Package ‘DMRcate’

April 14, 2017

Title Methylation array and sequencing spatial analysis methods

Version 1.10.10

Date 2017-31-03

Author Tim Peters

Maintainer Tim Peters <t.peters@garvan.org.au>

Description
De novo identification and extraction of differentially methylated regions (DMRs) from the human genome using Whole Genome Bisulphite Sequencing (WGBS) and Illumina Infinium Array (450K and EPIC) data. Provides functionality for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions.

Depends R (>= 3.3.0), minfi, DSS, DMRcatedata

Imports limma, missMethyl, GenomicRanges, parallel, methods, graphics, plyr, Gviz, IRanges, stats, utils, S4Vectors

biocViews DifferentialMethylation, GeneExpression, Microarray, MethylationArray, Genetics, DifferentialExpression, GenomeAnnotation, DNAMethylation, OneChannel, TwoChannel, MultipleComparison, QualityControl, TimeCourse

Suggests knitr, RUnit, BiocGenerics,
IlluminaHumanMethylation450kanno.ilmn12.hg19,
IlluminaHumanMethylationEPICanno.ilm10b2.hg19

License file LICENSE

VignetteBuilder knitr

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMRcate-package</td>
<td>2</td>
</tr>
<tr>
<td>cpg.annotate</td>
<td>2</td>
</tr>
<tr>
<td>DMR.plot</td>
<td>4</td>
</tr>
<tr>
<td>dmrcate</td>
<td>6</td>
</tr>
<tr>
<td>extractRanges</td>
<td>8</td>
</tr>
<tr>
<td>rmSNPandCH</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 11
cpg.annotate

Annotate CpGs with their chromosome position and test statistic

Description

Either: - Annotate a matrix/GenomicRatioSet representing 450K or EPIC data with probe weights (depending on analysis.type) and chromosomal position, or

- Standardise this information from DSS::DMLtest() to the same data format.

dmr annotate

DMR annotate

DMR calling from bisulphite sequencing and Illumina array data

Description

De novo identification and extraction of differentially methylated regions (DMRs) in the human genome using array and sequencing data. DMRcate extracts and annotates differentially methylated regions (DMRs) using an array-bias corrected smoothed estimate. Functions are provided for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

data(dmrdataset)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", "", colnames(myMs)))
type <- factor(sub(".*-", "", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
 analysis.type="differential", design=design, coef=39)
dmrcoutput <- dmr annotate(myannotation, lambda=1000, C=2)
results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
groups <- c(Tumour="magenta", Normal="forestgreen")
cols <- groups[(as.character(type))
samps <- c(1:6, 38+(1:6))
DMR.plot(ranges=results.ranges, dmr=1, CpGs=myBetas, phen.col=cols, genome="hg19", samps=samps)

dmr annotate

DMR annotate

DMR calling from bisulphite sequencing and Illumina array data

Description

De novo identification and extraction of differentially methylated regions (DMRs) in the human genome using array and sequencing data. DMRcate extracts and annotates differentially methylated regions (DMRs) using an array-bias corrected smoothed estimate. Functions are provided for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", "", colnames(myMs)))
type <- factor(sub(".*-", "", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
 analysis.type="differential", design=design, coef=39)
dmrcoutput <- dmr cate(myannotation, lambda=1000, C=2)
results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
groups <- c(Tumour="magenta", Normal="forestgreen")
cols <- groups[(as.character(type))
samps <- c(1:6, 38+(1:6))
DMR.plot(ranges=results.ranges, dmr=1, CpGs=myBetas, phen.col=cols, genome="hg19", samps=samps)
cpg.annotate

Usage

cpg.annotate(datatype = c("array", "sequencing"), object, what=c("Beta", "M"),
arraytype=c("EPIC", "450K"), analysis.type = c("differential", "variability", "ANOVA", "diffVar"), design, contrasts = FALSE,
cont.matrix = NULL, fdr = 0.05, coef, ...)

