Package ‘EmpiricalBrownsMethod’

December 21, 2016

Title Uses Brown’s method to combine p-values from dependent tests

Version 1.2.0

Author William Poole

Maintainer David Gibbs <dgibbs@systemsbiology.org>

Description Combining P-values from multiple statistical tests is common in bioinformatics. However, this procedure is non-trivial for dependent P-values. This package implements an empirical adaptation of Brown’s Method (an extension of Fisher’s Method) for combining dependent P-values which is appropriate for highly correlated data sets found in high-throughput biological experiments.

Depends R (>= 3.2.0)

Suggests BiocStyle, testthat, knitr, rmarkdown

License MIT + file LICENSE

VignetteBuilder knitr

URL https://github.com/IlyaLab/CombiningDependentPvaluesUsingEBM.git

LazyData true

Encoding UTF-8

biocViews StatisticalMethod, GeneExpression, Pathways

NeedsCompilation no

R topics documented:

ebmTestData .. 2
empiricalBrownsMethod ... 2
kostsMethod .. 3

Index 5
empiricalBrownsMethod

ebmTestData

Data used in tests and examples.

Description

This data is used in the unit tests and usage examples. There are four items:

- `allPvals`: a data.frame of p-values for the spearman correlation between CHD4 and each of the 45 genes.
- `dat`: the gene expression data corresponding to genes in `allPvals`.
- `pathways`: a data.frame listing gene membership for 3 biochemical pathways.
- `randData`: a gaussian generated data set, emphasizing dependence among variables. Independent Var [line 1] are 25 samples from a unit normal distribution. Dependent Var 1-10 [line 2-11] are each 25 samples drawn from a 10 dimensional normal distribution centered at the origin with off diagonal terms $a=0.25$. The P values from a pearson correlation between the independent var and each dependent var are combined.

Usage

```r
data(ebmTestData)
```

Format

- Rdata object

Value

- data objects in the environment

Source

- GEO and generated.

empiricalBrownsMethod: *The Empirical Browns Method For Combining P-values*

Description

Combining P-values from multiple statistical tests is common in bioinformatics. However, this procedure is non-trivial for dependent P-values. This package provides an empirical adaptation of Brown’s Method (an extension of Fisher’s Method) for combining dependent P-values which is appropriate for highly correlated data sets, like those found in high-throughput biological experiments.

Usage

```r
empiricalBrownsMethod(data_matrix, p_values, extra_info)
```
kostsMethod

The Kost Method For Combining P-values

Arguments

- **data_matrix**: An m x n numeric matrix with m variables in rows and n samples in columns.
- **p_values**: A numeric vector of p-values with length m.
- **extra_info**: boolean, TRUE additionally returns the p-value from Fisher’s method, the scale factor c, and the new degrees of freedom from Brown’s Method

Value

The output is a list containing list(P_Brown=p_brown, P_Fisher=p_fisher, Scale_Factor_C=c, DF_Brown=df_brown)

- **P_test**: p-value for Brown’s method
- **P_Fisher**: p-value for Fisher’s method
- **Scale_Factor**: the scale factor c
- **DF**: the degrees of freedom used in Brown’s method

Examples

```r
# restore the saved values to the current environment
data(ebmTestData)
glypGenes <- pathways$gene[pathways$pathway == "GLYPICAN 3 NETWORK"]
glypPvals <- allPvals$pvalue.with.CHD4[match(glypGenes, allPvals$gene)]
glypDat <- dat[match(glypGenes, dat$V1), 2:ncol(dat)];
empiricalBrownsMethod(data_matrix=glypDat, p_values=glypPvals, extra_info=TRUE);
```

Description

Combining P-values from multiple statistical tests is common in bioinformatics. However, this procedure is non-trivial for dependent P-values. This package provides an implementation of Kost’s Method for combining dependent P-values which is appropriate for highly correlated data sets, like those found in high-throughput biological experiments.

Usage

```r
kostsMethod(data_matrix, p_values, extra_info)
```

Arguments

- **data_matrix**: An m x n numeric matrix with m variables in rows and n samples in columns.
- **p_values**: A numeric vector of p-values with length m.
- **extra_info**: boolean, TRUE additionally returns the p-value from Fisher’s method, the scale factor c, and the new degrees of freedom from Brown’s Method
Value

The output is a list containing list(P_test=p_brown, P_Fisher=p_fisher, Scale_Factor_C=c, DF=df)

- **P_test**: p-value for Kost's method
- **P_Fisher**: p-value for Fisher's method
- **Scale_Factor**: the scale factor c
- **DF**: the degrees of freedom

Examples

```r
## restore the saved values to the current environment
data(ebmTestData)
glypGenes <- pathways$gene[pathways$pathway == "GLYPICAN 3 NETWORK"]
glypPvals <- allPvals$pvalue.with.CHD4[match(glypGenes, allPvals$gene)]
glypDat <- as.matrix(dat[match(glypGenes, dat$V1), 2:ncol(dat)])
kostsMethod(data_matrix=glypDat, p_values=glypPvals, extra_info=TRUE);
```
Index

*Topic datasets
 ebmTestData, 2

*Topic multivariate
 empiricalBrownsMethod, 2
 kostsMethod, 3

allPvals (ebmTestData), 2

dat (ebmTestData), 2

ebmTestData, 2
 empiricalBrownsMethod, 2
 kostsMethod, 3

pathways (ebmTestData), 2

randData (ebmTestData), 2