Load methylation data from chromosome 22
data(DMRScan.phenotypes) ## Load phenotype (end-point for methylation data)

Test for an association between phenotype and Methylation
testStatistics <- apply(DMRScan.methylationData, 1, function(x, y)
 summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3],
y = DMRScan.phenotypes)

Set chromosomal position to each test-statistic
pos <- data.frame(matrix(as.integer(unlist(strsplit(names(testStatistics),
 split = "chr[.]")))), ncol = 3, byrow = TRUE)[,-1]

Set clustering features
minCpG <- 3 ## Minimum number of CpGs in a tested cluster
gene <- sample(paste("Gene", 1:100, sep=""),
 length(testStatistics), replace = TRUE)
regions <- makeCpGgenes(observations = testStatistics,
 chr = pos[,1], pos = pos[,2],
gene = gene, minCpG = minCpG)
Description

Cluster CpGs together in regions based on proximity

Usage

makeCpGregions(observations, chr, pos, maxGap = 500, minCpG = 2)

Arguments

observations Vector of corresponding observed T-value for each CpG, must be ordered in the same way as chr and pos
chr Vector of chromosome location for each CpG
pos Vector giving base pair position for each CpG If unsorted, use order(chr,pos) to sort the genomic positions within each chromosome.
maxGap Maximum allowed base pair gap within a cluster. Default is set to 500.
minCpG Minimum number of CpGs allowed in each region to be considered. Default is set to at least 2 CpGs within each region.

Value

The supplied observations ordered into into a RegionList object. To be parsed further into DMRScan()

Examples

data(DMRScan.methylationData) ## Load methylation data from chromosome 22
data(DMRScan.phenotypes) ## Load phenotype (end-point for methylation data)

Test for an association between phenotype and Methylation
testStatistics <- apply(DMRScan.methylationData,1,function(x,y)
 summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3],
y = DMRScan.phenotypes)

Set chromosomal position to each test-statistic
pos<- data.frame(matrix(as.integer(unlist(strsplit(names(testStatistics),
 split="chr[.]")), ncol = 3, byrow = TRUE)[:,3])

Set clustering features
minCpG <- 3 ## Minimum number of CpGs in a tested cluster
Maximum distance (in base-pairs) within a cluster before it is broken up into two separate cluster
maxGap <- 750
regions <- makeCpGregions(observations = testStatistics, chr = pos[,1],
pos = pos[,2], maxGap = maxGap, minCpG = minCpG)
manyWindowSizeScanner
Method Fixed window size scan for a sequence of window sizes

Description
Method Fixed window size scan for a sequence of window sizes

Usage
```r
code
```
```
manyWindowSizeScanner(region, windowThreshold, windowSize)
```
```
# S4 method for signature 'RegionList'
manyWindowSizeScanner(region, windowThreshold, windowSize)
```
```
# S4 method for signature 'Region'
manyWindowSizeScanner(region, windowThreshold, windowSize)
```

Arguments
- `region` Object of type Region or RegionList
- `windowThreshold` Vector of window thresholds
- `windowSize` Vector of window sizes to be tested on regions

Value
A list of which windows that are significant

Examples
```r
## Not run
```

names,Region-method
Get the names of all probes within a region

Description
Get the names of all probes within a region
Get the names of all probes in a study

Usage
```r
## S4 method for signature 'Region'
names(x)
```
```
## S4 method for signature 'RegionList'
names(x)
```
nCpG

Arguments

 x An object of type Region

Value

 The names of individual CpGs in a Region
 A character vector of all CpG ids in a RegionList

Description

Method nCpG
Get the number of CpGs in a region
Get the number of CpGs in a RegionList

Usage

 nCpG(x)

 ## S4 method for signature 'Region'
 nCpG(x)

 ## S4 method for signature 'RegionList'
 nCpG(x)

Arguments

 x An object of type Region or RegionList

Value

 The number of CpGs in an object

Examples

 someEmptyRegions <- RegionList(3L)
 # The number of CpGs in this region is 0
 nCpG(someEmptyRegions)
oneWindowSizeScanner Method Fixed window size scan for one window size

Description
Method Fixed window size scan for one window size

Usage
oneWindowSizeScanner(region, windowThreshold, windowSize)

Arguments
region Object of type Region or RegionList
windowThreshold Vector of window thresholds
windowSize Vector of window sizes to be tested on regions

Value
A list of which windows that are significant

Examples
Not run

plot.Region Plot DMRs of type Region

Description
Plot DMRs of type Region

Usage
S3 method for class 'Region'
plot(x, ...)

