Package ‘GEWIST’

January 31, 2017

Type Package
Title Gene Environment Wide Interaction Search Threshold
Version 1.18.0
Depends R (>= 2.10), car
Author Wei Q. Deng, Guillaume Pare
Maintainer Wei Q. Deng <dengwq@mcmaster.ca>
Description This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.
License GPL-2
LazyLoad yes
biocViews MultipleComparison, Genetics
NeedsCompilation no

R topics documented:

GEWIST-package ... 1
effectPDF ... 2
gewistLevene ... 4

Index 6

Description

This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>PathWei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.99.z</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

GEWIST-package Gene Environment Wide Interaction Search Threshold
Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Deng W.Q, Pare G. (2011) A fast algorithm to optimize SNP prioritization for gene-gene and gene-
environment interactions. Genetic Epidemiology. 35: 729-738. doi: 10.1002/gepi.20624

description

Compute the optimal Variance Prioritization power and corresponding Levene’s test p-value threshold for prioritization given the interaction effect size distribution using GEWIST.

Usage

effectPDF(distribution = c("beta", "normal", "uniform", "weibull"),
parameter1, parameter2 = NULL, parameter3 = NULL, p, N, theta_c, M,
K = 20000, nb_incr = 50, range = NULL, verbose = FALSE)

Arguments

distribution distribution of interaction effect size. Possible distributions are:
"beta" for beta distribution
"normal" for normal distribution
"uniform" for uniform distribution
"weibull" for weibull distribution

parameter1 the first parameter used in the corresponding distribution

parameter2 the second parameter used in the corresponding distribution, could set to be null

parameter3 the third parameter used in the corresponding distribution, could set to be null

p minor allele frequency of the SNP, a number between 0 and 0.5

N sample size

theta_c proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1

M total number of SNPs to be tested

K number of GEWIST procedures, by default, set to be 20,000
effectPDF

nb_incr number of effect size points in the range to be prioritized using GEWIST; by default set to be 50.
range range of variance explained by interaction effect sizes, a vector of length 2
verbose logical; if TRUE, for each interaction effect size, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value
A list with three components:

Optimal_VP_power
 VP power to detect interactions at the optimal VP p-value threshold
Conventional_power
 power to detect interactions without prioritization, i.e, VP power at Levene’ test p-value of 1
Optimal_pval_threshold
 levene’e test p-value at which optimal VP power is achieved

Warning
Computational time is directly proportional to nb_incr.

Author(s)
Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

Given a SNP with minor allele frequency of 10% and a sample # of 10,000 individuals, we are interested in testing interactions # between this SNP and a covariate of effect size 10%. The # total number of SNP is 500,000. Assume the unknown interaction # effect size has a Weibull distribution in the range of 0.05% # and 0.3% variance explained with 50 increments.Repeat GEWIST # for each of the 50 interaction effect sizes.

library(GEWIST)
effectPDF(distribution = "weibull", parameter1 = 0.8, parameter2 = 0.3,
gewistLevene

Genome Environment Wide Interaction Search Threshold with Levene’s test

Description
Compute the optimal Variance Prioritization power and the corresponding Levene’s test prioritization p-value threshold for a given interaction effect size

Usage
gewistLevene(p, N, theta_gc, theta_c, M, K = 20000, verbose = FALSE)

Arguments
- **p**: minor allele frequency of the SNP, a number between 0 and 0.5
- **N**: sample size
- **theta_gc**: proportion of quantitative trait variance explained by the interaction, should be a number between 0 and 1
- **theta_c**: proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
- **M**: total number of SNPs to be tested
- **K**: number of procedures, by default, set to be 20,000
- **verbose**: logical; if TRUE, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value
A list with three components:
- **Optimal_VP_power**: VP power to detect interactions at the optimal Levene’s test p-value threshold
- **Conventional_power**: power to detect interactions without prioritization, i.e., VP power at Levene’s test p-value of 1
- **Optimal_pval_threshold**: Levene’s test p-value at which optimal VP power is achieved

Author(s)
Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>
gewistLevene

References

Examples

Given a SNP with minor allele frequency of 10% and a sample
of 15,000 individuals, we are interested in testing interactions
between this SNP and a covariate of effect size #10%. The
total number of SNP is 500,000. Assume the interaction
explains 0.1% of the quantitative trait variance.

library(GEWIST)
gewistLevene(p = 0.1, N = 15000, theta_gc =0.1/100, theta_c = 0.1 , M = 500000, K = 20000, verbose=FALSE)
Index

*Topic Bonferroni correction
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic Levene's Test
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic genetic interactions
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic quantitative trait
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic variance prioritization
 effectPDF, 2
 GEWIST (GEWIST-package), 1
 GEWIST-package, 1
 gewistLevene, 4