Package ‘DOSE’
March 28, 2017

Type Package
Title Disease Ontology Semantic and Enrichment analysis
Version 3.0.10
Author Guangchuang Yu <guangchuangyu@gmail.com> with contributions from
 Li-Gen Wang, Vladislav Petyuk and Giovanni Dall’Olio.
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>
Description This package implements five methods proposed by
 Resnik, Schlicker, Jiang, Lin and Wang respectively
 for measuring semantic similarities among DO terms and
 gene products. Enrichment analyses including hypergeometric
 model and gene set enrichment analysis are also implemented
 for discovering disease associations of high-throughput
 biological data.
Depends R (>= 3.3.1)
Imports AnnotationDbi, BiocParallel, DO.db, fgsea, ggplot2, GOSemSim
 (>= 2.0.0), graphics, grid, igraph, methods, qvalue,
 reshape2, S4Vectors, scales, stats, stats4, utils
Suggests BiocStyle, clusterProfiler, knitr, org.Hs.eg.db, testthat,
 UpSetR
VignetteBuilder knitr
ByteCompile true
License Artistic-2.0
URL https://guangchuangyu.github.io/DOSE
BugReports https://github.com/GuangchuangYu/DOSE/issues
biocViews Annotation, Visualization, MultipleComparison,
 GeneSetEnrichment, Pathways, Software
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

 DOSE-package ... 2
 barplot.enrichResult ... 3
 clusterSim .. 4
DOSE-package

Disease Ontology Semantic and Enrichment analysis Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for measuring DO semantic similarities, and hypergeometric test for enrichment analysis.
Description

This package is designed to estimate DO-based semantic similarity measurement and enrichment analysis.

Details

Package: DOSE
Type: Package
Version: 2.3.5
Date: 2-27-2012
biocViews: Bioinformatics, Annotation
Depends: methods, AnnotationDbi, DO.db
Imports: clusterProfiler, GOSemSim
License: Artistic-2.0

Author(s)

Guangchuang Yu, Li-Gen Wang
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

See Also

enrichResult

Description

barplot of enrichResult

Usage

S3 method for class 'enrichResult'
barplot(height, x = "Count", colorBy = "pvalue",
 showCategory = 5, font.size = 12, title = "", ...)

Arguments

height enrichResult object
x one of 'Count' and 'GeneRatio'
colorBy one of 'pvalue', 'p.adjust', 'qvalue'
showCategory number of categories to show
font.size font size
title plot title
... other parameter, ignored
Description

semantic similarity between two gene clusters

Usage

clusterSim(cluster1, cluster2, measure = "Wang", combine = "BMA")

Arguments

cluster1 a vector of gene IDs
cluster2 another vector of gene IDs
measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
combine One of "max", "average", "rcmax", "BMA" methods, for combining

Details

given two gene clusters, this function calculates semantic similarity between them.

Value

similarity

Author(s)

Yu Guangchuang

Examples

cluster1 <- c("835", "5261", "241", "994")
clusterSim(cluster1, cluster2)

cnetplot

cnetplot method

Description

cnetplot
Usage

```r
cnetplot(x, showCategory = 5, categorySize = "geneNum", foldChange = NULL, fixed = TRUE, ...)
```

S4 method for signature 'enrichResult'

cnetplot(x, showCategory = 5,
 categorySize = "pvalue", foldChange = NULL, fixed = TRUE, ...)

S4 method for signature 'gseaResult'

cnetplot(x, showCategory = 5,
 categorySize = "pvalue", foldChange = NULL, fixed = TRUE, ...)

Arguments

- `x`: enrichResult object
- `showCategory`: number of category plotted
- `categorySize`: one of geneNum or pvalue
- `foldChange`: fold change of expression value
- `fixed`: logical
- `...`: additional parameters

Value

- `plot`

Author(s)

Guangchuang Yu http://guangchuangyu.github.io

cnetplot_internal cnetplot_internal

Description

plot function of gene Concept Net.

