Package ‘GSALightning’

March 22, 2017

Type Package

Title Fast Permutation-based Gene Set Analysis

Version 1.2.0

Date 2015-12-30

Author Billy Heung Wing Chang

Maintainer Billy Heung Wing Chang <billyheungwing@gmail.com>

Depends R (>= 3.3.0)

Imports Matrix, data.table, stats

Description GSALightning provides a fast implementation of permutation-based gene set analysis for two-sample problem. This package is particularly useful when testing simultaneously a large number of gene sets, or when a large number of permutations is necessary for more accurate p-values estimation.

License GPL (>=2)

URL https://github.com/billyhw/GSALightning

BugReports https://github.com/billyhw/GSALightning/issues

Suggests knitr, rmarkdown

VignetteBuilder knitr

biocViews Software, BiologicalQuestion, GeneSetEnrichment,

DifferentialExpression, GeneExpression, Transcription

NeedsCompilation no

R topics documented:

GSALightning-package ... 2
expression .. 2
GSALight ... 3
permTestLight .. 5
sampleInfo .. 7
targetGenes .. 8
wilcoxBtest ... 8

Index 10

1
GSALightning-package Fast Permutation-based Gene Set Analysis

Description

GSALightning provides a fast implementation of permutation-based gene set analysis for two-sample problem. This package is particularly useful when testing simultaneously a large number of gene sets, or when a large number of permutations is necessary for more accurate p-values estimation.

Details

Index of help topics:

- GSALight
- GSALightning-package
- expression
- permTestLight
- sampleInfo
- targetGenes
- wilcoxTest

Author(s)

Billy Heung Wing Chang
Maintainer: Billy Heung Wing Chang <billyheungwing@gmail.com>

References

See Also

GSALight, permTestLight.

expression Breast Cancer Data from The Cancer Genome Atlas (TCGA)

Description

This is a subset of the breast cancer expression data set obtained from The Cancer Genome Atlas (TCGA) consortium and processed by the Pan-Cancer project group. The data was downloaded originally using the ELMER Bioconductor package. The gene names have been converted to gene symbols in this data.
GSALight

Usage

data("expression")

Value

A matrix with 909 genes and 1218 subjects, of which 114 are controls.

References

Examples

data(expression)
str(expression)

GSALight

Fast Permutation-based Gene Set Analysis

Description

GSALight is a fast implementation of two-sample permutation-based gene set analysis. It supports the mean or absolute mean version of the permutation T-test as implemented in the GSA package. Restandardization is also supported.

Usage

GSALight(eset, fac, gs, nperm = NULL, tests = c('unpaired','paired'), method = c("maxmean","mean", "absmean"), minsize = 1, maxsize = Inf, restandardize = TRUE, npermBreaks = 2000, rmGSGenes = c('stop', 'gene', 'gs'), verbose = TRUE)

Arguments

eset The expression matrix. Each row is a gene, and each column is a subject/sample. The gene names must be presented as the row names.
fac Subject labels, for unpaired T-test, either a factor or something that can be coerced into a factor (e.g. 0 and 1, Experiment and Control). For paired T-test, fac must be an integer vector of 1,-1,2,-2,..., where each number represents a pair, and the sign represents the conditions.

gs The gene sets. Most commonly, gs is a list, where each element (named after the gene set) is a vector of genes belonging to the gene set. It can also be a binary sparse matrix, where each row is a gene set, and each column is a gene. For each row (i.e. a gene set), the row entry is 1 if the corresponding gene belongs to the gene set, and 0 otherwise. Alternatively it can be a data table, where the first column (must be named "geneSet") contains the names of the gene set, and the second column (must be named "gene") are the gene set genes.
nperm Number of permutations. If unspecified, nperm will be set as the total number of
gene sets divided by 0.05 times 2. This should be sufficient to estimate accurate
p-values for Bonferroni Correction under significance level alpha = 0.05.

tests The tests to performed. Can be either the default "unpaired" for unpaired T-tests
or "paired" for paired T-tests.

method The method to combine the T-test statistics for each individual gene into a gene
set test statistics. The default "maxmean" uses the maxmean statistics proposed
by Efron (2007). Other options are "mean", i.e. the mean of the statistics of the
genes inside a gene set, and "absmean", the mean of the absolute value of the
statistics.

minsize Minimum gene set size (default = 1, i.e. even gene set with a single gene is
allowed).

maxsize Maximum gene set size (default = Inf, i.e. no upper limit).

