Package ‘GOSemSim’

January 6, 2016

Type Package

Title GO-terms Semantic Similarity Measures

Version 1.28.2

Author Guangchuang Yu <guangchuangyu@gmail.com> with contributions from Alexey Stukalov.

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for estimating GO semantic similarities. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, Coelicolor, E coli strain K12 and Sakai, Fly, Gondii, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, and Zebrafish.

Depends R (>= 3.1.0)

LinkingTo Rcpp

Imports Rcpp, AnnotationDbi, GO.db

Suggests DOSE, clusterProfiler, org.Hs.eg.db, knitr, BiocStyle, BiocInstaller

VignetteBuilder knitr

License Artistic-2.0

URL https://github.com/GuangchuangYu/GOSemSim

BugReports https://github.com/GuangchuangYu/GOSemSim/issues

biocViews Annotation, GO, Clustering, Pathways, Network, Software

NeedsCompilation yes

R topics documented:

 GOSemSim-package .. 2
 clusterSim .. 3
 combineScores ... 4
 geneSim ... 4
Gene Ontology-based Semantic Similarity Measures

Description

Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products.

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms’ and genes’ semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E. coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.

Package: GOSemSim
Type: Package
Version: 1.24.0
Date: 09-11-2012
biocViews: GO, Clustering, Pathways, Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, Canidae...
Depends: methods, AnnotationDbi, GO.db, org.Hs.eg.db, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.e.
Imports: clusterProfiler
Suggests: clusterProfiler
License: Artistic-2.0

Author(s)

Guangchuang Yu

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>
clusterSim

References

See Also
gosim mgosim geneSim mgeneSim clusterSim mclusterSim

clusterSim

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

```
clusterSim(cluster1, cluster2, ont = "MF", organism = "human", measure = "Wang", drop = "IEA", combine = "BMA")
```

Arguments

- `cluster1`: A set of gene IDs.
- `cluster2`: Another set of gene IDs.
- `ont`: One of "MF", "BP", and "CC" subontologies.
- `measure`: One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
- `drop`: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine`: One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

- `similarity`

References

combineScores

Describes
Functions for combining similarity matrix to similarity score

Usage
combineScores(SimScores, combine)

Arguments
SimScores similarity matrix
combine combine method

Value
similarity value

Author(s)
Guangchuang Yu http://ygc.name

geneSim

Semantic Similarity Between two Genes

Description
Given two genes, this function will calculate the semantic similarity between them, and return their
semantic similarity and the corresponding GO terms

Usage
geneSim(gene1, gene2, ont = "MF", organism = "human", measure = "Wang",
drop = "IEA", combine = "BMA")
getDb

Arguments

- **gene1**: Entrez gene id.
- **gene2**: Another entrez gene id.
- **ont**: One of "MF", "BP", and "CC" subontologies.
- **measure**: One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
- **drop**: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- **combine**: One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

A list of similarity value and corresponding GO.

References

See Also
goSim mgoSim mgeneSim clusterSim mclusterSim

Examples

geneSim("241", "251", ont="MF", organism="human", measure="Wang")

drop

Description

Mapping organism name to annotation Db package name

Usage

ggetDb(organism)

Arguments

- **organism**: one of supported organism
Value
annotationDb name

Author(s)
Yu Guangchuang

getSupported_Org

description
get supported organisms

Usage
getSupported_Org()

Value
supported organisms

Author(s)
Yu Guangchuang

goSim

Description
Semantic Similarity Between Two GO Terms

Given two GO IDs, this function calculates their semantic similarity.

Usage
goSim(GOID1, GOID2, ont = "MF", organism = "human", measure = "Wang")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOID1</td>
<td>GO ID 1.</td>
</tr>
<tr>
<td>GOID2</td>
<td>GO ID 2.</td>
</tr>
<tr>
<td>ont</td>
<td>One of "MF", "BP", and "CC" subontologies.</td>
</tr>
<tr>
<td>measure</td>
<td>One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.</td>
</tr>
</tbody>
</table>
IC

Value

similarity

References

See Also

`mgoSim` `geneSim` `mgeneSim` `clusterSim` `mclusterSim`

Examples

```r
goSim("GO:0004022", "GO:0005515", ont="MF", measure="Wang")
```

IC

Information content of GO terms

Description

These datasets are the information contents of GO terms.