Usage

```r
cnetplot_internal(inputList, categorySize = "geneNum", showCategory = 5, pvalue = NULL, foldChange = NULL, fixed = TRUE, DE.foldChange = NULL, ...)
```

Arguments

- `inputList`: a list of gene IDs
- `categorySize`: setting category size
- `showCategory`: number of categories to plot
- `pvalue`: pvalue
foldChange fold Change
fixed logical
DE.foldChange logical
... additional parameters

Value
plotted igraph object.

Author(s)
Guangchuang Yu http://ygc.name

computeIC *compute information content*

Description
compute information content

Usage
computeIC(ont = "DO", organism = "human")

Arguments
ont "DO"
organism "human"

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

DataSet *Datasets*

Description
Information content and DO term to entrez gene IDs mapping
doSim

Description

measuring similarities between two DO term vectors.

Usage

doSIm(DOID1, DOID2, measure = "Wang")

Arguments

- DOID1: DO term vector
- DOID2: DO term vector
- measure: one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".

Details

provide two DO term vectors, this function will calculate their similarities.

Value

score matrix

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

dotplot

dotplot method

Description

dotplot
dotplot for enrichResult

Usage

dotplot(object, ...)

S4 method for signature 'enrichResult'
dotplot(object, x = "geneRatio", colorBy = "p.adjust", showCategory = 10, category = NULL, font.size = 12, title = "")
Arguments

object	an instance of enrichResult
...	additional parameter
x	variable for x axis
colorBy	one of 'pvalue', 'p.adjust' and 'qvalue'
showCategory	number of category
category	separate result by 'category' variable
font.size	font size
title	plot title

Value

plot

Author(s)

Guangchuang Yu
Guangchuang Yu

enrichDGN

Description

given a vector of genes, this function will return the enrichment NCG categories with FDR control

Usage

```r
enrichDGN(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe, 
minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, readable = FALSE)
```

Arguments

- **gene**: a vector of entrez gene id
- **pvalueCutoff**: pvalue cutoff
- **pAdjustMethod**: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**: background genes
- **minGSSize**: minimal size of genes annotated by NCG category for testing
- **maxGSSize**: maximal size of each geneSet for analyzing
- **qvalueCutoff**: qvalue cutoff
- **readable**: whether mapping gene ID to gene Name

Value

A enrichResult instance
enrichDGNv

Author(s)
Guangchuang Yu

References

enrichDGNv enrichDGN

Description
Enrichment analysis based on the DisGeNET (http://www.disgenet.org/)

Usage
enrichDGNv(snp, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, readable = FALSE)

Arguments
snp a vector of SNP
pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes
minGSSize minimal size of genes annotated by NCG category for testing
maxGSSize maximal size of each geneSet for analyzing
qvalueCutoff qvalue cutoff
readable whether mapping gene ID to gene Name

Details
given a vector of genes, this function will return the enrichment NCG categories with FDR control

Value
A enrichResult instance

Author(s)
Guangchuang Yu

References
enrichDO

Description
Given a vector of genes, this function will return the enrichment DO categories with FDR control.

Usage
```r  
enrichDO(gene, ont = "DO", pvalueCutoff = 0.05, pAdjustMethod = "BH",  
universe, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2,  
readable = FALSE)  
```

Arguments
- `gene`: a vector of entrez gene id
- `ont`: one of DO or DOLite.
- `pvalueCutoff`: pvalue cutoff
- `pAdjustMethod`: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe`: background genes
- `minGSSize`: minimal size of genes annotated by NCG category for testing
- `maxGSSize`: maximal size of each geneSet for analyzing
- `qvalueCutoff`: qvalue cutoff
- `readable`: whether mapping gene ID to gene Name

Value
A enrichResult instance.

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

See Also
enrichResult-class

Examples
```r  
data(geneList)  
gene = names(geneList)[geneList > 1]  
yy = enrichDO(gene, pvalueCutoff=0.05)  
summary(yy)  
```
enricher_internal

Description
internal method for enrichment analysis

Usage
enricher_internal(gene, pvalueCutoff, pAdjustMethod = "BH", universe,
 minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, USER_DATA)

Arguments
gene a vector of entrez gene id.
pvalueCutoff Cutoff value of pvalue.
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of each geneSet for analyzing
qvalueCutoff cutoff of qvalue
USER_DATA ontology information

Details
using the hypergeometric model

Value
A enrichResult instance.

