Package ‘GEWIST’

Type Package
Title Gene Environment Wide Interaction Search Threshold
Version 1.38.0
Depends R (>= 2.10), car
Author Wei Q. Deng, Guillaume Pare
Maintainer Wei Q. Deng <dengwq@mcmaster.ca>
Description This ‘GEWIST’ package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.
License GPL-2
LazyLoad yes
biocViews MultipleComparison, Genetics
git_url https://git.bioconductor.org/packages/GEWIST
git_branch RELEASE_3_14
git_last_commit b941c3f
git_last_commit_date 2021-10-26
Date/Publication 2021-12-16

R topics documented:

GEWIST-package ... 2
effectPDF .. 2
gewistLevene ... 4

Index 7
GEWIST-package

Gene Environment Wide Interaction Search Threshold

Description

This 'GEWIST' package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions.

Details

Package: PathWei
Type: Package
Version: 0.99.z
License: GPL-2
LazyLoad: yes

Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

effectPDF

Genetic interaction testing given effect size distribution

Description

Compute the optimal Variance Prioritization power and corresponding Levene’s test p-value threshold for prioritization given the interaction effect size distribution using GEWIST.
Usage

```r
effectPDF(distribution = c("beta", "normal", "uniform", "weibull"),
           parameter1, parameter2 = NULL, parameter3 = NULL, p, N, theta_c, M,
           K = 20000, nb_incr = 50, range = NULL, verbose = FALSE)
```

Arguments

- `distribution`: distribution of interaction effect size. Possible distributions are:
 - "beta" for beta distribution
 - "normal" for normal distribution
 - "uniform" for uniform distribution
 - "weibull" for weibull distribution
- `parameter1`: the first parameter used in the corresponding distribution
- `parameter2`: the second parameter used in the corresponding distribution, could set to be null
- `parameter3`: the third parameter used in the corresponding distribution, could set to be null
- `p`: minor allele frequency of the SNP, a number between 0 and 0.5
- `N`: sample size
- `theta_c`: proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1
- `M`: total number of SNPs to be tested
- `K`: number of GEWIST procedures, by default, set to be 20,000
- `nb_incr`: number of effect size points in the range to be prioritized using GEWIST; by default set to be 50.
- `range`: range of variance explained by interaction effect sizes, a vector of length 2
- `verbose`: logical; if TRUE, for each interaction effect size, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.

Value

A list with three components:

- `Optimal_VP_power`: VP power to detect interactions at the optimal VP p-value threshold
- `Conventional_power`: power to detect interactions without prioritization, i.e., VP power at Levene’s test p-value of 1
- `Optimal_pval_threshold`: levene’s test p-value at which optimal VP power is achieved

Warning

Computational time is directly proportional to `nb_incr`.
Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

Given a SNP with minor allele frequency of 10% and a sample
of 10,000 individuals, we are interested in testing interactions
between this SNP and a covariate of effect size 10%. The
total number of SNP is 500,000. Assume the unknown interaction
effect size has a Weibull distribution in the range of 0.05%
and 0.3% variance explained with 50 increments. Repeat GEWIST
for each of the 50 interaction effect sizes.

library(GEWIST)
effectPDF(distribution = "weibull", parameter1 = 0.8, parameter2 = 0.3,
parameter3 = NULL, p = 0.1, N = 10000, theta_c = 0.1, M = 350000,
K = 20000, nb_incr = 50, range = c(0.05/100,0.3/100), verbose = FALSE)

End of script

gewistLevene

Genome Environment Wide Interaction Search Threshold with Levene’s test

Description

Compute the optimal Variance Prioritization power and the corresponding Levene’s test prioritization p-value threshold for a given interaction effect size

Usage

gewistLevene(p, N, theta_gc, theta_c, M, K = 20000, verbose = FALSE)
gewistLevene

Arguments

\[\begin{align*}
p & \quad \text{minor allele frequency of the SNP, a number between 0 and 0.5} \\
N & \quad \text{sample size} \\
\theta_{gc} & \quad \text{proportion of quantitative trait variance explained by the interaction, should be a number between 0 and 1} \\
\theta_c & \quad \text{proportion of quantitative trait variance explained by the covariate, should be a number between 0 and 1} \\
M & \quad \text{total number of SNPs to be tested} \\
K & \quad \text{number of procedures, by default, set to be 20,000} \\
\text{verbose} & \quad \text{logical; if TRUE, function returns a data.frame class object listing the VP power at each p-value, from 0.001 to 1 with 0.001 incremental increase.}
\end{align*} \]

Value

A list with three components:

- **Optimal_VP_power**
 - VP power to detect interactions at the optimal Levene’s test p-value threshold
- **Conventional_power**
 - power to detect interactions without prioritization, i.e, VP power at Levene’s test p-value of 1
- **Optimal_pval_threshold**
 - Levene’s test p-value at which optimal VP power is achieved

Author(s)

Wei Q. Deng <dengwq@mcmaster.ca> Guillaume Pare <pareg@mcmaster.ca>

References

Examples

```r
# Given a SNP with minor allele frequency of 10% and a sample of 15,000 individuals, we are interested in testing interactions between this SNP and a covariate of effect size #10%. The total number of SNP is 500,000. Assume the interaction explains 0.1% of the quantitative trait variance.
```
library(GEWIST)
gewistLevene(p = 0.1, N = 15000, theta_gc = 0.1/100, theta_c = 0.1, M = 500000,
K = 20000, verbose=FALSE)
Index

* **Bonferroni correction**
 - effectPDF, 2
 - GEWIST-package, 2
 - gewistLevene, 4

* **Levene's Test**
 - effectPDF, 2
 - GEWIST-package, 2
 - gewistLevene, 4

* **genetic interactions**
 - effectPDF, 2
 - GEWIST-package, 2
 - gewistLevene, 4

* **quantitative trait**
 - effectPDF, 2
 - GEWIST-package, 2
 - gewistLevene, 4

* **variance prioritization**
 - effectPDF, 2
 - GEWIST-package, 2
 - gewistLevene, 4

 effectPDF, 2
 GEWIST (GEWIST-package), 2
 GEWIST-package, 2
 gewistLevene, 4