Package 'DeProViR'

May 29, 2024

Type Package

Title A Deep-Learning Framework Based on Pre-trained Sequence Embeddings for Predicting Host-Viral Protein-Protein Interactions

Version 1.0.0

Description Emerging infectious diseases, exemplified by the zoonotic COVID-19 pandemic caused by SARS-CoV-2, are grave global threats. Understanding protein-protein interactions (PPIs) between host and viral proteins is essential for therapeutic targets and insights into pathogen replication and immune evasion. While experimental methods like yeast two-hybrid screening and mass spectrometry provide valuable insights, they are hindered by experimental noise and costs, yielding incomplete interaction maps. Computational models, notably DeProViR, predict PPIs from amino acid sequences, incorporating semantic information with GloVe embeddings. DeProViR employs a Siamese neural network, integrating convolutional and Bi-LSTM networks to enhance accuracy. It overcomes the limitations of feature engineering, offering an efficient means to predict host-virus interactions, which holds promise for antiviral therapies and advancing our understanding of infectious diseases.

License MIT+ file LICENSE

Encoding UTF-8

URL https://github.com/mrbakhsh/DeProViR

BugReports https://github.com/mrbakhsh/DeProViR/issues

Depends keras

Imports caret, data.table, dplyr, fmsb, ggplot2, grDevices, pROC, PRROC, readr, stats, BiocFileCache, utils

VignetteBuilder knitr

Suggests rmarkdown, tensorflow, BiocStyle, RUnit, knitr, BiocGenerics

biocViews Proteomics, SystemsBiology, NetworkInference, NeuralNetwork, Network

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/DeProViR

git_branch RELEASE_3_19
git_last_commit 07d78d3
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Matineh Rahmatbakhsh [aut, trl, cre]
Maintainer Matineh Rahmatbakhsh <matinerb.94@gmail.com>

Contents

encodeHostSeq	. 2
encodeViralSeq	. 3
gloveImport	. 4
loadPreTrainedModel	. 4
loadTrainingSet	
modelTraining	. 6
performancePlots	. 8
predInteractions	. 8
	10

Index

encodeHostSeq

Host Protein Sequence Encoding with GloVe Embedding Vectors

Description

This function first first encodes amino acids as a sequence of unique 20 integers though tokenizer. The padding token was added to the front of shorter sequences to ensure a fixed-length vector of defined size L (i.e., here is 1000). Embedding matrix is then constructed to transform amino acid tokens to pre-training embedding weights, in which rows represent the amino acid tokens created earlier, and columns correspond to 100-dimension weight vectors derived from GloVe word-vector-generation vector map.

Usage

```
encodeHostSeq(trainingSet, embeddings_index)
```

Arguments

trainingSet a data.frame containing training information embeddings_index

embedding outputted from gloveImport

Value

A list containing Embedding matrix and tokenization

2

encodeViralSeq

Examples

```
# Download and load the index
embeddings_index <- gloveImport()
#load training set
dt <- loadTrainingSet()
#encoding
encodeHostSeq <- encodeHostSeq(dt, embeddings_index)</pre>
```

encodeViralSeq Viral Protein Sequence Encoding with GloVe Embedding Vectors

Description

This function first first encodes amino acids as a sequence of unique 20 integers though tokenizer. The padding token was added to the front of shorter sequences to ensure a fixed-length vector of defined size L (i.e., here is 1000). Embedding matrix is then constructed to transform amino acid tokens to pre-training embedding weights, in which rows represent the amino acid tokens created earlier, and columns correspond to 100-dimension weight vectors derived from GloVe word-vector-generationvector map.

Usage

```
encodeViralSeq(trainingSet, embeddings_index)
```

Arguments

trainingSet a data.frame containing training information
embeddings_index

embedding outputted from gloveImport

Value

A list containing Embedding matrix and tokenization

Examples

```
# Download and load the index
embeddings_index <- gloveImport()
#load training set
dt <- loadTrainingSet()
#encoding
encoded_seq <- encodeViralSeq(dt, embeddings_index)</pre>
```

gloveImport

Description

This function cache and loads pre-trained GloVe vectors (100d).