References

infoContentMethod

information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

```r
infoContentMethod(ID1, ID2, ont = "DO", method, organism = "human")
```
Arguments

- **ID1**: Ontology Term
- **ID2**: Ontology Term
- **ont**: Ontology
- **method**: one of "Resnik", "Jiang", "Lin" and "Rel".
- **organism**: one of supported species

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name

loadGOMap

Description

loading GOMap to GOSemSimEnv

Usage

loadGOMap(organism)

Arguments

- **organism**: one of supported organisms

Value

envir

Author(s)

Yu Guangchuang
loadICdata
Load IC data

Description
Load Information Content data to DOSEEnv environment

Usage
```r
loadICdata(organism, ont)
```

Arguments
- `organism` : "human"
- `ont` : "DO"

Author(s)
Guangchuang Yu http://ygc.name

mclusterSim
Pairwise Semantic Similarities for a List of Gene Clusters

Description
Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage
```r
mclusterSim(clusters, ont = "MF", organism = "human", measure = "Wang", drop = "IEA", combine = "BMA")
```

Arguments
- `clusters` : A list of gene clusters.
- `ont` : One of "MF", "BP", and "CC" subontologies.
- `measure` : One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
- `drop` : A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- `combine` : One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
Value

similarity matrix

References

See Also

goSim mgoSim geneSim mgeneSim clusterSim

Examples

```r
## cluster1 <- c("835", "5261", "241")
## cluster2 <- c("578", "582")
## cluster3 <- c("307", "308", "317")
## clusters <- list(a=cluster1, b=cluster2, c=cluster3)
## mClusterSim(clusters, ont="MF", organism="human", measure="Wang")
```

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.

Usage

```r
mgeneSim(genes, ont = "MF", organism = "human", measure = "Wang", drop = "IEA", combine = "BMA", verbose = TRUE)
```

Arguments

- **genes**: A list of entrez gene IDs.
- **ont**: One of "MF", "BP", and "CC" subontologies.
- **measure**: One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
- **drop**: A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
- **combine**: One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.
- **verbose**: show progress bar or not.
mgoSim

Value

similarity matrix

References

See Also
gosim mgoSim geneSim clustersim mclustersim

Examples

mgenesim(c("835", "5261","241"), ont="MF", organism="human", measure="Wang")

mgoSim

Semantic Similarity Between two GO terms lists

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity.

Usage

mgoSim(GO1, GO2, ont = "MF", organism = "human", measure = "Wang", combine = "BMA")

Arguments

GO1 A set of go terms.
GO2 Another set of go terms.
ont One of "MF", "BP", and "CC" subontologies.
measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins associated with protein cluster.

Value

similarity
References

See Also
goSim geneSim mgeneSim clusterSim mclusterSim

Examples

go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, measure="Wang")
mgoSim(go1, go2, ont="MF", organism="human", measure="Wang")

termSim

description measuring similarities between two term vectors.

Usage

termSim(t1, t2, method = c("Wang", "Resnik", "Rel", "Jiang", "Lin"), organism = "human", ont = "BP")

Arguments

t1 term vector

t2 term vector

method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".

organism about 20 species supported, please refer to the vignettes

ont ontology

Details

provide two term vectors, this function will calculate their similarities.