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

enrichMap

Description
enrichment map

Usage
enrichMap(x, n = 50, fixed = TRUE, vertex.label.font = 1, ...)

Arguments

- `x`: gseaResult or enrichResult object
- `n`: maximum number of category to shown
- `fixed`: if set to FALSE, will invoke tkplot
- `vertex.label.font`: font size of vertex label
- `...`: additional parameter

Details

enrichment map

Value

figure

Author(s)

G Yu

Description

Enrichment analysis based on the Network of Cancer Genes database (http://ncg.kcl.ac.uk/)

Usage

enrichNCG(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, readable = FALSE)

Arguments

- `gene`: a vector of entrez gene id
- `pvalueCutoff`: pvalue cutoff
- `pAdjustMethod`: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe`: background genes
- `minGSSize`: minimal size of genes annotated by NCG category for testing
- `maxGSSize`: maximal size of each geneSet for analyzing
- `qvalueCutoff`: qvalue cutoff
- `readable`: whether mapping gene ID to gene Name

Details

given a vector of genes, this function will return the enrichment NCG categories with FDR control
Class "enrichResult" This class represents the result of enrichment analysis.

Value
A enrichResult instance

Author(s)
Guangchuang Yu

Description
Class "enrichResult" This class represents the result of enrichment analysis.

Slots
result enrichment analysis
pvalueCutoff pvalueCutoff
pAdjustMethod pvalue adjust method
qvalueCutoff qvalueCutoff
organism only "human" supported
ontology biological ontology
gene Gene IDs
keytype Gene ID type
universe background gene
gene2Symbol mapping gene to Symbol
geneSets gene sets
readable logical flag of gene ID in symbol or not.

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

See Also
enrichDO
EXTID2NAME

Description
mapping gene ID to gene Symbol

Usage
EXTID2NAME(OrgDb, geneID, keytype)

Arguments
- OrgDb: OrgDb
- geneID: entrez gene ID
- keytype: keytype

Value
gene symbol

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

fortify.enrichResult

Description
convert enrichResult object for ggplot2

Usage
S3 method for class 'enrichResult'
fortify(model, data, showCategory = 5, by = "Count", order = FALSE, drop = FALSE, category = NULL, ...)

Arguments
- model: enrichResult object
- data: not use here
- showCategory: Category numbers to show
- by: one of Count and GeneRatio
- order: logical
- drop: logical
- category: separate result by `category` variable
- ...: additional parameter
fortify.gseaResult

Description

convert gsea result for ggplot2

Usage

```r
## S3 method for class 'gseaResult'
fortify(model, data, geneSetID, ...)
```

Arguments

- `model`: gseaResult object
- `data`: not used.
- `geneSetID`: gene set ID
- `...`: additional parameter

Value

figure

Author(s)

G Yu

gene2DO

Description

provide gene ID, this function will convert to the corresponding DO Terms

Usage

`gene2DO(gene)`

Arguments

- `gene`: entrez gene ID

Value

DO Terms

Author(s)

Guangchuang Yu http://guangchuangyu.github.io
geneID

Description
geneID generic

Usage
geneID(x)

Arguments
x enrichResult object

Value
'geneID' return the 'geneID' column of the enriched result which can be converted to data.frame via 'as.data.frame'

Examples
data(geneList, package="DOSE")
de <- names(geneList)[1:100]
x <- enrichDO(de)
geneID(x)

geneInCategory

Description
geneInCategory generic

Usage
geneInCategory(x)

Arguments
x enrichResult

Value
'geneInCategory' return a list of genes, by splitting the input gene vector to enriched functional categories

Examples
data(geneList, package="DOSE")
de <- names(geneList)[1:100]
x <- enrichDO(de)
geneInCategory(x)
geneSim

Description
measuring similarities between two gene vectors.

Usage
geneSim(geneID1, geneID2 = NULL, measure = "Wang", combine = "BMA")

Arguments
geneID1: entrez gene vector
geneID2: entrez gene vector
measure: one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".
combine: One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple DO terms associated with gene/protein.

