Package ‘GEWIST’
August 8, 2018

Type Package
Title Gene Environment Wide Interaction Search Threshold
Version 1.24.0
Depends R (>= 2.10), car
Author Wei Q. Deng, Guillaume Pare
Maintainer Wei Q. Deng <dengwq@mcmaster.ca>
Description This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.
License GPL-2
LazyLoad yes
biocViews MultipleComparison, Genetics
git_url https://git.bioconductor.org/packages/GEWIST
git_branch RELEASE_3_7
git_last_commit 64776a7
git_last_commit_date 2018-04-30
Date/Publication 2018-08-07

R topics documented:

GEWIST-package ... 1
effectPDF ... 2
gewistLevene .. 4

Index

GEWIST-package Gene Environment Wide Interaction Search Threshold

Description

This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.

Details
package: PathWei
Type: Package
Version: 0.99.z
License: GPL-2
LazyLoad: yes

Author(s)
Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

effectPDF

Genetic interaction testing given effect size distribution

Description

Compute the optimal Variance Prioritization power and corresponding Levene’s test p-value threshold for prioritization given the interaction effect size distribution using GEWIST.

Usage

```r
effectPDF(distribution = c("beta", "normal", "uniform", "weibull"),
          parameter1, parameter2 = NULL, parameter3 = NULL, p, N, theta_c, M,
          K = 20000, nb_incr = 50, range = NULL, verbose = FALSE)
```

Arguments

distribution

distribution of interaction effect size. Possible distributions are:
"beta" for beta distribution
"normal" for normal distribution
"uniform" for uniform distribution
"weibull" for weibull distribution

parameter1

the first parameter used in the corresponding distribution

parameter2

the second parameter used in the corresponding distribution, could set to be null

parameter3

the third parameter used in the corresponding distribution, could set to be null

p

minor allele frequency of the SNP, a number between 0 and 0.5
N sample size
theta_c proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
M total number of SNPs to be tested
K number of GEWIST procedures, by default, set to be 20,000
nb_incr number of effect size points in the range to be prioritized using GEWIST; by default set to be 50.
range range of variance explained by interaction effect sizes, a vector of length 2
verbose logical; if TRUE, for each interaction effect size, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value
A list with three components:

Optimal_VP_power VP power to detect interactions at the optimal VP p-value threshold
Conventional_power power to detect interactions without prioritization, i.e, VP power at Levene’ test p-value of 1
Optimal_pval_threshold levene’e test p-value at which optimal VP power is achieved

Warning
Computational time is directly proportional to nb_incr.

Author(s)
Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

Given a SNP with minor allele frequency of 10% and a sample
of 10,000 individuals, we are interested in testing interactions
between this SNP and a covariate of effect size 10%. The
total number of SNP is 500,000. Assume the unknown interaction
effect size has a Weibull distribution in the range of 0.05%
gewistLevene

Genome Environment Wide Interaction Search Threshold with Levene’s test

Description

Compute the optimal Variance Prioritization power and the corresponding Levene’s test prioritization p-value threshold for a given interaction effect size.

Usage

gewistLevene(p, N, theta_gc, theta_c, M = 20000, K = 20000, verbose = FALSE)

Arguments

p
minor allele frequency of the SNP, a number between 0 and 0.5
N
sample size
theta_gc
proportion of quantitative trait variance explained by the interaction, should be a number between 0 and 1
theta_c
proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
M
total number of SNPs to be tested
K
number of procedures, by default, set to be 20,000
verbose
logical; if TRUE, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value

A list with three components:

Optimal_VP_power
VP power to detect interactions at the optimal Levene’s test p-value threshold

Conventional_power
power to detect interactions without prioritization, i.e, VP power at Levene’s test p-value of 1

Optimal_pval_threshold
levene’s test p-value at which optimal VP power is achieved
gewistLevene

Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

```r
# Given a SNP with minor allele frequency of 10% and a sample
# of 15,000 individuals, we are interested in testing interactions
# between this SNP and a covariate of effect size #10%. The
# total number of SNP is 500,000. Assume the interaction
# explains 0.1% of the quantitative trait variance.

library(GEWIST)
gewistLevene(p = 0.1, N = 15000, theta_gc =0.1/100, theta_c = 0.1 , M = 500000,
K = 20000, verbose=FALSE)
```
Index

*Topic Bonferroni correction
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic Levene's Test
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic genetic interactions
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic quantitative trait
 effectPDF, 2
 GEWIST-package, 1
 gewistLevene, 4

*Topic variance prioritization
 effectPDF, 2
 GEWIST (GEWIST-package), 1
 GEWIST-package, 1
 gewistLevene, 4