Arguments
x A Region object to be plotted. Can be subsetted from RegionList
... Inherited from plot()
Value

A plot object

Description

Method pos

Get the chromosomal coordinates for a Region
Get the chromosomal coordinates for a list of regions in a RegionList object

Usage

pos(region)

S4 method for signature 'Region'
pos(region)

S4 method for signature 'RegionList'
pos(region)

Arguments

region An object of type Region or RegionList

Value

An integer vector of positions for each probe site

Examples

Number of probes is n = 10
cpG <- 10
region <- Region(tValues = rnorm(cpG),
position = 1:cpG,
chromosome = "3")
Genomic coordinates for Region
pos(region)
print, Region-method

Print a region

Description

Print a region
Print a number of regions in a RegionList

Usage

```r
## S4 method for signature 'Region'
print(x, ...)
```

```r
## S4 method for signature 'RegionList'
print(x)
```

Arguments

- `x` Object of type Region
- `...` Has no function

Value

An print object of a Region class
A printed object of all regions in a RegionList

pVal

Method get pvalue

Description

Method get pvalue
Get p-values for a region
Get p-values for a list of regions (RegionList)

Usage

```r
pVal(region, n = 12)
```

```r
## S4 method for signature 'Region'
pVal(region, n = 12)
```

```r
## S4 method for signature 'RegionList'
pVal(region, n = 12)
```

Arguments

- `region` An object of type Region or RegionList
- `n` The number of digits to be presented. Default is 10
Value

A numeric vector of p-values

Examples

```r
#Number of probes is n = 10
nCpG <- 10
region <- Region(tValues = rnorm(nCpG),
                  position = 1:nCpG,
                  chromosome = "3",
                  pVal = runif(1))
## Pvalues for Region
pVal(region)
```

Description

Get the genomic position of a Region

Usage

```r
## S4 method for signature 'Region'
range(x)
```

Arguments

`x`
An object of type Region

Value

A character giving the genomic position

Region

Shorthand for initializing region

Description

Shorthand for initializing region

Usage

```r
Region(tValues, position, chromosome, pVal, id)
```

Arguments

`tValues`
A vector of test statistics

`position`
A vector of position for each test statistic

`chromosome`
An character describing the chromosome (1-22, X,Y)

`pVal`
The P value of a region, set to numeric() if not given.

`id`
The names of each probe in the region
Value

An object of type Region
An object of type Region

Examples

#Number of probes is n = 10
nCpG <- 10
region <- Region(tValues = rnorm(nCpG),
 position = 1:nCpG,
 chromosome = "3",
 id = paste("CpG",1:nCpG,sep="_"),
 pVal = runif(1))

Region-class

Object of type Region

Description

Class Region is a collection of test statistics for a set of CpGs within a short genomic range

RegionList

Shorthand for initializing RegionList

Description

Shorthand for initializing RegionList

Usage

RegionList(nRegions, regions)

Arguments

nRegions The number of regions to be placed
regions The regions to be included

Value

An object of type RegionList

Examples

An empty list of 3 regions
RegionList(3L)
RegionList-class

Class RegionList Class RegionList is a collection of Regions

setRegion

Method setRegion

Description

Method setRegion
Update a RegionList object

Usage

setRegion(x, i, ...)

