Package ‘EBSEA’

December 21, 2016

Type Package

Title Exon Based Strategy for Expression Analysis of genes

Version 1.2.0

Date 2015-12-15

Author Arfa Mehmood, Asta Laiho, Laura L. Elo

Maintainer Arfa Mehmood <arfa.mehmood@utu.fi>

Description Calculates differential expression of genes based on exon counts of genes obtained from RNA-seq sequencing data.

License GPL-2

biocViews Software, DifferentialExpression, GeneExpression, Sequencing

Imports edgeR, limma, gtools, graphics, stats

NeedsCompilation no

R topics documented:

EBSEA .. 1
filterCounts ... 2
filterGenes .. 3
origCounts ... 4
visualizeGenes 4

Description

EBSEA takes as input unnormalized counts of exons, normalizes them and then performs a two group comparison of the samples to detect differentially expressed between the groups. Both paired or unpaired comparison are supported. It calculates fold changes, p-values and false discovery rate of the genes between the groups.

Usage

EBSEA(countData, group, paired = FALSE, effects = NULL, plot = FALSE)
Arguments

- **countData**: A dataframe of exon count data
- **group**: A vector indicating the sample groups in the experiment
- **paired**: A logical indicating whether the samples are paired or unpaired. Default: FALSE
- **effects**: A vector indicating the paired samples.
- **plot**: A logical indicating whether a volcano plot is visualized. Default: FALSE

Value

EBSEA returns a list of two dataframes. ExonTable is a dataframe that contains exon statistics including log fold change, p-values, adjusted p-values, average expression and fold change. GeneTable is a dataframe that contains the corresponding fold change, log fold change, p-values and false discovery rate.

References

See Also

- `visualizeGenes`

Examples

```r
data(origCounts)

# Define the sample groups
group <- c("Group1", "Group1", "Group1", "Group2", "Group2", "Group2")

result <- EBSEA(origCounts, group)
```

filterCounts

Filter Count Data

Description

The exons are filtered based on their expression levels so that each exon has a cpm (count per million) of more than 1 in user defined percent of the samples.

Usage

```r
filterCounts(x, noOfSamples)
```

Arguments

- **x**: A numeric dataframe of counts in the sample with gene and exon number as the row names and samples as the column names
- **noOfSamples**: Percentage of the number of samples that should have cpm greater than 1.

Value

A dataframe of filtered counts of exons
filterGenes

See Also

EBSEA

Examples

```r
data(origCounts)
res <- filterCounts(origCounts, 20)
```

filterGenes
Filter Gene List

Description

The differentially expressed genes are filtered based on the FC and FDR provided by the user. The default thresholds are FC => 1.25 and fdr <= 0.01.

Usage

```r
filterGenes(x, fc = 1.25, fdr = 0.01)
```

Arguments

- `x`: A dataframe containing the gene statistics returned by EBSEA.
- `fc`: A fold change threshold for the genes to be filtered. Default: 1.25.
- `fdr`: A FDR threshold for the genes to be filtered. Default: 0.01.

Value

A list containing upregulated and downregulated genes.

See Also

EBSEA

Examples

```r
data(origCounts)
result <- EBSEA(origCounts, group)
filteredGenes <- filterGenes(result$GeneTable)
```
origCounts
Subset of Pasilla Dataset

Description

`origCounts` consists of a subset of the exon counts from the pasilla dataset.

Usage

```r
data("origCounts")
```

Format

A data frame with 1000 observations on the following 7 variables.

- `treated1fb` a numeric vector
- `treated2fb` a numeric vector
- `treated3fb` a numeric vector
- `untreated1fb` a numeric vector
- `untreated2fb` a numeric vector
- `untreated3fb` a numeric vector
- `untreated4fb` a numeric vector

Value

Dataset

See Also

`EBSEA`

Examples

```r
data(origCounts)
```

visualizeGenes
Visualize Gene

Description

Plots for each exon of the gene entered by the user, the mean of the counts and the fold changes.

Usage

```r
visualizeGenes(gene, group, countData, result)
```
visualizeGenes

Arguments

gene Gene Name. The gene name should be the from the genes in count data.
group A vector indicating the sample group in the experiment.
countData A dataframe of the original exon count data.
result Results returned by EBSEA.

Value
A plot of mean counts and fold changes of exons of a gene.

See Also
EBSEA

Examples

data(origCounts)
group <- c("Group1", "Group1", "Group1", "Group2", "Group2", "Group2")
result <- EBSEA(origCounts, group)
visualizeGenes("FBgn0000017", group, origCounts, result)
Index

*Topic **datasets**
 origCounts, 4

*Topic **device**
 visualizeGenes, 4

*Topic **distribution**
 EBSEA, 1

*Topic **manip**
 filterCounts, 2
 filterGenes, 3
 EBSEA, 1, 3–5
 filterCounts, 2
 filterGenes, 3
 origCounts, 4
 visualizeGenes, 2, 4