Package ‘EWCE’

March 28, 2017

Type Package
Title Expression Weighted Celltype Enrichment
Version 1.2.0
Date 2016-12-04
Author Dr Nathan Skene
Maintainer Nathan Skene <nathan.skene@gmail.com>
Description Used to determine which cell types are enriched within
gene lists. The package provides tools for testing enrichments
within simple gene lists (such as human disease associated
genes) and those resulting from differential expression
studies. The package does not depend upon any particular Single
Cell Transcriptome dataset and user defined datasets can be
loaded in and used in the analyses.
License Artistic-2.0
LazyData TRUE
Depends R(>= 3.3)
VignetteBuilder knitr
Imports ggplot2, reshape2, biomaRt
Suggests knitr, BiocStyle
biocViews GeneExpression, Transcription, DifferentialExpression,
GeneSetEnrichment, Genetics, Microarray, mRNAMicroarray,
OneChannel, RNASeq, BiomedicalInformatics, Proteomics,
Visualization, FunctionalGenomics
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add.res.to.merging.list</td>
<td>2</td>
</tr>
<tr>
<td>bootstrap.enrichment.test</td>
<td>3</td>
</tr>
<tr>
<td>celltype_data</td>
<td>4</td>
</tr>
<tr>
<td>ewce.plot</td>
<td>5</td>
</tr>
<tr>
<td>ewce_expression_data</td>
<td>6</td>
</tr>
<tr>
<td>example_genelist</td>
<td>7</td>
</tr>
<tr>
<td>generate.bootstrap.plots</td>
<td>7</td>
</tr>
</tbody>
</table>
add.res.to.merging.list

Add to results to merging list

Description

add.res.to.merging.list Adds EWCE results to a list for merging analysis

Usage

add.res.to.merging.list(full_res, existing_results = NULL)

Arguments

full_res results list generated using bootstrap.enrichment.test or ewce_expression_data functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them.

existing_results Output of previous rounds from adding results to list. Leave empty if this is the first item in the list.

Value

merged results list

Examples

Load the single cell data
data(celltype_data)

Load the data
data(tt_alzh)
data(tt_alzh_BA36)
data(tt_alzh_BA44)

Run EWCE analysis
tt_results = ewce_expression_data(sct_data=celltype_data,tt=tt_alzh)
tt_results_36 = ewce_expression_data(sct_data=celltype_data,tt=tt_alzh_BA36)
tt_results_44 = ewce_expression_data(sct_data=celltype_data,tt=tt_alzh_BA44)

Fill a list with the results
results = add.res.to.merging.list(tt_alzh)
results = add.res.to.merging.list(tt_alzh_BA36,results)
results = add.res.to.merging.list(tt_alzh_BA44,results)
bootstrap.enrichment.test

Bootstrap celltype enrichment test

Description

`bootstrap.enrichment.test` takes a genelist and a single cell type transcriptome dataset and determines the probability of enrichment and fold changes for each cell type.

Usage

```r
bootstrap.enrichment.test(sct_data = NA, mouse.hits = NA, mouse.bg = NA,
                         human.hits = NA, human.bg = NA, reps = 100, sub = FALSE,
                         geneSizeControl = FALSE)
```

Arguments

- `sct_data`: List generated using `read_celltype_data`
- `mouse.hits`: Array of MGI gene symbols containing the target gene list. Not required if `geneSizeControl=TRUE`
- `mouse.bg`: Array of MGI gene symbols containing the background gene list. Not required if `geneSizeControl=TRUE`
- `human.hits`: Array of HGNC gene symbols containing the target gene list. Not required if `geneSizeControl=FALSE`
- `human.bg`: Array of HGNC gene symbols containing the background gene list. Not required if `geneSizeControl=FALSE`
- `reps`: Number of random gene lists to generate (default=100 but should be over 10000 for publication quality results)
- `sub`: a logical indicating whether to analyse sub-cell type annotations (TRUE) or cell-type annotations (FALSE). Default is FALSE.
- `geneSizeControl`: a logical indicating whether you want to control for GC content and transcript length. Recommended if the gene list originates from genetic studies. Default is FALSE. If set to TRUE then human gene lists should be used rather than mouse.