Arguments

datatype Character string representing the type of data being analysed.
object Either:
- A matrix of \(M \)-values, with unique Illumina probe IDs as rownames and unique sample IDs as column names or,
- A GenomicRatioSet, appropriately annotated or,
- Output from DSS:::DMLtest().
what Does the data matrix contain Beta or M-values? Not needed if object is a GenomicRatioSet.
arraytype Is the data matrix sourced from EPIC or 450K data? Not needed if object is a GenomicRatioSet.
analysis.type "differential" for dmrcate() to return DMRs; "variability" to return VMRs; "ANOVA" to return "whole experiment" DMRs, incorporating all possible contrasts from the design matrix using the moderated \(F \)-statistics; "diffVar" to return differentially variable methylated regions, using the missMethyl package to generate \(t \)-statistics. All modes are applicable when datatype="array", but only "differential" is available when datatype="sequencing".
design Study design matrix. Identical context to differential analysis pipeline in limma. Must have an intercept if contrasts=FALSE. Applies only when analysis.type %in% c("differential", "ANOVA"). Only applicable when datatype="array".
contrasts Logical denoting whether a limma-style contrast matrix is specified. Only applicable when datatype="array" and analysis.type %in% c("differential", "diffVar").
cont.matrix Limma-style contrast matrix for explicit contrasting. For each call to cpg.annotate, only one contrast will be fit. Only applicable when datatype="array" and analysis.type %in% c("differential", "diffVar").
fdr FDR cutoff (Benjamini-Hochberg) for which CpG sites are individually called as significant. Used to index default thresholding in dmrcate(). Highly recommended as the primary thresholding parameter for calling DMRs. Not used when analysis.type = "variability".
coef The column index in design corresponding to the phenotype comparison. Corresponds to the comparison of interest in design when contrasts=FALSE, otherwise must be a column name in cont.matrix. Only applicable when datatype="array" and analysis.type %in% c("differential", "diffVar").
...
Extra arguments passed to the limma function lmFit() (analysis.type="differential") or missMethyl function varFit() (analysis.type = "diffVar"), and when datatype="array".

Value

An object of class "annot", for passing to dmrcate, containing the vectors:
• **ID**: Illumina probe ID or row number
• **stat**: t-, Wald or F-statistics between phenotypes for each CpG
• **CHR**: Chromosome which the CpG maps to
• **pos**: Genomic coordinate (on CHR) that the CpG maps to
• **betafc**: The beta fold change according to the given design
• **indfdr**: Individually-derived FDRs for each CpG
• **is.sig**: Logical denoting either significance from `fdr` (analysis.type %in% c("differential", "ANOVA", "diffVar")) or top ventile of variable probes (analysis.type="variability")

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

```r
## Not run:
data(dmrcatedata)
myMs <- logit2(myBetats)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", ",", colnames(myMs)))
type <- factor(sub(".*-", ",", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
                             analysis.type="differential", design=design, coef=39)
## End(Not run)
```

DMR.plot

Plotting DMRs

Description

Plots an individual DMR (in context of possibly other DMRs) as found by `dmrcate`. Heatmap and mean methylation plots are shown as well as genomic coordinates and proximal coding regions.
Usage

DMR.plot(ranges, dmr, CpGs, what=c("Beta", "M"),
 arraytype=c("EPIC", "450K"), phen.col,
 genome = c("hg19", "hg38", "mm10"),
 samps = NULL, ...)

Arguments

ranges A GRanges object (ostensibly created by extractRanges()) describing DMR
coordinates.
dmr Index of ranges (one integer only) indicating which DMR to be plotted.
CpGs Either:
- A matrix of beta values for plotting, with unique Illumina probe IDs as row-
 names.
- A GenomicRatioSet, annotated with the appropriate array and data types
- A GRanges object describing individual CpGs to be plotted, containing methy-
lated reads and total coverage for each sample. Please see the worked example
 in the vignette for the correct structure of this object.
what Does CpGs (if a matrix) contain Beta or M-values? Not needed if object is a
GenomicRatioSet or GRanges object.
arraytype Is CpGs (if a matrix) sourced from EPIC or 450K data? Not needed if object is a
GenomicRatioSet or GRanges object.
phen.col Vector of colors denoting phenotypes of all samples described in CpGs. See
vignette for worked example.
genome Reference genome for annotating DMRs. Can be one of "hg19", "hg38" or
"mm10"
samps Vector of samples to be plotted, corresponding to indices of phen.col. Default
is all samples plotted.
... Extra arguments passed to Gviz:::plotTracks().

