Package ‘GOSemSim’

January 8, 2016

Type Package
Title GO-terms Semantic Similarity Measures
Version 1.28.2
Author Guangchuang Yu <guangchuangyu@gmail.com> with contributions from
Alexey Stukalov.
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>
Description Implemented five methods proposed by Resnik, Schlicker,
Jiang, Lin and Wang respectively for estimating GO semantic
similarities. Support many species, including Anopheles,
Arabidopsis, Bovine, Canine, Chicken, Chimp, Coelicolor, E coli
strain K12 and Sakai, Fly, Gondii, Human, Malaria, Mouse, Pig, Rhesus,
Rat, Worm, Xenopus, Yeast, and Zebrafish.
Depends R (>= 3.1.0)
LinkingTo Rcpp
Imports Rcpp, AnnotationDbi, GO.db
Suggests DOSE, clusterProfiler, org.Hs.eg.db, knitr, BiocStyle,
BiocInstaller
VignetteBuilder knitr
License Artistic-2.0
URL https://github.com/GuangchuangYu/GOSemSim
BugReports https://github.com/GuangchuangYu/GOSemSim/issues
biocViews Annotation, GO, Clustering, Pathways, Network, Software
NeedsCompilation yes

R topics documented:

GOSemSim-package .. 2
clusterSim ... 3
combineScores ... 4
geneSim .. 4
Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study, and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms' and genes' semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.

Package: GOSemSim
Type: Package
Version: 1.24.0
Date: 09-11-2012
biocViews: GO, Clustering, Pathways, Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, Can
dependencies:
Imports: methods, AnnotationDbi, GO.db, org.Hs.eg.db, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Re.eg.db, org.Sc.eg.db, org.Sc.scdb
Suggests: clusterProfiler
License: Artistic-2.0

Author(s)

Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>
References

See Also
gosim mgosim geneSim mgeneSim clusterSim mclusterSim

clusterSim

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

clusterSim(cluster1, cluster2, ont = "MF", organism = "human", measure = "Wang", drop = "IEA", combine = "BMA")

Arguments

cluster1 A set of gene IDs.
cluster2 Another set of gene IDs.
ont One of "MF", "BP", and "CC" subontologies.
measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

similarity

References

See Also
gosim mgosim geneSim mgenesim mclustersim

Examples

```r
# cluster1 <- c("835", "5261", "241", "994")
# cluster2 <- c("307", "308", "317", "321", "506", "540", "378", "388", "396")
# clusterSim(cluster1, cluster2, ont="MF", organism="human", measure="Wang")
```

Description

Functions for combining similarity matrix to similarity score

Usage

```r
combineScores <- function(simScores, combine) {
  similarity_score <- 
  return(similarity_score)
}
```

Arguments

- `simScores`: similarity matrix
- `combine`: combine method

Value

similarity value

Author(s)

Guangchuang Yu http://ygc.name

geneSim

Semantic Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms

Usage

```r
geneSim(gene1, gene2, ont = "MF", organism = "human", measure = "Wang",
        drop = "IEA", combine = "BMA")
```
getDb

Arguments

gene1 Entrez gene id.
gene2 Another entrez gene id.
ont One of "MF", "BP", and "CC" subontologies.
measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

list of similarity value and corresponding GO.

References

See Also

gosim mgosim mgenesim clustersim mclustersim

Examples

geneSim("241", "251", ont="MF", organism="human", measure="Wang")

getDb

db <- getDb

db

db <- getDb

db

Description

mapping organism name to annotationDb package name

Usage

db <- getDb(organism)

Arguments

organism one of supported organism
Value
annotationDb name

Author(s)
Yu Guangchuang

getSupported_Org

description
get supported organisms

Usage
getSupported_Org()

Value
supported organisms

Author(s)
Yu Guangchuang

goSim

Semantic Similarity Between Two GO Terms

Description
Given two GO IDs, this function calculates their semantic similarity.