Value

A list containing three data frames:

- `results`: dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list
- `hit.cells`: vector containing the summed proportion of expression in each cell type for the target list
- `bootstrap_data`: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists
Examples

Load the single cell data
data(celltype_data)

Set the parameters for the analysis
reps=100 # <- Use 100 bootstrap lists so it runs quickly, for publishable analysis use >10000
subCellStatus=0 # <- Use subcell level annotations (i.e. Interneuron type 3)
if(subCellStatus==1){subCellStatus=TRUE;cellTag="SubCells"}
if(subCellStatus==0){subCellStatus=FALSE;cellTag="FullCells"}

Load the gene list and get human orthologs
data("example_genelist")
data("mouse_to_human_homologs")
m2h = unique(mouse_to_human_homologs[,c("HGNC.symbol","MGI.symbol")])
mouse.hits = unique(m2h[m2h$HGNC.symbol %in% example_genelist,"MGI.symbol")
human.hits = unique(m2h[m2h$HGNC.symbol %in% example_genelist,"HGNC.symbol")
human.bg = unique(setdiff(m2h$HGNC.symbol,human.hits))
mouse.bg = unique(setdiff(m2h$MGI.symbol,mouse.hits))

Bootstrap significance testing, without controlling for transcript length and GC content
full_results = bootstrap.enrichment.test(sct_data=celltype_data,mouse.hits=mouse.hits,
 mouse.bg=mouse.bg,reps=reps,sub=subCellStatus)

Bootstrap significance testing controlling for transcript length and GC content
full_results = bootstrap.enrichment.test(sct_data=celltype_data,human.hits=human.hits,
 human.bg=human.bg,reps=reps,sub=subCellStatus,geneSizeControl=TRUE)

celltype_data

Subset of genes from Linnarsson lab’s cortex single cell transcriptome dataset

Description

The first 200 genes from the SCT dataset

Usage

celltype_data

Format

An object of class list of length 3.

Source

The table was downloaded from the website associated with the paper and loaded using read_celltype_data
PMID:25700174
ewce.plot

Plot EWCE results

Description

`ewce.plot` generates plots of EWCE enrichment results

Usage

```r
ewce.plot(total_res, mtc_method = "bonferroni")
```

Arguments

- `total_res`: results dataframe generated using `bootstrap.enrichment.test` or `ewce_expression_data` functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them.
- `mtc_method`: method to be used for multiple testing correction. Argument is passed to `p.adjust`. Valid options are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY".

Value

A ggplot containing the plot

Examples

```r
# Load the single cell data
data(celltype_data)

# Set the parameters for the analysis
reps=100 # <- Use 100 bootstrap lists so it runs quickly, for publishable analysis use >10000
subCellStatus=0 # <- Use subcell level annotations (i.e. Interneuron type 3)

# Load the gene list and get human orthologs
data("example_genelist")
data("mouse_to_human_homologs")
m2h = unique(mouse_to_human_homologs[,c("HGNC.symbol","MGI.symbol")])
mouse.hits = unique(m2h[m2h$HGNC.symbol %in% example_genelist,"MGI.symbol")
mouse.bg = unique(setdiff(m2h$MGI.symbol,mouse.hits))

# Bootstrap significance testing, without controlling for transcript length and GC content
full_results = bootstrap.enrichment.test(sct_data=celltype_data,mouse.hits=mouse.hits,
mouse.bg=mouse.bg,reps=reps,sub=subCellStatus)

# Generate the plot
print(ewce.plot(full_results$results,mtc_method="BH"))
```
Description

`ewce_expression_data` takes a differential expression table and determines the probability of cell-type enrichment in the up & down regulated genes

Usage

```r
ewce_expression_data(sct_data, tt, sortBy = "t", thresh = 250, reps = 100, sub = FALSE, useHGNC = TRUE)
```

Arguments

- `sct_data` : List generated using `read_celltype_data`
- `tt` : Differential expression table. Can be output of `limma::topTable` function. Minimum requirement is that one column stores a metric of increased/decreased expression (i.e. log fold change, t-statistic for differential expression etc) and another contains either HGNC or MGI symbols.
- `sortBy` : Column name of metric in `tt` which should be used to sort up- from down- regulated genes. Default="t"
- `thresh` : The number of up- and down- regulated genes to be included in each analysis. Default=250
- `reps` : Number of random gene lists to generate (default=100 but should be over 10000 for publication quality results)
- `sub` : a logical indicating whether to analyse sub-cell type annotations (TRUE) or cell-type annotations (FALSE). Default is FALSE.
- `useHGNC` : a logical indicating whether HGNC or MGI gene symbols are provided. Default=TRUE

Value

A list containing five data frames:

- `results` : dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list. An additional column "Direction" stores whether the result is from the up or downregulated set.
- `hit.cells.up` : vector containing the summed proportion of expression in each cell type for the target list
- `hit.cells.down` : vector containing the summed proportion of expression in each cell type for the target list
- `bootstrap_data.up` : matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists
- `bootstrap_data.down` : matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists
Examples

Load the single cell data
data(celltype_data)

Set the parameters for the analysis
reps=100 # <- Use 100 bootstrap lists so it runs quickly, for publishable analysis use >10000
subCellStatus=0 # <- Use subcell level annotations (i.e. Interneuron type 3)
if(subCellStatus==1){subCellStatus=TRUE;cellTag="SubCells"}
if(subCellStatus==0){subCellStatus=FALSE;cellTag="FullCells"}

Load the gene list and get human orthologs
data("tt_alzh")

tt_results = ewce_expression_data(sct_data=celltype_data,tt=tt_alzh)

example_genelist
Example Gene list

Description

A list of genes genetically associated with Alzheimer's disease.

Usage

example_genelist

Format

An object of class character of length 22.

Source

These were obtained from two sources: http://www.alzgene.org/TopResults.asp and PMID24162737

generate.bootstrap.plots
Generate bootstrap plots

Description

generate.bootstrap.plots takes a genelist and a single cell type transcriptome dataset and generates plots which show how the expression of the genes in the list compares to those in randomly generated gene lists.

Usage

generate/bootstrap/plots(sct_data, mouse.hits, mouse.bg, reps, sub = FALSE, full_results = NA, listFileName = "")
Arguments

sct_data List generated using `read_celltype_data`
mouse.hits Array of MGI gene symbols containing the target gene list.
mouse.bg Array of MGI gene symbols containing the background gene list.
reps Number of random gene lists to generate (default=100 but should be over 10000 for publication quality results)
sub a logical indicating whether to analyse sub-cell type annotations (TRUE) or cell-type annotations (FALSE). Default is FALSE.
full_results The full output of `bootstrap.enrichment.test` for the same genelist
listFileName String used as the root for files saved using this function

Value

Saves a set of pdf files containing graphs. These will be saved with the filename adjusted using the value of listFileName. The files are saved into the 'BootstrapPlot' folder. The files start with one of the following:

- `qqplot_noText`: sorts the gene list according to how enriched it is in the relevant celltype. Plots the value in the target list against the mean value in the bootstrapped lists.
- `qqplot_wtGSym`: as above but labels the gene symbols for the highest expressed genes.
- `bootDists`: rather than just showing the mean of the bootstrapped lists, a boxplot shows the distribution of values
- `bootDists_LOG`: shows the bootstrapped distributions with the y-axis shown on a log scale

Examples

```r
# Load the single cell data
data(celltype_data)

# Set the parameters for the analysis
reps=100 # <- Use 100 bootstrap lists so it runs quickly, for publishable analysis use >10000
subCellStatus=0 # <- Use subcell level annotations (i.e. Interneuron type 3)
if(subCellStatus==1){subCellStatus=TRUE;cellTag="SubCells"}
if(subCellStatus==0){subCellStatus=FALSE;cellTag="FullCells"}

# Load the gene list and get human orthologs
data("example_genelist")
data("mouse_to_human_homologs")
m2h = unique(mouse_to_human_homologs[,c("HGNC.symbol","MGI.symbol")])
mouse.hits = unique(m2h[m2h$HGNC.symbol %in% example_genelist,"MGI.symbol"])
mouse.bg = unique(setdiff(m2h$MGI.symbol,mouse.hits))

# Bootstrap significance testing, without controlling for transcript length and GC content
full_results = bootstrap.enrichment.test(sct_data=celltype_data,mouse.hits=mouse.hits,
mouse.bg=mouse.bg,reps=reps,sub=subCellStatus)

generate.bootstrap.plots(sct_data=celltype_data,mouse.hits=mouse.hits, mouse.bg=mouse.bg,
reps=reps,sub=FALSE,full_results=full_results,listFileName="Example")
```
Description

`merged_ewce` combines enrichment results from multiple studies targeting the same scientific problem.