Value

A plot to the current device.

Author(s)

Aaron Statham <a.statham@garvan.org.au>, Tim J. Peters <t.peters@garvan.org.au>

Examples

Not run:
data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", ",", colnames(myMs)))
type <- factor(sub(".*-", ",", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
 analysis.type="differential", design=design, coef=39)
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
groups <- c(Tumour="magenta", Normal="forestgreen")
cols <- groups[as.character(type)]
samps <- c(1:6, 38+(1:6))
DMR.plot(ranges=results.ranges, dmr=1, CpGs=myBetas, what="Beta", arraytype = "450K",
phen.col=cols, genome="hg19", samps=samps)

End(Not run)

dmrcate

DMR identification

Description
The main function of this package. Computes a kernel estimate against a null comparison to identify significantly differentially (or variable) methylated regions.

Usage

dmrcate(object,
 lambda = 1000,
 C=NULL,
 p.adjust.method = "BH",
 pcutoff = "fdr",
 consec = FALSE,
 conseclambda = 10,
 betacutoff = NULL,
 min.cpgs = 2,
 mc.cores = 1
)

Arguments

object # A class of type "annot", created from cpg.annotate.
lambda # Gaussian kernel bandwidth for smoothed-function estimation. Also informs DMR bookend definition; gaps >= lambda between significant CpG sites will be in separate DMRs. Support is truncated at 5*lambda. Default is 1000 nucleotides. See details for further info.
C # Scaling factor for bandwidth. Gaussian kernel is calculated where lambda/C = sigma. Empirical testing shows that, for 450k data when lambda=1000, near-optimal prediction of sequencing-derived DMRs is obtained when C is approximately 2, i.e. 1 standard deviation of Gaussian kernel = 500 base pairs. Should be a lot larger for sequencing data - suggest C=50. Cannot be < 0.2.
p.adjust.method # Method for p-value adjustment from the significance test. Default is "BH" (Benjamini-Hochberg).
pcutoff # p-value cutoff to determine DMRs. Default is automatically determined by the number of significant CpGs returned by either limma or DSS for that contrast, but can be set manually with a numeric value. Default is highly recommended, and thresholding can be adjusted using the fdr argument in cpg.annotate().
consec # Use DMRcate in consecutive mode. Treats CpG sites as equally spaced.
Bandwidth in CpGs (rather than nucleotides) to use when consec=TRUE. When specified the variable lambda simply becomes the minimum distance separating DMRs.

Optional filter; removes any region from the results where the absolute mean beta shift is less than the given value.

Minimum number of consecutive CpGs constituting a DMR.

When > 1, the processor will attempt to run the kernel smoothing in parallel, 1 chromosome per core. Use with discretion. Default recommended for laptop use. Please use detectCores() and htop in your terminal to check your resource ceiling before increasing the default.

The values of lambda and C should be chosen with care. For array data, we currently recommend that half a kilobase represent 1 standard deviation of support (lambda=1000 and C=2), and 20bp (C=50) for WGBS data. If lambda is too small or C too large then the kernel estimator will not have enough support to significantly differentiate the weighted estimate from the null distribution. If lambda is too large then dmrcate will report very long DMRs spanning multiple gene loci, and the large amount of support will likely give Type I errors. If you are concerned about Type I errors we recommend using the default value of pcutoff, although this will return no DMRs if no DM CpGs are returned by limma/DSS either.