S4 method for signature 'RegionList'
setRegion(x, i, region)

Arguments

x A region
i an index
... To be passed to Region()
region An object of type Region to be inserted in RegionList

Value

An updated version of RegionList x, with a new Region at index i

Examples

A region list with 3 regions
regList <- RegionList(3L)
Number of probes in first is n = 10
nCpG <- 10
region <- Region(tValues = rnorm(nCpG),
 position = 1:nCpG,
 chromosome = "3")
Set first region in regList to region
regList <- setRegion(regList, i = 1, region)
show,Region-method

Show a region

Description
Show a region

Usage
S4 method for signature 'Region'
show(object)

Arguments
object The region to be displayed, of type Region

Value
Cat a region to screen

sort,RegionList-method

Sort a set of regions on p-value in a RegionList object

Description
Sort a set of regions on p-value in a RegionList object

Usage
S4 method for signature 'RegionList'
sort(x, decreasing = FALSE)

Arguments
x An object of type RegionList
decreasing Inherited from base

Value
An updated RegionList, sorted on empirical p-values
tVal

Method get T statistic for a region

Get test statistic for an object of type Region

Get test statistic for all regions within a RegionList class

Usage

```r
tVal(region, ...)
```

```r
## S4 method for signature 'Region'
tVal(region, index = NULL)
```

```r
## S4 method for signature 'RegionList'
tVal(region, index = NULL)
```

Arguments

- `region`: An object of type Region or RegionList
- `...`: Index
- `index`: Index to extract

Value

A numeric vector of t-values for a Region or RegionList

Examples

```r
# Number of probes is n = 10
nCpG <- 10
region <- Region(tValues = rnorm(nCpG),
                 position = 1:nCpG,
                 chromosome = "3")
## T values for Region
tVal(region)
```

Get Object Region

Description

Get Object Region
Get Object Region

Description

Get Object Region

Usage

```r
## S4 method for signature 'RegionList'
x[i, j, ..., drop]
```

Arguments

- **x**: An object of type `RegionList`
- **i**: Index, which region to extract
- **j**: (Not used)
- **drop**: (not used)
- **drop**: If drop is used

Value

A region from a `RegionList` with class "Region"
Index

*Topic **CpG**
makeCpGgenes, 8
makeCpGregions, 9

*Topic **DMR**
DMRScan_package, 4

*Topic **DMRScan**
DMRscan, 2
DMRScan_package, 4

*Topic **Regions**
makeCpGgenes, 8
makeCpGregions, 9

*Topic **datasets**
DMRScan.methylationData, 3

*Topic **dataset**
DMRScan.phenotypes, 4

\[, 19
\[, RegionList, ANY, ANY, ANY-method (\[]), 19
\[, 20
\[, RegionList-method (\[]), 20

DMRScan (DMRscan), 2
DMRscan, 2
DMRScan.methylationData, 3
DMRScan.phenotypes, 4
DMRScan_package, 4
DMRScan_package-package
(DMRScan_package), 4

estimateThreshold, 5
estimateWindowThreshold
(estimateThreshold), 5

getRegions, 6
getRegions, RegionList-method
(getRegions), 6

head, RegionList-method, 7

length, Region-method, 7
length, RegionList-method
(length, Region-method), 7

makeCpGgenes, 8
makeCpGregions, 9

manyWindowSizeScanner, Region-method
(manyWindowSizeScanner), 10
manyWindowSizeScanner, RegionList-method
(manyWindowSizeScanner), 10

names, Region-method, 10
names, RegionList-method
(names, Region-method), 10
nCpG, 11
nCpG, Region-method (nCpG), 11
nCpG, RegionList-method (nCpG), 11

oneWindowSizeScanner, 12
oneWindowSizeScanner, Region-method
(oneWindowSizeScanner), 12
oneWindowSizeScanner, RegionList-method
(oneWindowSizeScanner), 12

plot (plot.Region), 12
plot.Region, 12

pos, 13
pos, Region-method (pos), 13
pos, RegionList-method (pos), 13
print, Region-method, 14
print, RegionList-method
(print, Region-method), 14
pVal, 14
pVal, Region-method (pVal), 14
pVal, RegionList-method (pVal), 14

range, Region-method, 15
Region, 15
Region-class, 16
RegionList, 16
RegionList-class, 17
Rt (oneWindowSizeScanner), 12
Rt, Region-method
(oneWindowSizeScanner), 12
Rt, RegionList-method
(oneWindowSizeScanner), 12

setRegion, 17
setRegion, RegionList-method
(setRegion), 17
show, Region-method, 18

21
sort.RegionList-method, 18
St (manyWindowSizeScanner), 10
tVal, 19
tVal,Region-method(tVal), 19
tVal,RegionList-method(tVal), 19