Details
provide two entrez gene vectors, this function will calculate their similarity.

Value
score matrix

Author(s)
Guangchuang Yu http://ygc.name

gseaplot

visualize analyzing result of GSEA

Description
plotting function for gseaResult

Usage
gseaplot(gseaResult, geneSetID, by = "all", title = "")

Arguments
gseaResult: gseaResult object
geneSetID: geneSet ID
by: one of "runningScore" or "position"
title: plot title
Value

ggplot2 object

Author(s)

Yu Guangchuang

gseaResult-class

Class “gseaResult” This class represents the result of GSEA analysis

Description

Class "gseaResult" This class represents the result of GSEA analysis

Slots

- `result` GSEA analysis
- `organism` organism
- `setType` setType
- `geneSets` geneSets
- `geneList` order rank geneList
- `keytype` ID type of gene
- `permScores` permutation scores
- `params` parameters
- `gene2Symbol` gene ID to Symbol
- `readable` whether convert gene ID to symbol

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

See Also

- `gseaplot`
GSEA_internal

Description

generic function for gene set enrichment analysis

Usage

GSEA_internal(geneList, exponent, nPerm, minGSSize, maxGSSize, pvalueCutoff,
pAdjustMethod, verbose, seed = FALSE, USER_DATA, by = "fgsea")

Arguments

geneList order ranked geneList
exponent weight of each step
nPerm permutation numbers
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of each geneSet for analyzing
pvalueCutoff p value Cutoff
pAdjustMethod p value adjustment method
verbose print message or not
seed set seed inside the function to make result reproducible. FALSE by default.
USER_DATA annotation data
by one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Yu Guangchuang

gseDGN

DisGeNET Gene Set Enrichment Analysis

Description

perform gsea analysis

Usage

gseDGN(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH",
verbose = TRUE, seed = FALSE, by = "fgsea")
Arguments

- `geneList`: order ranked geneList
- `exponent`: weight of each step
- `nPerm`: permutation numbers
- `minGSSize`: minimal size of each geneSet for analyzing
- `maxGSSize`: maximal size of each geneSet for analyzing
- `pvalueCutoff`: pvalue Cutoff
- `pAdjustMethod`: p value adjustment method
- `verbose`: print message or not
- `seed`: logical
- `by`: one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

perform gsea analysis

Usage

gseDO(geneList, exponent = 1, nPerm = 1000, minGSSize = 10, maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH", verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments

- `geneList`: order ranked geneList
- `exponent`: weight of each step
- `nPerm`: permutation numbers
- `minGSSize`: minimal size of each geneSet for analyzing
- `maxGSSize`: maximal size of each geneSet for analyzing
- `pvalueCutoff`: pvalue Cutoff
- `pAdjustMethod`: p value adjustment method
- `verbose`: print message or not
- `seed`: logical
- `by`: one of 'fgsea' or 'DOSE'
gseNCG

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

perform gsea analysis

Usage

gseNCG(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH",
verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments

geneList order ranked geneList
exponent weight of each step
nPerm permutation numbers
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of each geneSet for analyzing
pvalueCutoff pvalue Cutoff
pAdjustMethod p value adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Yu Guangchuang
gsfilter

Description
filter enriched result by gene set size or gene count

Usage
gsfilter(x, by = "GSSize", min = NA, max = NA)

Arguments

x instance of enrichResult or compareClusterResult
by one of 'GSSize' or 'Count'
min minimal size
max maximal size

Value
update object

Author(s)
Guangchuang Yu

list2graph
convert gene IDs to igraph object

Description
convert a list of gene IDs to igraph object.

Usage
list2graph(inputList)

Arguments

inputList a list of gene IDs

Value
a igraph object.

Author(s)
Guangchuang Yu http://ygc.name
mclusterSim

Description

Pairwise semantic similarity for a list of gene clusters

Usage

```r
mclusterSim(clusters, measure = "Wang", combine = "BMA")
```

Arguments

- `clusters`: A list of gene clusters
- `measure`: one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".
- `combine`: One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple DO terms associated with gene/protein.