Usage

```
gloveImport(url_path = "https://nlp.stanford.edu/data")
```

Arguments

url_path URL path to GloVe embedding. Defaults to "https://nlp.stanford.edu/data"

Value

glove embedding

Examples

```
options(timeout=240)
embeddings_index <- gloveImport(url_path = "https://nlp.stanford.edu/data")</pre>
```

loadPreTrainedModel Load Pre-Trained Model Weights

Description

This function loads the pre-trained model weights constructed previously using modelTraining

Usage

```
loadPreTrainedModel(
    input_dim = 20,
    output_dim = 100,
    filters_layer1CNN = 32,
    kernel_size_layer1CNN = 16,
    filters_layer2CNN = 64,
    kernel_size_layer2CNN = 7,
    pool_size = 30,
    layer_lstm = 64,
    units = 8,
    metrics = "AUC",
    filepath = system.file("extdata", "Pre_trainedModel", package = "DeProViR")
)
```

loadTrainingSet

Arguments

input_dim	Integer. Size of the vocabulary, i.e. amino acid tokens. Defults to 20. See keras.		
output_dim	Integer. Dimension of the dense embedding, i.e., GloVe. Defaults to 100. See keras.		
filters_layer1CNN			
	Integer, the dimensionality of the output space (i.e. the number of output filters in the first convolution). Defaults to 32. See keras		
kernel_size_lag	yer1CNN		
	An integer or tuple/list of 2 integers, specifying the height and width of the convolution window in the first layer. Can be a single integer to specify the same value for all spatial dimensions. Defaults to 16. See keras		
filters_layer2CNN			
	Integer, the dimensionality of the output space (i.e. the number of output filters in the second convolution). Defaults to 64. See keras		
kernel_size_layer2CNN			
	An integer or tuple/list of 2 integers, specifying the height and width of the convolution window in the second layer. Can be a single integer to specify the same value for all spatial dimensions. Defaults to 7. See keras		
pool_size	Down samples the input representation by taking the maximum value over a spatial window of size pool_size. Defaults to 30.See keras		
layer_lstm	Number of units in the Bi-LSTM layer. Defaults to 64. See keras		
units	Number of units in the MLP layer. Defaults to 8. See keras		
metrics	Vector of metric names to be evaluated by the model during training and testing. Defaults to "AUC". See keras		
filepath	A character string indicating the path contained pre-trained model weights, i.e., inst/extdata/Pre-trainedModel		

Value

Pre-trained model.

Examples

Loading_trainedModel <- loadPreTrainedModel()</pre>

loadTrainingSet Load Demo Training Set

Description

This function loads demo training set.

Usage

```
loadTrainingSet(
   training_dir = system.file("extdata", "training_Set", package = "DeProViR")
)
```

Arguments

training_dir dir containing a training data.frame .csv Default set to "extdata/training_testSets".

Value

data.frame

Examples

dt <- loadTrainingSet()</pre>

modelTraining Predictive Model Training using k-fold Validation Strategy

Description

This function first transforms protein sequences to amino acid tokens wherein tokens are indexed by positive integers, then represents each amino acid token by pre-trained co-occurrence embedding vectors learned by GloVe, followed by applying an embedding layer. Then it employs Siamese-like neural network articheture on densly-connected neural net to predict interactions between host and viral proteins.