A list containing 2 data frames (input and results) and a numeric value (cutoff). input contains the contents of the annot object, plus calculated p-values:

- ID: As per annotation object input
- stat: As per annotation object input
- CHR: As per annotation object input
- pos: As per annotation object input
- betafc: As per annotation object input
- raw: Raw p-values from the significance test
- fdr: Adjusted p-values from the significance test
- step.dmr: Vector denoting the start of a new DMR (TRUE), constitutive of a DMR, but not the start (FALSE), or non-DMR (NA).

results contains an annotated data.frame of significant regions, ranked by Stouffer:

- coord: Coordinates of the significant region in hg19. IGV- and UCSC-friendly.
- no.cpgs: Number of CpG sites constituting the significant region. Tie-breaker when sorting by Stouffer.
- minfdr: Minimum adjusted p-value from the CpGs constituting the significant region.
- Stouffer: Stouffer transformation of the group of limma- or DSS-derived fdrs for individual CpG sites as DMR constituents.
- maxbetafc: Maximum absolute beta fold change within the region
- meanbetafc: Mean beta fold change within the region.

cutoff is the significance p-value cutoff provided in the call to dmrcate.
extractRanges

Create GRanges object from dmrcate output.

Description

Takes a dmrcate.output object and produces the corresponding GRanges object.

Usage

extractRanges(dmrcoutput, genome = c("hg19", "hg38", "mm10"))

Arguments

dmrcoutput
An object of class dmrcate.output.

geno""me
Reference genome for annotating DMRs with promoter overlaps. Can be one of "hg19", "hg38" or "mm10"

Value

A GRanges object.

Author(s)

Tim Triche Jr. <tim.triche@usc.edu>, Tim Peters <t.peters@garvan.org.au>
Examples

```r
## Not run:
data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", ", colnames(myMs)))
type <- factor(sub(".*-", ", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
                           analysis.type="differential", design=design, coef=39)
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
## End(Not run)
```

rmSNPandCH

Filter probes

Description

Filters a matrix of M-values (or beta values) by distance to SNP/variant. Also (optionally) removes cross-hybridising probes and sex-chromosome probes.

Usage

```r
rmSNPandCH(object, dist = 2, mafcut = 0.05, and = TRUE, rmcrosshyb = TRUE, rmXY=FALSE)
```

Arguments

- `object`: A matrix of M-values or beta values, with unique Illumina probe IDs as row-names.
- `dist`: Maximum distance (from CpG to SNP/variant) of probes to be filtered out. See details for when Illumina occasionally lists a CpG-to-SNP distance as being < 0.
- `mafcut`: Minimum minor allele frequency of probes to be filtered out.
- `and`: If `TRUE`, the probe must have at least 1 SNP binding to it that satisfies both requirements in `dist` and `mafcut` for it to be filtered out. If `FALSE`, it will be filtered out if either requirement is satisfied. Default is `TRUE`.
- `rmcrosshyb`: If `TRUE`, filters out probes found by Pidsley and Zotenko et al. (2016) for EPIC or Chen et al. (2013) for 450K to be cross-reactive with areas of the genome not at the site of interest. Many of these sites are on the X-chromosome, leading to potential confounding if the sample group is a mix of males and females. There are 63,707 probes in total in this list. Default is `TRUE`.
- `rmXY`: If `TRUE`, filters out probe hybridising to sex chromosomes. Or-operator applies when combined with other 2 filters.

Details

Probes in `-1:dist` will be filtered out for any integer specification of `dist`. When a probe is listed as being “-1” nucleotides from a SNP (7 in total of the 153,113), that SNP is immediately adjacent to the end of the probe, and is likely to confound the measurement, in addition to those listed as 0, 1 or 2 nucleotides away. See vignette for further details.
Value

A matrix, attenuated from object, with rows corresponding to probes matching user input filtered out.

Author(s)

Tim J. Peters <t.peters@garvan.org.au>

References

Examples

```r
## Not run:
data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)

## End(Not run)
```
Index

cpg.annotate, 2, 6
DMR.plot, 4
DMRcate (DMRcate-package), 2
dmrcate, 6, 8
DMRcate-package, 2
extractRanges, 8
plot (DMR.plot), 4
rmSNPandCH, 9