Value

similarity matrix

Author(s)

Yu Guangchuang

Examples

```r
ccluster1 <- c("835", "5261","241")
ccluster2 <- c("578","582")
ccluster3 <- c("307", "308", "317")
cclusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, measure="Wang")
```

netplot

Description

plot network

Usage

```r
netplot(g, vertex.label.font = 2, vertex.label.color = "#666666", 
vertex.label.cex = 1.5, layout = layout.fruchterman.reingold, 
foldChange = NULL, fixed = TRUE, col.bin = 10, legend.x = 1, 
legend.y = 1, ...)"
```
Arguments

- \(g \) igraph object
- `vertex.label.font`
 - font size
- `vertex.label.color`
 - font text color
- `vertex.label.cex`
 - cex of vertex label
- `layout`
 - layout
- `foldChange`
 - fold change
- `fixed`
 - logical
- `col.bin`
 - number of legend color bin
- `legend.x`
 - x-axis position of legend
- `legend.y`
 - y-axis position of legend
- `...`
 - additional parameters

Details

- plot network of igraph object

Value

- plot

Author(s)

- Yu Guangchuang

plot

plot method

Description

- plot method generics
- plot method for gseaResult

Usage

```r
## S4 method for signature 'enrichResult,ANY'
plot(x, type = "bar", ...)

## S4 method for signature 'gseaResult,ANY'
plot(x, type = "gseaplot", ...)
```

Arguments

- `x` A enrichResult instance
- `type` one of bar, cnet or enrichMap
- `...` Additional argument list
rebuildAnnoData

Value
- plot
- plot

Author(s)
Guangchuang Yu http://guangchuangyu.github.io

Description
rebuilding entrez and DO mapping datasets

Usage
rebuildAnnoData(file)

Arguments
- file: do_rif.human.txt

scaleNodeColor

Description
scale color nodes

Usage
scaleNodeColor(g, foldChange, node.idx = NULL, DE.foldChange)

Arguments
- g: igraph object
- foldChange: fold Change
- node.idx: index of node to color
- DE.foldChange: logical

Details
color nodes based on fold change of expression
Value

igraph object

Author(s)

Yu Guangchuang

setReadable

setReadable

Description

mapping geneID to gene Symbol

Usage

```
setReadable(x, OrgDb, keytype = "auto")
```

Arguments

- `x`: enrichResult Object
- `OrgDb`: OrgDb
- `keytype`: keytype of gene

Value

enrichResult Object

Author(s)

Yu Guangchuang

setting.graph.attributes

setting.graph.attributes

Description

setting basic attributes of a graph

Usage

```
setting.graph.attributes(g, node.size = 8, node.color = "#B3B3B3", 
edge.width = 2, edge.color = "#8DA0CB")
```
show

Arguments

- `g`: igraph object
- `node.size`: size of node
- `node.color`: color of node
- `edge.width`: edge width
- `edge.color`: color of edge

Details

- setting size and color of node and edge

Value

igraph object

Author(s)

Yu Guangchuang

Description

- show method for enrichResult instance
- show method for gseaResult instance

Usage

- `show(object)`
- `show(object)`

Arguments

- `object`: A enrichResult instance.

Value

- `message`
- `message`

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

Guangchuang Yu https://guangchuangyu.github.io
simplot

Description

plotting similarity matrix

Usage

```r
simplot(sim, xlab = "", ylab = "", color.low = "white", color.high = "red", labs = TRUE, digits = 2, labs.size = 3, font.size = 14)
```

Arguments

- `sim`: similarity matrix
- `xlab`: xlab
- `ylab`: ylab
- `color.low`: color of low value
- `color.high`: color of high value
- `labs`: logical, add text label or not
- `digits`: round digit numbers
- `labs.size`: lable size
- `font.size`: font size

Value

ggplot object

Author(s)

Yu Guangchuang

summary

Description

summary method for enrichResult instance
summary method for gseaResult instance

Usage

```r
summary(object, ...)
```

```r
summary(object, ...)
```
theme_dose

Arguments

object A enrichResult instance.
...
additional parameter

Value

A data frame
A data frame

Author(s)

Guangchuang Yu http://guangchuangyu.github.io
Guangchuang Yu https://guangchuangyu.github.io

theme_dose

Description

ggplot theme of DOSE

Usage

theme_dose(font.size = 14)

Arguments

font.size font size

upsetplot

upsetplot method

Description

upsetplot method generics
upsetplot

Usage

upsetplot(x, ...)

