Package ‘EBSEA’

November 21, 2016

Type Package

Title Exon Based Strategy for Expression Analysis of genes

Version 1.2.0

Date 2015-12-15

Author Arfa Mehmood, Asta Laiho, Laura L. Elo

Maintainer Arfa Mehmood <arfa.mehmood@utu.fi>

Description Calculates differential expression of genes based on exon counts of genes obtained from RNA-seq sequencing data.

License GPL-2

biocViews Software, DifferentialExpression, GeneExpression, Sequencing

Imports edgeR, limma, gtools, graphics, stats

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBSEA</td>
<td>1</td>
</tr>
<tr>
<td>filterCounts</td>
<td>2</td>
</tr>
<tr>
<td>filterGenes</td>
<td>3</td>
</tr>
<tr>
<td>origCounts</td>
<td>4</td>
</tr>
<tr>
<td>visualizeGenes</td>
<td>4</td>
</tr>
</tbody>
</table>

Index 6

Description

EBSEA takes as input unnormalized counts of exons, normalizes them and then performs a two group comparison of the samples to detect differentially expressed between the groups. Both paired or unpaired comparison are supported. It calculates fold changes, p-values and false discovery rate of the genes between the groups.

Usage

EBSEA(countData, group, paired = FALSE, effects = NULL, plot = FALSE)
filterCounts

Arguments

- countData: A dataframe of exon count data
- group: A vector indicating the sample groups in the experiment
- paired: A logical indicating whether the samples are paired or unpaired. Default: FALSE
- effects: A vector indicating the paired samples.
- plot: A logical indicating whether a volcano plot is visualized. Default: FALSE

Value

EBSEA returns a list of two dataframes. ExonTable is a dataframe that contains exon statistics including log fold change, p-values, adjusted p-values, average expression and fold change. GeneTable is a dataframe that contains the corresponding fold change, log fold change, p-values and false discovery rate.

References

See Also

visualizeGenes

Examples

data(origCounts)
group <- c('Group1', 'Group1', 'Group1', 'Group2', 'Group2', 'Group2', 'Group2')
result <- EBSEA(origCounts, group)

filterCounts

Filter Count Data

Description

The exons are filtered based on their expression levels so that each exon has a cpm (count per million) of more than 1 in user defined percent of the samples.

Usage

filterCounts(x, noOfSamples)

Arguments

- x: A numeric dataframe of counts in the sample with gene and exon number as the row names and samples as the column names
- noOfSamples: Percentage of the number of samples that should have cpm greater than 1.

Value

A dataframe of filtered counts of exons
filterGenes

See Also

EBSEA

Examples

```r
data(origCounts)
res <- filterCounts(origCounts, 20)
```

filterGenes Filter Gene List

Description

The differentially expressed genes are filtered based on the FC and FDR provided by the user. The default thresholds are FC => 1.25 and fdr <= 0.01

Usage

```r
filterGenes(x, fc = 1.25, fdr = 0.01)
```

Arguments

- `x`: A dataframe containing the gene statistics returned by EBSEA.
- `fc`: A fold change threshold for the genes to be filtered. Default: 1.25.
- `fdr`: A FDR threshold for the genes to be filtered. Default: 0.01.

Value

A list containing upregulated and downregulated genes.

See Also

EBSEA

Examples

```r
data(origCounts)
group <- c('Group1', 'Group1', 'Group1', 'Group2', 'Group2', 'Group2', 'Group2')
result <- EBSEA(origCounts, group)
filteredGenes <- filterGenes(result$GeneTable)
```
origCounts
Subset of Pasilla Dataset

Description

origCounts consists of a subset of the exon counts from the pasilla dataset.

Usage

```r
data("origCounts")
```

Format

A data frame with 1000 observations on the following 7 variables.

- `treated1fb` a numeric vector
- `treated2fb` a numeric vector
- `treated3fb` a numeric vector
- `untreated1fb` a numeric vector
- `untreated2fb` a numeric vector
- `untreated3fb` a numeric vector
- `untreated4fb` a numeric vector

Value

Dataset

See Also

[EBSEA](#)

Examples

```r
data(origCounts)
```

visualizeGenes
Visualize Gene

Description

Plots for each exon of the gene entered by the user, the mean of the counts and the fold changes.

Usage

```r
visualizeGenes(gene, group, countData, result)
```
Arguments

- **gene**: Gene Name. The gene name should be the from the genes in count data.
- **group**: A vector indicating the sample group in the experiment.
- **countData**: A dataframe of the original exon count data.
- **result**: Results returned by EBSEA.

Value

A plot of mean counts and fold changes of exons of a gene.

See Also

[EBSEA](#)

Examples

```r
data(origCounts)
group <- c('Group1', 'Group1', 'Group1', 'Group2', 'Group2', 'Group2', 'Group2')
result <- EBSEA(origCounts, group)
visualizeGenes('FBgn0000017', group, origCounts, result)
```
Index

*Topic **datasets**
 - origCounts, 4

*Topic **device**
 - visualizeGenes, 4

*Topic **distribution**
 - EBSEA, 1

*Topic **manip**
 - filterCounts, 2
 - filterGenes, 3

EBSEA, 1, 3–5

filterCounts, 2
filterGenes, 3

origCounts, 4

visualizeGenes, 2, 4