restandardize Should restandardization be performed? This is typically recommended to avoid
excessive number of significant gene sets.

npermBreaks The batch size. When the number of permutation nperm is large, the permu-
tations are broken into batches, and that permutation are performed with the
batches sequentially run. Default is 2000.

rmGSGenes What to do if there gene sets with genes without expression measurements. De-
default is 'stop', and will return an error if there are gene set genes with missing
expression measurements. If rmGSGenes is "gene", genes with missing expres-
sion measurements are removed from the gene sets. If rmGSGenes = 'gs', gene
sets with non-measured genes are removed.

verbose Should the progress be reported? Default = TRUE.

Details

The speed performance of GSALight is sensitive to npermBreaks. Setting npermBreaks small can
save memory, but will take longer to run. Setting npermBreaks large can speed up GSALight, but
may run into memory issues. If GSALight is running slow, consider increasing npermBreaks. If
GSALight is running into memory issues, consider reducing npermBreaks. The default 2000 can
typically provide a reasonable balance between speed and memory.

Value

A data frame with the p-values, the q-values (via Benjamini-Hochberg FDR control method), the
gene set statistics, and the gene set size. If method = 'mean', then the p-values and q-values for
up-regulation and down-regulation are reported. Method = 'absmean' corresponds to a two-sided
test of absolute changes in expression, hence only one set of p-values and one set of q-values will
be reported.

Author(s)

Billy Heung Wing Chang

References

Bioinformatics. doi: 10.1093/bioinformatics/btw349

B Efron and RJ Tibshirani (2007). "On testing the significance of sets of genes." The annals of
applied statistics 1(1):107-129
permTestLight

See Also

permTestLight, targetGenes

Examples

see the vignette for more examples
this example is adapted from R GSA package (Efron 2007)

set.seed(100)
x <- matrix(rnorm(1000*20),ncol=20)
rownames(x) <- paste("g",1:1000,sep="")
dd <- sample(1:1000,size=100)

u <- matrix(2*rnorm(100),ncol=10,nrow=100)
y <- factor(c(rep("Var Control",10),rep("Var Experiment",10)))

create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
 genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
names(genesets)=paste("set",as.character(1:50),sep="")

GSAmaxmean <- GSALight(x, y, genesets, nperm = 1000, method = "maxmean", restandardize = FALSE, rmGSGenes = "gene")
GSAmean <- GSALight(x, y, genesets, nperm = 1000, method = "mean", restandardize = FALSE, rmGSGenes = "gene")
GSAabs <- GSALight(x, y, genesets, nperm = 1000, method = "absmean", restandardize = FALSE, rmGSGenes = "gene")

head(GSAmaxmean)
head(GSAmean)
head(GSAabs)

permTestLight Fast Single-Gene Permutation Test

Description

A fast permutation-testing procedure for two-sample single-gene differential expression analysis.

Usage

permTestLight(eset, fac, nperm, tests = c('unpaired','paired'), method = c("mean", "absmean"), npermBreaks = 2000, verbose = TRUE)

Arguments

eset The expression matrix. Each row is a gene, and each column is a subject/sample. The gene names must be presented as the row names.
fac Subject labels, for unpaired T-test, either a factor or something that can be coerced into a factor (e.g. 0 and 1, Experiment and Control). For paired T-test, fac must be an integer vector of 1,-1,2,-2,..., where each number represents a pair, and the sign represents the conditions.
permTestLight

nperm Number of permutations. If unspecified, nperm will be set as the total number of
gene sets divided by 0.05 times 2. This should be sufficient to estimate accurate
p-values for Bonferroni Correction under significance level alpha = 0.05.
tests The tests to performed. Can be either the default "unpaired" for unpaired T-tests
 or "paired" for paired T-tests.
method Modification of the T-test statistics for each individual gene for hypothesis test-
ing. The default "mean" option uses the typical T-statistics. The other option
"absmean" uses the absolute value of the T-statistics (which results in a two-
sided test).
npermBreaks The batch size. When the number of permutation nperm is large, the permu-
tations are broken into batches, and that permutation are performed with the
batches sequentially run. Default is 2000.
verbose Should the progress be reported? Default = TRUE.

Details

The speed performance is sensitive to npermBreaks. Setting npermBreaks small can save memory,
but will take longer to run. Setting npermBreaks large can speed up the process, but may run into
memory issues. If the function is running slow, consider increase npermBreaks. If the function
is running into memory issues, consider reducing npermBreaks. The default 2000 typically can
provide a reasonable balance between speed and memory.