Usage
goSim(GOID1, GOID2, ont = "MF", organism = "human", measure = "Wang")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOID1</td>
<td>GO ID 1.</td>
</tr>
<tr>
<td>GOID2</td>
<td>GO ID 2.</td>
</tr>
<tr>
<td>ont</td>
<td>One of "MF", "BP", and "CC" subontologies.</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.</td>
</tr>
</tbody>
</table>
IC

Value

similarity

References

See Also

mgoSim geneSim mgeneSim clusterSim mclusterSim

Examples

```r
goSim("GO:0004022", "GO:0005515", ont="MF", measure="Wang")
```

IC

Information content of GO terms

Description

These datasets are the information contents of GO terms.

References

infoContentMethod

information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

```r
infoContentMethod(ID1, ID2, ont = "DO", method, organism = "human")
```
Arguments

- **ID1**: Ontology Term
- **ID2**: Ontology Term
- **ont**: Ontology
- **method**: one of "Resnik", "Jiang", "Lin" and "Rel".
- **organism**: one of supported species

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name

Description

loading GOMap to GOSemSimEnv

Usage

`loadGOMap(organism)`

Arguments

- **organism**: one of supported organisms

Value

`envir`

Author(s)

Yu Guangchuang
loadICdata

Load IC data

Description

Load Information Content data to DOSEEnv environment

Usage

```r
loadICdata(organismL ont)
```

Arguments

- `organism` (character)
- `ont` (character)

Author(s)

Guangchuang Yu http://ygc.name

mclusterSim

Pairwise Semantic Similarities for a List of Gene Clusters

Description

Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage

```r
mclusterSim(clustersL ont = "MF", organism = "human", measure = "Wang",
          drop = "IEA", combine = "BMA")
```

Arguments

- `clusters` (list)
- `ont` (character)
- `organism` (character)
- `measure` (character)
- `drop` (character)
- `combine` (character)

Description

One of "MF", "BP", and "CC" subontologies.

One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.

One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
mgeneSim

Value
similar similarity matrix

References

See Also
goSim mgoSim geneSim mgeneSim clusterSim

Examples
```r
## cluster1 <- c("835", "5261","241")
## cluster2 <- c("578","582")
## cluster3 <- c("307", "308", "317")
## clusters <- list(a=cluster1, b=cluster2, c=cluster3)
## mclustSim(clusters, ont="MF", organism="human", measure="Wang")
```

mgeneSim *Pairwise Semantic Similarity for a List of Genes*

Description
Given a list of genes, this function calculates pairwise semantic similarities.

Usage
```
mgeneSim(genes, ont = "MF", organism = "human", measure = "Wang", drop = "IEA", combine = "BMA", verbose = TRUE)
```

Arguments
genes A list of entrez gene IDs.
ont One of "MF", "BP", and "CC" subontologies.
measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
drop A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
verbose show progress bar or not.
mgoSim

Value

similarity matrix

References

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

`goSim` `mgoSim` `geneSim` `clusterSim` `mclusterSim`

Examples

```r
mGOsim(c("835", "5261","241"), ont="MF", organism="human", measure="Wang")
```