Usage

```r
merged_ewce(results, reps = 100)
```

Arguments

- `results`: a list of EWCE results generated using `add.res.to.merging.list`
- `reps`: Number of random gene lists to generate (default=100 but should be over 10000 for publication quality results)

Value

dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list

Examples

```r
# Load the single cell data
data(celltype_data)

# Set the parameters for the analysis
reps=100 # <- Use 100 bootstrap lists so it runs quickly, for publishable analysis use >10000
subCellStatus=0 # <- Use subcell level annotations (i.e. Interneuron type 3)

# Load the gene list and get human orthologs
data("example_genelist")
data("mouse_to_human_homologs")
m2h = unique(mouse_to_human_homologs[,c("HGNC.symbol","MGI.symbol")])
mouse.hits = unique(m2h[m2h$HGNC.symbol %in% example_genelist,"MGI.symbol"])
mouse.bg = unique(setdiff(m2h$MGI.symbol,mouse.hits))

# Bootstrap significance testing, without controlling for transcript length and GC content
full_results = bootstrap.enrichment.test(sct_data=celltype_data,mouse.hits=mouse.hits,
mouse.bg=mouse.bg,reps=reps,sub=subCellStatus)

# Generate the plot
print(ewce.plot(full_results$results,mtc_method="BH"))
```
mouse_to_human_homologs

Table of Human→Mouse orthologs for all human genes

Description

A dataset containing the MGI and HGNC symbols, Human and Mouse Entrez and Ensembl gene IDs for all human orthologs for mouse genes. Whenin the mouse genes are defined based on a list of all MGI markers from the MGI website (downloaded as MRK_List2.rpt file from http://goo.gl/mjf2GQ)

Usage

`mouse_to_human_homologs`

Format

An object of class `data.frame` with 21508 rows and 6 columns.

Examples

```r
## Not run:
## The code to prepare the .Rda file file from the marker file is:
markers = read.csv("MRK_List2.rpt",sep="\t")
gen = markers[markers$Feature.Type=="protein coding gene",]
listMarts(host="www.ensembl.org")
human <- useMart(host="www.ensembl.org", "ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
mouse <- useMart(host="www.ensembl.org", "ENSEMBL_MART_ENSEMBL", dataset="mmusculus_gene_ensembl")
mouse_to_human_homologs = getLDS(attributes = c("mgi_symbol","entrezgene","ensembl_gene_id"), filters = "mgi_symbol", values = gen$Marker.Symbol,
                              mart = mouse, attributesL = c("hgnc_symbol","ensembl_gene_id","entrezgene"), martL = human)
save(mouse_to_human_homologs,file="mouse_to_human_homologs.Rda")
## End(Not run)
```

read_celltype_data

Read single cell transcriptome data

Description

`read_celltype_data` loads single cell transcriptome data and determines for each gene, the proportion of expression found in each celltype.

Usage

`read_celltype_data(path)`

Arguments

- `path` Path to the file containing the single cell transcriptome data
Value

A list containing three data frames:

- `all_scts`: stores the average value for each subcell type found across cells
- `cell_dists`: proportion of expression for each gene in each cell type
- `subcell_dists`: proportion of expression for each gene in each subcell type

Examples

```r
celltype_data = read_celltype_data("expression_mRNA_17-Aug-2014.txt")
```

tt_alzh

Example table of differential expression (Alzheimer’s BA46)

Description

A list of genes found to be differentially expressed in the BA46 in Alzheimer’s disease.

Usage

`tt_alzh`

Format

An object of class `data.frame` with 21745 rows and 7 columns.

Source

The table was determined based on data associated with the paper with PMID:17845826

tt_alzh_BA36

Example table of differential expression (Alzheimer’s BA36)

Description

A list of genes found to be differentially expressed in the BA36 in Alzheimer’s disease.

Usage

`tt_alzh_BA36`

Format

An object of class `data.frame` with 21745 rows and 7 columns.

Source

The table was determined based on data associated with the paper with PMID:17845826
tt_alzh_BA44
Example table of differential expression (Alzheimer’s BA44)

Description
A list of genes found to be differentially expressed in the BA44 in Alzheimer’s disease.

Usage
tt_alzh_BA44

Format
An object of class `data.frame` with 21745 rows and 7 columns.

Source
The table was determined based on data associated with the paper with PMID:17845826
Index

*Topic datasets
 celltype_data, 4
 example_genelist, 7
 mouse_to_human_homologs, 10
 tt_alzh, 11
 tt_alzh_BA36, 11
 tt_alzh_BA44, 12
add.res.to.merging.list, 2, 9
bootstrap.enrichment.test, 2, 3, 5, 8
celltype_data, 4
ewce.plot, 5
ewce_expression_data, 2, 5, 6
example_genelist, 7
generate.bootstrap.plots, 7
merged_ewce, 9
mouse_to_human_homologs, 10
p.adjust, 5
read_celltype_data, 3, 6, 8, 10
 tt_alzh, 11
 tt_alzh_BA36, 11
 tt_alzh_BA44, 12