Value

A data frame with the p-values, the q-values (via Benjamini-Hochberg FDR control method), the
gene statistics, and the gene set size. If method = 'mean', then the p-values and q-values for up-
regulation and down-regulation are reported. Method = 'absmean' corresponds to a two-sided test
of absolute changes in expression, hence only one set of p-values and one set of q-values will be
reported.

Author(s)

Billy Heung Wing Chang

References

Bioinformatics. doi: 10.1093/bioinformatics/btw349

See Also

GSALight

Examples

see the vignette for more examples
this example is adapted from R GSA package (Efron 2007)

set.seed(100)
x <- matrix(rnorm(1000*20),ncol=20)
rownames(x) <- paste("g",1:1000,sep="")
dd <- sample(1:1000,size=100)
u <- matrix(2*rnorm(100),ncol=10,nrow=10)
y <- factor(c(rep('Control',10),rep('Experiment',10)))
results <- permTestLight(x, y, nperm = 1000, method = 'mean')
head(results)

sampleInfo

Sample Information for the Breast Cancer Data from The Cancer Genome Atlas (TCGA)

Description

This is the subject information data for the breast cancer expression data set obtained from The Cancer Genome Atlas (TCGA) consortium, and processed by the Pan-Cancer project group. The data was downloaded originally using the ELMER Bioconductor package.

Usage

data("sampleInfo")

Value

A data frame. The element "TN" is the subject label ("Experiment" = cancer patients, and "Control" = the control subjects).

References

Examples

data(sampleInfo)
str(sampleInfo)
targetGenes
Target Genes of Distal Regulatory Elements

Description

A list containing the target genes of 104636 distal regulatory elements from the human genome. The original list is available in the supplementary data of the reference stated below. The gene names has been tranformed to gene symbol already.

Usage

```r
data("targetGenes")
```

Value

A list of distal regulatory elements and their target genes.

Source

http://nar.oxfordjournals.org/content/early/2013/09/03/nar.gkt785/suppl/DC1

References

Examples

```r
data(targetGenes)
str(targetGenes)
```

wilcoxTest
Single-Gene Mann Whitney Wilcoxon Test

Description

A two-sample single-gene differential expression analysis using the Mann Whitney Wilcoxon Test.

Usage

```r
wilcoxTest(eset, fac, tests = c("unpaired", "paired"))
```
wilcoxTest

Arguments

eset
The expression matrix. Each row is a gene, and each column is a subject/sample. The gene names must be presented as the row names.

fac
Subject labels, for unpaired T-test, either a factor or something that can be coerced into a factor (e.g. 0 and 1, Experiment and Control). For paired T-test, fac must be an integer vector of 1,-1,2,-2,..., where each number represents a pair, and the sign represents the conditions.

tests
The tests to performed. Can be either the default "unpaired" for unpaired T-tests or "paired" for paired T-tests.

Details

This function performs Mann Whitney Wilcoxon test (a.k.a Mann Whitney U test and Wilcoxon Rank Sum test) for all genes in eset. This function is built on the wilcox.test() function in the "stats" package, but is structured to align with the usage of permTestLight. We included this function in case users may want to compare the permutation test results with the results of a standard, non-permutation-based nonparametric test.

Value

A data frame with the p-values, the q-values (via Benjamini-Hochberg FDR control method). The p-values and q-values for up-regulation and down-regulation are reported.

Author(s)

Billy Heung Wing Chang

See Also

permTestLight, wilcox.test

Examples

see the vignette for more examples
this example is adapted from R GSA package (Efron 2007)

NOT RUN
set.seed(100)
x <- matrix(rnorm(1000*20),ncol=20)
ownames(x) <- paste("g",1:1000,sep="")
dd <- sample(1:1000,size=100)

u <- matrix(2*runnorm(100),ncol=10,nrow=100)
y <- factor(c(rep("Control",10),rep("Experiment",10)))

results <- wilcoxTest(x, y, tests = "unpaired")
head(results)
Index

*Topic package
 GSALightning-package, 2

expression, 2

GSALight, 2, 3, 6
GSALightning (GSALightning-package), 2
GSALightning-package, 2

permTestLight, 2, 5, 5, 9

sampleInfo, 7

targetGenes, 5, 8

wilcox.test, 9
wilcoxTest, 8