Usage

```
modelTraining(
  url_path = "https://nlp.stanford.edu/data",
  training_dir = system.file("extdata", "training_Set", package = "DeProViR"),
  input_dim = 20,
  output_dim = 100,
  filters_layer1CNN = 32,
  kernel_size_layer1CNN = 16,
  filters_layer2CNN = 64,
  kernel_size_layer2CNN = 7,
  pool_size = 30,
  layer_{lstm} = 64,
  units = 8,
  metrics = "AUC",
  cv_fold = 10,
  epochs = 100,
  batch_size = 128,
  plots = TRUE,
```

modelTraining

```
tpath = tempdir(),
save_model_weights = TRUE,
filepath = tempdir()
)
```

Arguments

url_path	URL path to GloVe embedding. Defaults to "https://nlp.stanford.edu/data/glove.6B.zip".	
training_dir	dir containing viral-host training set. See loadTrainingSet	
input_dim	Integer. Size of the vocabulary, i.e. amino acid tokens. Defults to 20. See keras.	
output_dim	Integer. Dimension of the dense embedding, i.e., GloVe. Defaults to 100. See keras.	
filters_layer1		
	Integer, the dimensionality of the output space (i.e. the number of output filters in the first convolution). Defaults to 32. See keras	
kernel_size_la		
	An integer or tuple/list of 2 integers, specifying the height and width of the convolution window in the first layer. Can be a single integer to specify the same value for all spatial dimensions.Defaults to 16. See keras	
filters_layer2		
	Integer, the dimensionality of the output space (i.e. the number of output filters in the second convolution). Defaults to 64. See keras	
kernel_size_la		
	An integer or tuple/list of 2 integers, specifying the height and width of the convolution window in the second layer. Can be a single integer to specify the same value for all spatial dimensions. Defaults to 7. See keras	
pool_size	Down samples the input representation by taking the maximum value over a spatial window of size pool_size. Defaults to 30.See keras	
layer_lstm	Number of units in the Bi-LSTM layer. Defaults to 64. See keras	
units	Number of units in the MLP layer. Defaults to 8. See keras	
metrics	Vector of metric names to be evaluated by the model during training and testing. Defaults to "AUC". See keras	
cv_fold	Number of partitions for cross-validation. Defaults to 10.	
epochs	Number of epochs to train the model. Defaults to 100. See keras	
batch_size	Number of samples per gradient update.Defults to 128. See keras	
plots	PDF file containing perfromance measures. Defaults to TRUE. See performancePlots	
tpath	A character string indicating the path to the project directory. If the directory is missing, PDF file containing perfromance measures will be stored in the Temp directory. See performancePlots	
save_model_weights		
C 1	If TRUE, save the trained weights. Defaults to TRUE.	
filepath	A character string indicating the path to save the model weights. Default to tempdir().	

Value

Trained model and perfromance measures.

performancePlots Model Performance Evalution

Description

This function plots model performance

Usage

```
performancePlots(pred_label, y_label, tpath = tempdir())
```

Arguments

pred_label	predicted labels
y_label	Ground truth labels
tpath	A character string indicating the path to the project directory. If the directory is missing, PDF file will be stored in the Temp directory.

Value

Pdf file containing perfromanc plots

Examples

predInteractions Predict Unknown Interactions

Description

This function initially constructs an embedding matrix from the viral or host protein sequences and then predicts scores for unknown interactions. Interactions with scores greater than 0.5 are more likely to indicate interaction.

predInteractions

Usage

```
predInteractions(
  url_path = "https://nlp.stanford.edu/data",
  Testingset,
  trainedModel
)
```

Arguments

url_path	URL path to GloVe embedding. Defaults to "https://nlp.stanford.edu/data/glove.6B.zip".
Testingset	A data.frame containing unknown interactions. For demo, we can use the file in extdata/test_Set.
trainedModel	Pre-trained model stored in extdata/Pre_trainedModel or the training model "\$merge_model" achieved by modelTraining.

Value

Probability scores for unknown interactions

Examples

Index

encodeHostSeq, 2
encodeViralSeq, 3

gloveImport, 2, 3, 4

loadPreTrainedModel, 4
loadTrainingSet, 5, 7

modelTraining, 4, 6, 9

performancePlots, 7, 8
predInteractions, 8