Value

score matrix

Author(s)

Guangchuang Yu http://ygc.name
Description
Method Wang for semantic similarity measuring

Usage
wangMethod(ID1, ID2, ont = "BP")

Arguments
ID1 Ontology Term
ID2 Ontology Term
ont Ontology

Value
semantic similarity score

Author(s)
Guangchuang Yu http://ygc.name
Index

+ Topic **datasets**

 IC, 7

+ Topic **manip**

 clusterSim, 3
geneSim, 4
goSim, 6
mclusterSim, 9
mgeneSim, 10
mgoSim, 11

+ Topic **package**

 GOSemSim-package, 2

 clusterSim, 3, 5, 7, 10–12
combineScores, 4
geneSim, 3, 4, 7, 10–12
getDb, 5
getSupported_Org, 6
GOSemSim(GOSemSim-package), 2
GOSemSim-package, 2
goSim, 3–5, 6, 10–12

 IC, 7

 Info_Contents_anopheles_BP (IC), 7
 Info_Contents_anopheles_CC (IC), 7
 Info_Contents_anopheles_MF (IC), 7
 Info_Contents_arabidopsis_BP (IC), 7
 Info_Contents_arabidopsis_CC (IC), 7
 Info_Contents_arabidopsis_MF (IC), 7
 Info_Contents_bovine_BP (IC), 7
 Info_Contents_bovine_CC (IC), 7
 Info_Contents_bovine_MF (IC), 7
 Info_Contents_canine_BP (IC), 7
 Info_Contents_canine_CC (IC), 7
 Info_Contents_canine_MF (IC), 7
 Info_Contents_chicken_BP (IC), 7
 Info_Contents_chicken_CC (IC), 7
 Info_Contents_chicken_MF (IC), 7
 Info_Contents_chimp_MF (IC), 7
 Info_Contents_coelicolor_BP (IC), 7
 Info_Contents_coelicolor_CC (IC), 7
 Info_Contents_coelicolor_MF (IC), 7
 Info_Contents_ecoliK12_BP (IC), 7
 Info_Contents_ecoliK12_CC (IC), 7
 Info_Contents_ecoliK12_MF (IC), 7
 Info_Contents_ecsakai_BP (IC), 7
 Info_Contents_ecsakai_CC (IC), 7
 Info_Contents_ecsakai_MF (IC), 7
 Info_Contents_fly_BP (IC), 7
 Info_Contents_fly_CC (IC), 7
 Info_Contents_fly_MF (IC), 7
 Info_Contents_gondii_BP (IC), 7
 Info_Contents_gondii_CC (IC), 7
 Info_Contents_gondii_MF (IC), 7
 Info_Contents_human_BP (IC), 7
 Info_Contents_human_CC (IC), 7
 Info_Contents_human_MF (IC), 7
 Info_Contents_malaria_BP (IC), 7
 Info_Contents_malaria_CC (IC), 7
 Info_Contents_malaria_MF (IC), 7
 Info_Contents_mouse_BP (IC), 7
 Info_Contents_mouse_CC (IC), 7
 Info_Contents_mouse_MF (IC), 7
 Info_Contents_pig_BP (IC), 7
 Info_Contents_pig_CC (IC), 7
 Info_Contents_pig_MF (IC), 7
 Info_Contents_rat_BP (IC), 7
 Info_Contents_rat_CC (IC), 7
 Info_Contents_rat_MF (IC), 7
 Info_Contents_rhesus_BP (IC), 7
 Info_Contents_rhesus_CC (IC), 7
 Info_Contents_rhesus_MF (IC), 7
 Info_Contents_worm_BP (IC), 7
 Info_Contents_worm_CC (IC), 7
 Info_Contents_worm_MF (IC), 7
 Info_Contents_xenopus_BP (IC), 7
 Info_Contents_xenopus_CC (IC), 7

 getSupported_Org, 6
GOSemSim(GOSemSim-package), 2
GOSemSim-package, 2

 IC, 7
INDEX

Info Contents xenopus MF (IC), 7
Info Contents yeast BP (IC), 7
Info Contents yeast CC (IC), 7
Info Contents yeast MF (IC), 7
Info Contents zebrafish BP (IC), 7
Info Contents zebrafish CC (IC), 7
Info Contents zebrafish MF (IC), 7
infoContentMethod, 7
loadGOMap, 8
loadICdata, 9

mclusterSim, 3–5, 7, 9, 11, 12
mgeneSim, 3–5, 7, 10, 10, 12
mgoSim, 3–5, 7, 10, 11, 11

termSim, 12

wangMethod, 13