S4 method for signature 'enrichResult'
upsetplot(x, n = 10, ...)

Arguments

x object
...
additional parameters
n number of categories to be plotted
Value

plot

Author(s)

Guangchuang Yu

Examples

Not run:
require(DOSE)
data(geneList)
de=names(geneList)[1:100]
x <- enrichDO(de)
upsetplot(x, 8)

End(Not run)
Index

*Topic classes
 enrichResult-class, 13
 gseaResult-class, 18

*Topic datasets
 DataSet, 6

*Topic manip
 enrichDO, 10
 enricher_internal, 11
 gseDG, 19
 gseDO, 20
 gseNCG, 21

*Topic package
 DOSE-package, 2
 barplot.enrichResult, 3
 clusterSim, 4
 cnetplot, 4
 cnetplot.enrichResult-method
 (cnetplot), 4
 cnetplot.gseaResult-method(cnetplot), 4
 cnetplot_Internal, 5
 computeIC, 6
 DOSET (DataSet), 6
 DGN_EXTID2PATHID (DataSet), 6
 DGN_PATHID2EXTID (DataSet), 6
 DGN_PATHID2NAME (DataSet), 6
 DOZALLEG (DataSet), 6
 DOZEG (DataSet), 6
 DOIC (DataSet), 6
 DOLiteZEG (DataSet), 6
 DOLiteTerm (DataSet), 6
 DOSE (DOSE-package), 2
 DOSE-package, 2
 doSim, 7
 dotbl (DataSet), 6
 dotplot, 7
 dotplot.enrichResult, ANY-method
 (dotplot), 7
 dotplot.enrichResult-method(dotplot), 7
 EG2ALLDO (DataSet), 6
 EG2DO (DataSet), 6
 EG2DOLite (DataSet), 6
 enrichDG, 8
 enrichDGv, 9
 enrichDO, 10, 13
 enricher_internal, 11
 enrichMap, 11
 enrichNCG, 12
 enrichResult, 3
 enrichResult-class, 13
 EXTID2NAME, 14
 fortify.enrichResult, 14
 fortify.gseaResult, 15
 geneDG, 15
 geneID, 16
 geneInCategory, 16
 genelist (DataSet), 6
 geneSim, 17
 GSEA_internal, 19
 gseahResult-class (gseaResult-class), 18
 gseaplot, 17, 18
 gseaResult-class, 18
 gseDG, 19
 gseDO, 20
 gseNCG, 21
 gsfilter, 22
 list2graph, 22
 mclusterSim, 23
 NCG_EXTID2PATHID (DataSet), 6
 NCG_PATHID2EXTID (DataSet), 6
 NCG_PATHID2NAME (DataSet), 6
 netplot, 23
 plot, 24
 plot.enrichResult, ANY-method(plot), 24
 plot.enrichResult-method
 (enrichResult-class), 13
 plot.gseaResult, ANY-method(plot), 24
 plot.gseaResult-method
 (gseaResult-class), 18
rebuildAnnoData, 25
scaleNodeColor, 25
setReadable, 26
setting.graph.attributes, 26
show, 27
show,enrichResult-method
(enrichResult-class), 13
show,gseaResult-method
(gseaResult-class), 18
simplot, 28
summary, 28
summary,enrichResult-method
(enrichResult-class), 13
summary,gseaResult-method
(gseaResult-class), 18
theme_dose, 29
upsetplot, 29
upsetplot,enrichResult,ANY-method
(upsetplot), 29
upsetplot,enrichResult-method
(upsetplot), 29

VDGN_EXTID2PATHID (DataSet), 6
VDGN_PATHID2EXTID (DataSet), 6
VDGN_PATHID2NAME (DataSet), 6