mgoSim

Semantic Similarity Between two GO terms lists

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage

```r
mgoSim(G01, G02, ont = "MF", organism = "human", measure = "Wang", combine = "BMA")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>A set of go terms.</td>
</tr>
<tr>
<td>G02</td>
<td>Another set of go terms.</td>
</tr>
<tr>
<td>ont</td>
<td>One of "MF", "BP", and "CC" subontologies.</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.</td>
</tr>
<tr>
<td>combine</td>
<td>One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.</td>
</tr>
</tbody>
</table>

Value

similarity
References

See Also
goSim geneSim mgeneSim clusterSim mclusterSim

Examples
```r
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, measure="Wang")
mgoSim(go1, go2, ont="MF", organism="human", measure="Wang")
```

Description
measuring similarities between two term vectors.

Usage
termSim(t1, t2, method = c("Wang", "Resnik", "Rel", "Jiang", "Lin"),
organism = "human", ont = "BP")

Arguments
t1 term vector
t2 term vector
method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".
organism about 20 species supported, please refer to the vignettes
ont ontology

Details
provide two term vectors, this function will calculate their similarities.

Value
score matrix

Author(s)
Guangchuang Yu http://ygc.name
wangMethod

Description
Method Wang for semantic similarity measuring

Usage
wangMethod(ID1, ID2, ont = "BP")

Arguments
ID1 Ontology Term
ID2 Ontology Term
ont Ontology

Value
semantic similarity score

Author(s)
Guangchuang Yu http://ygc.name
Index

∗Topic datasets
IC, 7

∗Topic manip
 clustersim, 3
genesim, 4
goSim, 6
mclustersim, 9
mgenesim, 10
mgosim, 11

∗Topic package
 GOSemSim-package, 2

clustersim, 3, 3, 5, 7, 10–12
combineScores, 4
genSim, 3, 4, 4, 7, 10–12
getDb, 5
getSupported_Org, 6
GOSemSim/GOSemSim-package, 2
GOSemSim-package, 2
goSim, 3–5, 6, 10–12

IC, 7

Info_Contents_anopheles_BP (IC), 7
Info_Contents_anopheles_CC (IC), 7
Info_Contents_anopheles_MF (IC), 7
Info_Contents_arabidopsis_BP (IC), 7
Info_Contents_arabidopsis_CC (IC), 7
Info_Contents_arabidopsis_MF (IC), 7
Info_Contents_bovine_BP (IC), 7
Info_Contents_bovine_CC (IC), 7
Info_Contents_bovine_MF (IC), 7
Info_Contents_canine_BP (IC), 7
Info_Contents_canine_CC (IC), 7
Info_Contents_canine_MF (IC), 7
Info_Contents_chicken_BP (IC), 7
Info_Contents_chicken_CC (IC), 7
Info_Contents_chicken_MF (IC), 7
Info_Contents_chimp_BP (IC), 7
Info_Contents_chimp_CC (IC), 7
Info_Contents_chimp_MF (IC), 7
Info_Contents_coelicolor_BP (IC), 7
Info_Contents_coelicolor_CC (IC), 7
Info_Contents_coelicolor_MF (IC), 7
Info_Contents_ecolik12_BP (IC), 7
Info_Contents_ecolik12_CC (IC), 7
Info_Contents_ecolik12_MF (IC), 7
Info_Contents ecsakai_BP (IC), 7
Info_Contents ecsakai_CC (IC), 7
Info_Contents ecsakai_MF (IC), 7
Info_Contents_fly_BP (IC), 7
Info_Contents_fly_CC (IC), 7
Info_Contents_fly_MF (IC), 7
Info_Contents_gondii_BP (IC), 7
Info_Contents_gondii_CC (IC), 7
Info_Contents_gondii_MF (IC), 7
Info_Contents_human_BP (IC), 7
Info_Contents_human_CC (IC), 7
Info_Contents_human_MF (IC), 7
Info_Contents_malaria_BP (IC), 7
Info_Contents_malaria_CC (IC), 7
Info_Contents_malaria_MF (IC), 7
Info_Contents_mouse_BP (IC), 7
Info_Contents_mouse_CC (IC), 7
Info_Contents_mouse_MF (IC), 7
Info_Contents_pig_BP (IC), 7
Info_Contents_pig_CC (IC), 7
Info_Contents_pig_MF (IC), 7
Info_Contents_rat_BP (IC), 7
Info_Contents_rat_CC (IC), 7
Info_Contents_rat_MF (IC), 7
Info_Contents_rhesus_BP (IC), 7
Info_Contents_rhesus_CC (IC), 7
Info_Contents_rhesus_MF (IC), 7
Info_Contents_worm_BP (IC), 7
Info_Contents_worm_CC (IC), 7
Info_Contents_worm_MF (IC), 7
Info_Contents_xenopus_BP (IC), 7
Info_Contents_xenopus_CC (IC), 7

14
Info_Contents_xenopus_MF (IC), 7
Info_Contents_yeast_BP (IC), 7
Info_Contents_yeast_CC (IC), 7
Info_Contents_yeast_MF (IC), 7
Info_Contents_zebrafish_BP (IC), 7
Info_Contents_zebrafish_CC (IC), 7
Info_Contents_zebrafish_MF (IC), 7
infoContentMethod, 7
loadGOMap, 8
loadICdata, 9

mclusterSim, 3–5, 7, 9, 11, 12
mgeneSim, 3–5, 7, 10, 10, 12
mgoSim, 3–5, 7, 10, 11, 11

termSim, 12

wangMethod, 13